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I N T R O D U C T I O N

BK channels have an established role in regulating 
vascular smooth muscle tone by hyperpolarizing the 
membrane and deactivating voltage-dependent Ca2+ 
channels (Kaczorowski et al., 1996; Gribkoff et al., 1997; 
Calderone, 2002). Increased opening of smooth muscle 
BK channels is conferred by the 1 auxiliary subunit 
(Tanaka et al., 1997; Brenner et al., 2000b; Plüger et al., 
2000). The important role of the 1 subunit has been 
demonstrated in 1 knockout mice, which display re-
duced BK channel opening, increased vascular tone, 
and hypertension (Brenner et al., 2000b; Plüger et al., 
2000). In addition, two human 1 polymorphisms, each 
with a single amino acid change in the extracellular 
domain, have been associated with altered smooth 
muscle function. A gain-of-function polymorphism has 
been linked to a reduced incidence of hypertension 
(Fernández-Fernández et al., 2004). In addition, a poly-
morphism that moderately reduces channel opening 
has been associated with increased asthma severity 
(Seibold et al., 2008).

The BK channel pore-forming  subunit belongs to 
the six-transmembrane (TM) voltage-dependent K+ 
channel family (Atkinson et al., 1991). The 1 accessory 
subunit belongs to the two-TM BK channel auxiliary  
subunit family consisting of four members, 1–4, each 
having distinct tissue-specific expression (Knaus et al., 
1994; Riazi et al., 1999; Wallner et al., 1999; Xia et al., 1999; 
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Behrens et al., 2000; Brenner et al., 2000a). The  sub
unit structure contains a large extracellular loop, two 
TMs, and two small intracellular domains (Knaus et al., 
1994; Orio et al., 2002). Recently, a distinct single TM 
protein, LRRC26 (leucine-rich repeat–containing pro-
tein 26), was also found to act as an accessory BK chan-
nel subunit in a prostate cancer cell line (Yan and 
Aldrich, 2010).

Mutagenesis of the  subunit has yielded a large 
number of insights into the structure of the pore-forming 
subunit of the BK channel (Lee and Cui, 2010). In con-
trast, the  structural determinants that modulate 
 subunit gating remain unclear. BK channel  subunits 
are apparently unrelated to other protein families. 
Therefore, identifying structural domains of  subunits 
by scanning mutagenesis is encumbered by the poten-
tially large number of mutations that would be required. 
However, there is evidence that some modulatory  
effects of  subunit family members 1, 2, and 4 are 
conserved. These  subunits slow activation and deacti-
vation gating kinetics (Behrens et al., 2000; Brenner 
et al., 2000a; Lippiat et al., 2003). In addition, these 
 subunits exert similar Ca2+-dependent effects on steady-
state opening (Behrens et al., 2000; Brenner et al., 
2000a; Lippiat et al., 2003). They increase channel 
opening in high Ca2+, effects that are accounted for by 
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The steady-state data in 0 Ca2+ were fit to the Horrigan-Aldrich 
model (Horrigan and Aldrich, 2002) based on least-squares cri-
teria. The following equations were used to estimate energetic 
changes associated with mutations (Ma et al., 2006):
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Online supplemental material
Fig. S1 shows that 1 and 4 share common gating effects. Fig. S2 
shows effects of alanine substitutions of four 1 residues on G-V 
relations at various /1 molar ratios. Fig. S3 compares mutant Po-V 
data in linear scale to best fits of the Horrigan-Aldrich model (see 
Table 2). Fig. S4 shows effects of I106A, Y74A, and Y105AY74A 
on free energies associated with various gating transitions. Online 
supplemental material is available at http://www.jgp.org/cgi/
content/full/jgp.201110698/DC1.

R E S U LT S

Identifying 1 residues critical for gating modulation
Despite different physiological roles, both 1 and neu-
ron-specific 4 subunits slow BK channel gating and 
modulate steady-state properties (Fig. S1, A and B). 
Compared with  alone channels, both 1 and 4 in-
crease steady-state Po at high Ca2+ but reduce it at low 
Ca2+ (Fig. S1 B). These steady-state effects are largely 
accounted for by two Ca2+-independent mechanisms. 
These are a reduction in intrinsic gating and a negative 
shift of open-channel voltage sensor activation (Fig. S1 C; 
Bao and Cox, 2005; Wang and Brenner, 2006; Wang 
et al., 2006; Sweet and Cox, 2009). Similarly, data from a 
previous study suggest that the dual gating mechanisms 
also underlie 2 modulation of BK channel properties 
(Orio and Latorre, 2005).

These prior findings led us to hypothesize that resi-
dues mediating gating modulation are conserved among 

 subunit modulation of voltage sensor and Ca2+ bind-
ing (Bao and Cox, 2005; Orio and Latorre, 2005; Wang 
and Brenner, 2006; Wang et al., 2006; Sweet and Cox, 
2009).  subunits also reduce channel opening in low 
intracellular Ca2+ by a reduction of intrinsic gating 
(channel opening independent of voltage sensor acti-
vation and Ca2+ binding; Orio and Latorre, 2005; Wang 
and Brenner, 2006; Wang et al., 2006). These func-
tional similarities suggest that structural determinants 
underlying  subunit function may also be conserved 
(Orio et al., 2006). Therefore, key residues and func-
tional domains may be uncovered by alanine substitu-
tion of conserved amino acids. Using this approach, we 
report here the identification of a novel 1 extracellu-
lar domain that is critical for modulation of voltage 
sensor activation and intrinsic gating of BK channels.

M AT E R I A L S  A N D  M E T H O D S

Channel expression
The mouse BK  cDNA (GenBank/EMBL/DDBJ accession 
no. MMU09383) was modified to include the extended amino-
terminal sequence (beginning MANG) encoded by the KCNMA1 
gene. We found that the extra sequence causes an 20-mV larger 
negative G-V shift by mouse 1 as compared with the truncated 
 subunit (initiating translation at the internal MDAL residues) 
that has been most often used in the past. The extended amino-
terminal sequence was also added to the F315Y construct 
(Wang and Brenner, 2006), which we call F380Y in this study. 
With mouse 1 cDNA (Wang and Brenner, 2006) as a template, 
mutant 1 constructs were generated with a Quick-Change XL 
Site-Directed Mutagenesis kit (Agilent Technologies) and confirmed 
by sequencing.

 and various 1 cDNAs were cotransfected into HEK-293 cells 
(American Type Culture Collection) and studied 1–2 d after 
transfection. 1 subunits were subcloned in the mammalian 
expression vector pIRES2–enhanced green fluorescent protein 
(Takara Bio Inc.), which contains the enhanced green fluores-
cent protein gene that fluorescently labels transfected cells. A  
molar ratio of 1:6 /1 was used, aiming to saturate BK channels 
with 1 subunits. For 1 mutants with large effects on G-Vs, satu-
rating 1 expression was experimentally verified (Fig. S2). In the 
event 1 expression did not reach saturation, reduced /1 
molar ratios (1:12 and 1:24) were used to reach saturation.

Electrophysiology and data analysis
Currents were recorded using the patch clamp technique in the 
inside-out configuration. The external recording solution con-
tained 20 mM HEPES, 140 mM KMeSO3, 2 mM KCl, and 2 mM 
MgCl2, pH 7.2. Internal solutions contained 20 mM HEPES, 140 mM 
KMeSO3, and 2 mM KCl, pH 7.2. For the 60-µM free Ca2+ intra-
cellular solution, Ca2+ was buffered with 5 mM nitrilo-triacetic 
acid. For nominally 0 Ca2+ (0.002 µM of free Ca2+), intracellular 
solution Ca2+ was buffered with 2 mM EGTA. Free [Ca2+] was mea-
sured using a Ca2+-sensitive electrode (Orion Research).

Open probability (Po) was estimated by steady-state macro-
scopic recordings (when Po > 0.05) and single-channel recordings 
in the same patch. nPo was determined from all-points amplitude 
histograms by the sum of open levels (k) multiplied by fractional 
time spent (Pk): nPo = kPk. To estimate the number of channels 
in a patch (n), maximum macroscopic conductance (GKMax) 
was divided by single-channel conductance (gk) at the same volt
age for tail current measurements (80 mV). n = GKMax/gk. 

http://www.jgp.org/cgi/content/full/jgp.201110698/DC1
http://www.jgp.org/cgi/content/full/jgp.201110698/DC1
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tions of these residues reduce 1-mediated G-V shifts, 
increasing V1/2 by 28–44 mV (Fig. 3 A). These results 
are consistent with the hypothesis that segment A and B 
residues play an important role in gating modulation.

Segment A and B residues have nonadditive effects
Similar effects of alanine substitution of Y74, S104, 
Y105, and I106 suggest that these residues may contrib-
ute to common functional interactions. To test this 
hypothesis, we examined whether these mutations have 
additive effects. If the two residues contribute to a 
common interaction, effects of the double mutation 
should not exceed both single mutations.

We first examined segment B mutations Y105A and 
I106A (Fig. 4 A). Indeed, the steady-state effect of the 
double mutant Y105AI106A (V1/2 of 48 ± 4 mV) is not 
significantly different from individual mutants Y105A 
(45 ± 5 mV, P ≈ 0.6) or I106A (49 ± 5 mV, P ≈ 0.9; 
Fig. 4 B, left). The nonadditive effects were also ob
served from activation kinetics. Compared with 1WT, 
both single mutations slow activation, with I106A hav-
ing a greater effect than Y105A. This kinetic effect of 
Y105AI106A is not significantly greater than I106A 
(Fig. 4 B, right). At 20 mV, time constants for I106A 
and Y105AI106A are 10.1 ± 1.5 ms and 14.2 ± 2.0 ms, 
respectively (P ≈ 0.1). At 40 mV, they are 17.0 ± 1.3 ms 
and 21.4 ± 3.5 ms, respectively (P ≈ 0.3).

1, 2, and 4. To identify potential key gating residues 
and domains, we performed sequence alignment of 
m1, h1, b1, h2, m4, and h4 and identified two 
highly conserved segments (Fig. 1). Extracellular seg-
ment A consists of four identical residues (Q73YPC76), and 
segment B consists of five identical residues (C103SYIP107; 
Fig. 1). Segments A and B consist of the longest se-
quence of consecutive identical residues among these  
subunits. To test the hypothesis that these conserved seg-
ments have important roles in gating modulation, we 
performed an alanine substitution mutagenesis of 13 iden-
tical residues within or neighboring segments A and B.

Mutant 1 (1MT) subunits were expressed at saturat-
ing concentrations with wild-type  subunits using tran-
sient transfection in HEK-293 cells. BK currents were 
recorded using the inside-out patch clamp configura-
tion at 60 µM Ca2+ (Fig. 2 A). Averaged G-V relations of 
1MT were compared with  alone and 1WT channels 
(Fig. 2, B and C). Mutations such as V120A caused a small 
or no change in channel properties (Fig. 2, B and C). In 
contrast, mutations such as S104A reduced the size of 
the G-V shift (by 30 mV; Fig. 2 B) and slowed the acti-
vation time constants (Fig. 2 C).

In addition to S104, we have identified three other 
positions that are important in mediating gating modula-
tion. These include segment B residues Y105 and I106 as 
well as segment A residue Y74 (Fig. 3). Alanine substitu-

Figure 1.  1 residues conserved with family members 2 and 4. Sequence alignment of the  subunit family members, including 
mouse, human, and bovine 1, human 2, and mouse and human 4. The 28 identical residues are boxed and shaded in dark gray. 
The 28 conserved but nonidentical residues are shaded in light gray. The two TM regions, TM1 and TM2, and the two most conserved 
segments, A and B, are boxed.



60 Identifying a BK 1 domain that modulates gating

of the double mutation are not greater than those of 
Y105A (Fig. 4 D, right). At 20 mV, the activation time 
constant for Y105AY74A (7.2 ± 0.9 ms) is similar to 
Y105A (8.8 ± 1.0 ms, P ≈ 0.3) and Y74A (8.3 ± 0.7 ms,  
P ≈ 0.4). Finally, deactivation time constants are also  
not significantly different between Y105AY74A and 

Next, we tested whether mutant effects of segment A 
and B residues Y74A and Y105A are additive (Fig. 4 C). 
The steady-state effect of Y105AY74A (V1/2 of 48 ± 3 mV) 
is not significantly different from Y105A (45 ± 5 mV, 
P ≈ 0.6) even though it is greater than Y74A (57 ± 
3 mV, P ≈ 0.03; Fig. 4 D, left). Similarly, kinetic effects 

Figure 2.  Alanine substitutions of key 1 residues 
affect the G-V relations and gating kinetics. (A) Families 
of currents recorded at 60 µM Ca2+ from BK channels 
composed of  subunit alone (),  subunit coassem-
bled wild-type 1 (1WT), or 1 with a single alanine 
substitution (1S104A).  currents were evoked by 100-ms 
depolarization in 20-mV steps between 60 and 60 mV. 
1 currents were evoked by 200-ms depolarization 
in 20-mV steps between 140 and 60 mV. The x and 
y scale bars represent 20 ms and 0.5 nA, respectively.  
(B) Averaged G-V relations of 1V120A and 1WT largely 
overlap, indicating that the V120A mutation has little 
effect on steady-state modulation of the  subunit. In 
contrast, the S104A mutation shifts the G-V relations by 
30 mV, reducing 1 steady-state modulatory effects. , 
n = 16; 1WT, n = 12; 1S104A, n = 32; 1V120A, n = 11. 
(C) S104A, but not V120A, alters 1 effects on activa-
tion kinetics. The averaged activation and deactivation 
time constants of , 1WT, 1V120A, and 1S104A chan-
nels are shown, plotted as a function of voltage. , n = 
9–16; 1WT, n = 8–12; 1S104A, n = 17–32; 1V120A, n = 
7–11. Error bars represent SEM.

Figure 3.  Steady-state effects of mutations on 1 function. (A) Summarized steady-state effects of 13 alanine substitutions measured 
in 60 µM Ca2+. Averaged V1/2 (top) and Q (bottom) for BK channels with no 1, wild-type 1, or mutant 1. , n = 16; 1WT, n = 12; 
1Q73A, n = 16; 1Y74A, n = 15; 1P75A, n = 16; 1C76A, n = 20; 1V79A, n = 14; 1N80A, n = 6; 1N100A, n = 6; 1C103A, n = 8; 1S104A, n = 32; 
1Y105A, n = 26; 1I106A, n = 11; 1P107A, n = 14; 1V120A, n = 11. Error bars represent SEM. (B) Positions of key segments A and B on 
a schematic cartoon of 1. Residues mutated to alanine are labeled with their respective amino acids. Mutated residues having relatively 
large and small effects are represented by closed red and black circles, respectively. Identical and nonidentical but conserved residues in 
other positions are represented by closed black and gray circles, respectively.
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tations are nonadditive, suggesting that these residues 
functionally interact in modulating BK channel gating. 
The BK channel dual allosteric gating model includes a 
gate, four independent voltage sensors, and four Ca2+ 
sensors (Rothberg and Magleby, 2000; Horrigan and  

Y105A. For example, at 200 mV, deactivation time 
constants are 1.3 ± 0.2 ms and 1.1 ± 0.1 ms, respec-
tively (P ≈ 0.1).

The aforementioned results show that at 60 µM Ca2+, 
steady-state and kinetic effects of segment A and B mu-

Figure 4.  Alanine substitution of seg-
ment A and B residues displays non-
additive effects. (A) Both Y105 and 
I106 resides in segment B. (B) The 
effects of Y105A and I106A are nonad-
ditive. (left) The positive shift of G-V 
by Y105AI106A (n = 10) is not greater 
than Y105A (n = 26) or I106A (n = 11). 
(right) Y105AI106A (n = 8–10) does 
not slow activation time constants more 
than both single mutations. 1Y105A, 
n = 13–24; 1I106A, n = 8–11. (C) Y105 
and Y74 reside in segment B and A, 
respectively. (D) The effects of Y105A 
and Y74A are nonadditive. (left) The 
positive shift of G-V by Y105AY74A  
(n = 24) is not greater than Y105A. 
(right) Y105AY74A (n = 22–24) does 
not slow activation or speed deactiva-
tion time constants more than either 
single mutation. 1Y74A, n = 8–14; 
1Y105A, n = 13–24. (B and D, left) The 

black and gray traces represent Boltzmann fits of averaged G-V relations of 1 and  channels, respectively. (right) The black and gray 
traces represent averaged activation and deactivation time constants of 1 and  channels, respectively. Error bars represent SEM.

Figure 5.  Measurement of Po at 0 Ca2+ 
and the limiting slope using F380Y.  
(A) Representative single-channel record-
ings of F380Y channels at 0 Ca2+ and decreas-
ing voltages. (B) Corresponding all-point 
amplitude histograms and estimates of Po. 
The estimated number of channels in the 
patch is 74.
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to-open (C-O) equilibrium constant, and zL is its partial 
charge (Horrigan and Aldrich, 2002). To isolate mutant 
effects on intrinsic gating, we performed recordings  
using a modified  subunit F380Y. Previously, this mod-
ification has been shown to greatly increase channel 
opening in hslo1 (Lippiat et al., 2000) and mslo1 (Wang 
and Brenner, 2006). F380Y allows us to measure chan-
nel Po in ligand-unbound states (0 Ca2+) with voltage 
sensors residing in the resting state (the limiting slope). 
In WT background, obtaining Po under these condi-
tions is not technically feasible for the 1 channels 
(Po < 108; Wang and Brenner, 2006).

An example recording of  subunit F380Y in 0 Ca2+ 
over a range of voltages is shown in Fig. 5 A. The corre-
sponding all-point histograms and estimated Po (Fig. 5 B) 
clearly show that the voltage dependence approaches a 
minimum between 120 and 220 mV. The estimated 
weak voltage dependence here (0.25 e0) corresponds 
to the weak voltage dependence associated with intrin-
sic gating (zL; Horrigan and Aldrich, 2002). Fitting 
0 Ca2+ limiting slope logPo-V relations to the Horrigan-
Aldrich model (Horrigan and Aldrich, 2002), the two 
free parameters associated with intrinsic gating were  
estimated (L0 of 6.6 ± 0.9 e2 and zL of 0.16 ± 0.01 e0; 
Fig. 6 A and Table 1). For F380Y, the effect of 1WT on in-
trinsic gating is an 15-fold reduction in L0 (4.3 ± 1.9 e3, 
P < 0.001). However, zL is not significantly altered (0.20 ± 
0.05 e0, P ≈ 0.5; Table 1).

L0 is significantly increased by segment A and B key 
mutations (Table 1). In the presence of Y105A, I106A, or 
Y74A, L0 are 1.9 ± 0.4, 4.4 ± 1.1, or 2.5 ± 0.5 e2 (Table 1). 
The 4-, 10-, and 6-fold increases of L0 (relative to 
F380Y1WT channels) reflect a reduction in 1’s ability 
to decrease intrinsic gating. The results suggest an im-
portant role that Y105, I106, and Y74 play in 1 modu-
lation of intrinsic gating.

Double mutation Y105AY74A was also examined to 
test whether effects of Y105A and Y74A on intrinsic gat-
ing were additive. If effects of Y105A and Y74A on in-
trinsic gating were additive, a significant increase in L0 
would have been expected. Because the estimated L0 
for F380Y1Y105AY74A, 2.0 ± 0.3 e2, is similar to the single 
mutations, the results suggest that segments A and B 
functionally interact in reducing intrinsic gating.

Segment A and B residues modulate open-channel voltage 
sensor activation
An increase in L0 predicts an increase in steady-state 
opening at all Ca2+. This is unlikely to be the sole effect of 
segment A and B mutants because the mutations dis-
played positive shifts of G-V relations. We therefore inves-
tigated whether these mutations also alter voltage sensor 
activation. Voltage sensor activation of unliganded chan-
nels is described by three free parameters: the partial 
charge associated with the resting-to-activated (R-A) tran-
sition (zJ) and the half-activation voltages for voltage 

Aldrich, 2002). Channel opening is allosterically cou-
pled to voltage sensor activation and Ca2+ binding. How-
ever, channels can open at a low probability independent 
of voltage sensor activation and Ca2+ binding (intrinsic 
gating). Previously, 1 subunits have been shown to 
confer modulatory effects on intrinsic gating, voltage 
sensor activation, and Ca2+ binding (Cox and Aldrich, 
2000; Nimigean and Magleby, 2000; Bao and Cox, 2005; 
Orio and Latorre, 2005; Wang and Brenner, 2006; Sweet 
and Cox, 2009). Because segments A and B are located 
in the extracellular region, we focused on how these do-
mains modulate Ca2+-independent effects: intrinsic gat-
ing and voltage sensor activation.

Segment A and B residues reduce intrinsic gating
Intrinsic gating is weakly voltage dependent and can be 
described by two free parameters (Horrigan and Aldrich, 
2002). L0 represents the zero voltage value of the closed-

Figure 6.  Segment A and B residues contribute to reducing in-
trinsic opening. (A) A representative logPo-V relation of F380Y 
channel in which the limiting slope was fitted to the Horrigan-
Aldrich model to estimate zL and L0. The black curve represents 
the Boltzmann fit plotted in a log scale (right axis not shown, axis  
range 0.01–1). The red line represents the linear fits of logPo-V 
relations to the Horrigan-Aldrich model between 160 and 
90 mV. Weak voltage dependence of Po at the limiting slope is 
apparent when compared with the Boltzmann fit. (B) Averaged 
estimates for L0 and zL for different channel configurations. No 
1, n = 5; WT 1, n = 7; Y105A, n = 8; I106A, n = 8; Y74A, n = 9; 
Y105AY74A, n = 9. Error bars represent SEM.
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found that neither zL nor zJ are altered by 1 (Bao and 
Cox, 2005), suggesting that mutations likely do not 
alter zL or zJ either.

The fits to the logPo-V relations (Table 2) show that 
1 stabilizes voltage sensor activation in both open and 
closed channels. There is a 55-mV shift of the half-
activating voltage for the open-channel voltage sensor 
(Vho), similar to the 61-mV value estimated in the WT 
background (Bao and Cox, 2005). F380Y reports a 37-mV 
shift of the half-activating voltage for the closed-chan-
nel voltage sensor (Vhc), which is smaller than the 
71-mV value estimated in the WT background (Bao 
and Cox, 2005).

Y105A has little effect on closed-channel voltage sensor 
activation. This is evident from estimates of Vhc (76 vs. 
73 mV) and the corresponding R-A equilibrium J0 (8.8 vs. 
9.4 e2; Table 2). However, the mutation destabilizes 
open-channel voltage sensor activation (13 vs. 10 mV), 
thereby reducing the allosteric coupling between voltage 
sensor activation and gating (D of 3.9 vs. 7.1; Table 2). 

sensors of open and closed channels (Vho and Vhc, 
respectively; Horrigan and Aldrich, 2002). The R-A 
equilibrium constant of closed, unliganded channel J0 
(the zero voltage value of the R-A equilibrium constant) is 
a function of Vhc (J0 = 0.5/exp(zJVhc/kT)). The allosteric 
factor between the voltage sensor activation and gating 
(D) is a function of the difference between Vhc and 
Vho (D = 0.5/exp(zJ(Vhc  Vho)/kT); Horrigan and 
Aldrich, 2002).

We obtained 0 Ca2+ Po over a wide range of voltages. 
Averaged logPo-V and Po-V relations data were fit to the 
Horrigan-Aldrich model (Fig. 7 and Fig. S3; Horrigan 
and Aldrich, 2002). In all these fits, zL and zJ were set as 
0.2 e0 and 0.58 e0, respectively, to reduce the number of 
free parameters. The basis for our assumptions here are 
twofold. First, the finding that voltage sensors act as a 
source of gating charge for the opening transition (Ma 
et al., 2006) and the observation that the mutations do 
not alter zL imply that these mutations do not signifi-
cantly alter zJ as well. Second, prior gating current data 

Tab  l e  1

Steady-state intrinsic gating parameters

Channels  
F380Y

L0 P-value zL P-value  
(approximately)

G n

e2 e0 kcal/mol

No 1 6.6 ± 0.9 <0.001 0.16 ± 0.01 0.5 5

WT 1 4.3 ± 1.9a NA 0.20 ± 0.05 NA 1.62 7

1Y105A 1.9 ± 0.4 <0.01 0.21 ± 0.02 0.8 0.74 8

1I106A 4.4 ± 1.1 <0.01 0.24 ± 0.04 0.5 0.39 8

1Y74A 2.5 ± 0.5 <0.01 0.20 ± 0.02 0.7 0.58 9

1Y74AY105A 2.0 ± 0.3 <0.001 0.21 ± 0.02 0.9 0.71 9

NA, not applicable.
ae3.

Figure 7.  Segment A and B residues contribute to stabilization of open-channel voltage sensor activation. (A–F) Averaged logPo-V rela-
tions (circles) and best fits to the Horrigan-Aldrich model (red curves). The black curves represent Boltzmann fits. No 1, n = 5–13; WT 
1, n = 3–30; Y105A, n = 7–24; I106A, n = 4–8; Y74A, n = 5–12; Y105AY74A, n = 6–12. Error bars represent SEM.

http://www.jgp.org/cgi/content/full/jgp.201110698/DC1
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of single mutations are nonadditive. Therefore, segments 
A and B may functionally interact in stabilizing voltage 
sensor activation in open channels.

Effects of the segment A-B domain on gating energetics
The aforementioned results indicate that the segment 
A-B domain mediates two gating effects: reduction of 
intrinsic gating and stabilization of voltage sensor activa-
tion in open channels. The fact that a single functional 
domain underlies both gating effects suggests obligatory 
coupling of the two. We have calculated mutant effects 
on the free energy changes associated with the C-O and 
R-A transitions to more closely examine how the seg-
ment A-B domain exerts the dual gating effects.

Fig. 8 A plots the 10-state gating scheme for unligan-
ded channels. Channels reside in either closed (C) or 
open (O) states with zero to four activated voltage 
sensors (Horrigan and Aldrich, 2002). The effects of 
segment A-B mutations on the steady-state equilibrium 
constant and free energy associated with each transition 
were plotted in Fig. 8 (B and C, respectively). The Y105A 
mutation has little effect (1.1-fold, 0.04 kcal/mol) on 
the R-A equilibrium of closed channels (Fig. 8, B and C). 
However, the mutation increases the energetic barrier 
(0.6-fold, 0.31 kcal/mol) of the R-A transitions of open 
states (Fig. 8, B and C). The largest effects are increases 
of the early C-O transitions in which no or few voltage 
sensors are active (i.e., 5.6-fold, 1.02 kcal/mol for 
C0-O0; Fig. 8, B and C). These effects are quantitatively 
similar in mutations I106A, Y74A, and Y74AY105A (Fig. S3 
and summarized in Table 3). From the perspective of 
the wild-type  subunit, a simple model that explains 
these results is one in which segment A-B interactions 
cause a destabilization of early open states (O0 to O2) 
but have little effect on closed states.

D I S C U S S I O N

Our scan identified four residues critical for 1 gating 
modulation. Mutating these residues reduce 1-mediated 
negative G-V shift at 60 Ca2+, consistent with a partial 
disruption in 1 function. The experimental evidence 
does not suggest gain-of-function mutant effects. For ex-
ample, gating parameters normally not altered by 1WT 
(such as zL) are also not altered by these mutations, and 
gating parameters normally altered by 1WT (such as L0 
and Vho) are reduced by these mutations.

Previous studies suggest that 1 alters several gating 
parameters of BK channels (Cox and Aldrich, 2000; 
Bao and Cox, 2005; Orio and Latorre, 2005; Orio et al., 
2006; Wang and Brenner, 2006; Sweet and Cox, 2009). 
Our observations that no single mutation eliminated 
1-mediated negative G-V shift or free energy changes 
suggest that additional key gating residues remain to be 
uncovered. This is true even for the effects on intrinsic 
gating and open-channel voltage sensor activation that 

Similarly, mutating I106 and Y74 also destabilize open-
channel voltage sensor activation, increasing Vho by 29 mV 
and 24 mV, respectively (Table 2). Finally, Y105AY74A 
increases Vho by 21 mV (Table 2), suggesting that effects 

Tab  l e  2

Steady-state parameters

Channels Intrinsic gating (L0) Voltage sensor activation

Vho Vhc J0 D

e2 mV mV e2

F380Y 6.9 45 113 3.8 4.7

F380Y1WT 2.5a 10 76 8.8 7.1

F380Y1Y105A 1.4 13 73 9.4 3.9

F380Y1I106A 2.9 19 80 8.0 4.0

F380Y1Y74A 1.3 14 75 9.0 4.0

F380Y1Y74AY105A 1.8 11 72 9.7 4.0

ae3.

Figure 8.  Effects of Y105A on intrinsic gating and voltage sen-
sor activation. (A) The 10-state gating scheme for unliganded BK 
channel in the Horrigan-Aldrich model (Horrigan and Aldrich, 
2002). C and O represent closed and open channels, respectively. 
Subscripts represent the number of activated voltage sensors per  
channel. Equilibrium constants are indicated. (B) Numbers in-
dicate effects of the Y105A mutation on equilibrium constants.  
(C) Numbers indicate effects of the Y105A mutation on free energies.
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intrinsic opening and voltage sensor activation (Ma et al., 
2006; Wang and Brenner, 2006), this coupling may re-
flect intrinsic properties of the pore-forming subunit 
rather than properties unique to 1 function.

The dual gating effects of the segment A-B domain 
likely contribute to the complex steady-state modula-
tory effects of  subunits (Fig. S1). Interactions involv-
ing the segment A-B domain transition the channel 
away from open states with relaxed voltage sensors (the 
OR state; Fig. 9). Thus, in the absence of calcium or 
membrane depolarization, 1 causes a relative destabi-
lization of the OR state and “silences” the channel in 
the closed resting state (CR; Fig. 9). With sufficient de-
polarization and/or calcium, 1 promotes channel 
opening by facilitating transitions to the late opening 
states (the OA state; Fig. 9).

Our results suggest that the segment A-B domain is 
necessary for maintaining the regulatory effects of 1. 
The data do not exclude the possibility that this domain 
plays an indirect role, simply being required to main-
tain a particular  or / subunit structure necessary 
for 1 subunit gating effects. However, the fact that seg-
ments A and B are the most conserved domain led us to 
favor a simpler scenario that this domain mediates the 
modulatory effects directly.

Several studies suggest that the extracellular segments 
A and B may be positioned near the external vestibule 
of BK channels (Fig. 9). Extracellular residues of  sub
units have been shown to affect charybdotoxin binding 
and instantaneous I-V relations (Hanner et al., 1998; 
Zeng et al., 2003; Chen et al., 2008). Interestingly, h2 
lysine residues flanking segment B (Fig. 1) have been 
shown to confer outward rectification of BK currents 

mutants did not completely eliminate. Most likely, mul-
tiple independent interactions mediate 1 gating effects. 
These include Ca2+-dependent effects that are difficult 
to gauge using F380Y and therefore are not addressed 
in this study.

Our finding that mutations of 1 disrupt effects on 
intrinsic gating and voltage sensor activation is consis-
tent with previous studies ascribing 1 modulation of 
BK channels to these two effects (Nimigean and Magleby, 
2000; Bao and Cox, 2005; Orio and Latorre, 2005; Wang 
and Brenner, 2006). Indeed, mutations of the BK chan-
nel voltage sensor have been suggested to specifically 
occlude the 1-mediated negative G-V shift (Yang et al., 
2008). Based on the observation that single-residue mu-
tations both reduce the energetic barrier for intrinsic 
opening and increase the energetic barrier for open-
channel voltage sensor activation, a novel insight pro-
vided by the current study is that 1 modulation of these 
two aspects of gating is likely coupled. Because previous 
studies have identified single  mutations that alter both 

Tab  l e  3

Free energy change relative to wild-type 1

Channels  
F380Y

G

C0-O0 O0-O4 O4-C4 C4-C0

kcal/mol

No 1 1.96 2.96 0.99 1.99

1Y105A 1.02 1.24 0.38 0.16

1I106A 1.45 1.56 0.10 0.22

1Y74A 0.97 1.29 0.37 0.05

1Y74AY105A 1.16 1.13 0.18 0.22

Figure 9.  A hypothetical mech-
anism for 1 function. Cartoons 
illustrate how the 1 extracel-
lular domain may affect both 
intrinsic gating and voltage sen-
sor (VS) activation. The pore 
and voltage sensor domains are 
depicted in four combinations: 
closed resting (CR), open rest-
ing (OR), open activated (OA), 
and closed activated (CA). The 
segment A-B domain promotes 
transitions away from open 
states with no or few voltage 
sensors activated (OR). At rest, 
the domain reduces opening by 
causing a relative destabilization 
of the OR state and promoting 
transitions to the CR states. With 
sufficient depolarization, the do-
main stabilizes channel opening 
by promoting transitions to the 
late opening states (OA). The 
segment A-B domain may selec-
tively interact with the open but 
not closed channels.
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