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Abstract

As of March 30 2021, over 5,193 COVID-19 clinical trials have been registered through Clin-

icaltrial.gov. Among them, 191 trials were terminated, suspended, or withdrawn (indicating

the cessation of the study). On the other hand, 909 trials have been completed (indicating

the completion of the study). In this study, we propose to study underlying factors of COVID-

19 trial completion vs. cessation, and design predictive models to accurately predict whether

a COVID-19 trial may complete or cease in the future. We collect 4,441 COVID-19 trials

from ClinicalTrial.gov to build a testbed, and design four types of features to characterize

clinical trial administration, eligibility, study information, criteria, drug types, study keywords,

as well as embedding features commonly used in the state-of-the-art machine learning. Our

study shows that drug features and study keywords are most informative features, but all

four types of features are essential for accurate trial prediction. By using predictive models,

our approach achieves more than 0.87 AUC (Area Under the Curve) score and 0.81 bal-

anced accuracy to correctly predict COVID-19 clinical trial completion vs. cessation. Our

research shows that computational methods can deliver effective features to understand dif-

ference between completed vs. ceased COVID-19 trials. In addition, such models can also

predict COVID-19 trial status with satisfactory accuracy, and help stakeholders better plan

trials and minimize costs.

Introduction

Since its outbreak in late 2019, Coronavirus Disease 2019 (COVID-19) has spread worldwide,

and has become a major global pandemic. As of February 2021, there have been over 100 mil-

lion cases, with a total of over two million deaths worldwide [1]. In order to win the battle

against COVID-19, numerous research have been taken in developing vaccines, drugs, re-pur-

pose of existing drugs, and devices [2]. Among all these studies, clinical trials are one of the

unavoidable steps to determine the validity of any intervention, treatment, or test on human

subjects.

As of March 2021, the United States Food and Drug Administration (FDA) has approved

one intervention, Remdesivir, to treat COVID-19 [3]. On the other hand, in December 2020,
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the FDA created Emergency Use Authorization (EUA) for two vaccines. Within the first

month of the U.S. COVID-19 vaccination program, approximately 4% of the total population

has been vaccinated [4]. For a vaccine or treatment to receive an EUA or FDA approval, ran-

domized controlled clinical trials are necessary to provide evidence of safety and efficacy.

Often multiple large scale trials are required. Three separate randomized control clinical trials

provided data to the FDA to approve Remdesivir [3]. A single large randomized clinical trial

with 30,000 participants provided body of evidence for the Moderna COVID-19 vaccine EUA

[5]. Similarly, a randomized clinical trial with 43,000 participants provided the body of evi-

dence for the Pfizer COVID-19 vaccine EUA [6].

Since 2007, the FDA Amendments Act (FDAAA) requires clinical trials to be registered to

the online database, ClinicalTrials.gov, if a trial has one or more sites in the U.S., involves an

FDA investigational new drug/device, or involves a drug/device product manufactured in the

U.S. and exported for research. As of March 2021, there are 371,776 registered trials with

about 30,000 trials being registered every year since 2018 [7]. Unfortunately, not all trials are

completed and achieve the intended goals. Researchers, in previous studies, have found that

10–12% of clinical trials are terminated [8–10] due to numerous reasons, such as insufficient

enrollment, scientific data from the trial, safety/efficacy concerns, administrative reasons,

external information from a different study, lack of funding/resources, and business/sponsor

decisions, etc. [8, 9, 11].

COVID-19 clinical trials are necessary, not only to provide safety and efficacy data for treat-

ments and vaccines, but also to understand the disease. As a major global epidemic, it becomes

imperative to understand what type of trials are likely going to be successful. Ceased clinical

trials (including terminated, suspended, and withdrawn trials) are costly and often represent a

loss of resources, including financial costs, drugs, administrative efforts, and time. As future

outbreaks of COVID-19 are likely even after the current pandemic has declined, it is critical to

optimise efficient research efforts [12]. Machine learning and computational approaches [13]

have been developed for COVID-19 healthcare applications, and deep learning techniques

have been applied to medical imaging processing in order to predict outbreak, track virus

spread and for COVID-19 diagnosis and treatment [14]. It would be helpful to design compu-

tational approaches to predict whether a COVID-19 clinical trial may complete or not, such

that stakeholders can leverage the predictions to plan resources, reduce costs, and minimize

the time of the clinical study.

In this study, our main objective is to create features to model COVID-19 clinical trial

reports. Using feature engineering and feature selection techniques, our research will deter-

mine features associated to trial completion vs. cessation. Using machine learning algorithms

and ensemble learning, we can predict completion or cessation of a COVID-19 clinical trial.

These computational approaches allow for a deeper understanding and prediction of factors

associated to successful COVID-19 clinical trials.

Related work

Previous research has studied the usage of features from structured fields and unstructured

fields in order to understand factors associated to clinical trial termination. Using manual

examination and categorization of terminated trials, research has been conducted by analysis

the “Why Study Stopped” field in clinical trial reports. These studies provide statistical data

based on the number of trials terminated due to primary reasons, such as insufficient enroll-

ment [8, 9]. Unfortunately, there is little detailed information on the factors that lead to termi-

nation, such as specific characteristics of the trial leading to termination. Moreover, a previous

study also reported that as much as 10% of terminated trials do not utilize the “Why Study
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Stopped” field [9], leaving structured data based approaches inapplicable to analyze those

reports. Using machine learning to model clinical trial terminations allows for a greater under-

standing of the specific factors that may lead to terminated clinical trials. These models can

also be applied to current or planned trials to understand their probability of completion vs
termination. Previous termination prediction studies [15, 16], along with our previous

research [10] demonstrate the predictive power of structured and unstructured variables in

order to predict if a clinical trial is likely to terminate.

A separate study modeled clinical trial terminations by investigating the drug interventions

associated with trials that failed for safety concerns vs. FDA approved drugs. Using target

based and chemical based features, they created a model that can predict if a drug is likely to

fail for toxicity concerns [17]. While this type of model can accurately predict interventions

that fail for toxicity concerns, many trials stop prematurely due to other concerns. Addition-

ally, trials may terminate due to efficacy concerns of the medical intervention, which wouldn’t

be captured when modeling drug toxicity of the intervention alone.

These previous studies are all aimed at generic clinical trials, but not specialized in a specific

domain. One of the main goals of our study is to model clinical trials w.r.t. COVID-19. The

domain specific modeling allows us to clearly represent unique components and challenges

faced by COVID-19 clinical research, such as emerging COVID-19 information, intervention

assessments, and interpretations of symptom resolution [18].

In our previous research [10], we designed a predictive model to predict completed vs. ter-

minated trials using a large testbed collected from the entire clinicaltrials.gov database. In this

study, we propose to design new features to characterize COVID-19 trials, and understand fac-

tors associated to clinical completion vs. cessation. Because COVID-19 is a relatively novel dis-

ease, very few trials have been formally terminated, we consider three types of trials, including

terminated, withdrawn, and suspended, as cessation trials. These trials represent research

efforts that have been stopped/halted for particular reasons and represent research efforts and

resources that weren’t successful.

Since the majority of COVID-19 trials study medical interventions, we introduce drug fea-

tures to specify the medical interventions under trail instigation. The choice of intervention

within a trial has a high consequence, not only for toxicity reasons, but also for efficacy rea-

sons. Many COVID-19 interventions under study are for drug re-purposing, and any trial

studying an intervention that is deemed in-effective may ultimately result in a premature stop.

Contribution

Using drug features combined with other types of features, including statistics features, key-

word features and embedding features, 693 features are created to represent each clinical trial.

Using ReliefF feature selection, we will study features associated to the trial completion vs. ces-

sation, and provide interpretable knowledge for domain experts to understand what types of

trials are more/less likely to complete.

In addition to the understanding of COVID-19 clinical trials using features, our research

also proposes to predict trial completion vs. cessation, by using sampling and ensemble learn-

ing. We employ different sampling ratios to change data distributions, and use ensemble of

multiple classifiers to predict the probability of completion vs. cessation of a clinical trial. The

experiments confirm that our model achieves over 0.87 AUC scores and over 0.81 balanced

accuracy for prediction.

Table 1 summarizes existing methods for clinical trial termination study and outlines their

difference. Comparing to existing research in the field, the main contribution of our study is as

follows.
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• COVID-19 clinical trial benchmark: Our research delivers a COVID-19 benchmark for clin-

ical trial completion vs. cessation study. The benchmark, including features and supporting

documents, are published online for public access.

• Clinical trial features: Our research proposes the most extensive set of features for clinical

trial reports, including features to model trial administration, study information and design,

eligibility, keywords, and drugs etc. In addition, our research also uses embedding features to

model unstructured free texts in clinical trial reports for prediction.

• Predictive modeling of COVID-19 trials: Our research is the first effort to model COVID-19

clinical trial completion vs. cessation. By using ensemble learning and sampling, our model

achieves over 0.87 AUC scores and over 0.81 balanced accuracy for prediction, indicating

high efficacy of using computational methods for COVID-19 clinical trial prediction.

Materials and methods

COVID-19 clinical trials and inclusion criteria

A total of 4,441 COVID-19 clinical trials were downloaded, in XML format, from Clinical-

Trials.gov in January, 2021. These trials are retrieved from the online database by using search

keywords “COVID-19”, “SARS-CoV-2” or “COVID”.

Clinical trials can have sites in multiple countries. For our analysis, the main country for

each trial, i.e. the one with the maximum number of sites, is recorded. In case of a tie, the first

country listed is recorded. The entire dataset covers 108 different countries/regions, and the

top 10 countries are reported in Table 2.

Trial status field represents the overall recruitment of the study. The recruitment status

could be one of: “Not yet recruiting”, “Recruiting”, “Enrolling by invitation”, “Active”, “not

recruiting”, “Completed”, “Suspended”, “Terminated”, and “Withdrawn”. If a clinical trial has

expanded access, the status could also be one of: “Approved for Marketing”, “No Longer Avail-

able”, or “Available” [19].

Table 1. A summary and comparison between different methods (including proposed research) for clinical trial study.

Method & Paper Domains Drug

Features

Keyword

Features

Embedding

Features

Elig. & Des.

Features†
Admin. & Sty.

Features‡
Data Source Objective

Manual examination &

categorization [8, 9]

Generic ✔ [8]

✔� [9]

ClinicalTrials.gov

MEDLINE [8]

Trial termination

attribution

Machine learning &

RandomForest [17]

Generic ✔� ClinicalTrials.gov

DrugBank

Drug Toxicity

Text mining &

RandomForest [15, 16]

Generic ✔ [15]

✔�� [16]

✔ ClinicalTrials.gov Trial Terminations

Ensemble learning &

Four classifiers [10]

Generic ✔ ✔ ✔ ✔ ClinicalTrials.gov Trial Characteristics &

Terminations

Proposed research

Ensemble learning

COVID-

19

✔ ✔ ✔ ✔ ✔ ClinicalTrials.gov Trial Completion vs &

Cessation

† Eligibility features and study design features.
‡ Administrative features and study information features.
� Create “Ontology of termination” using administrative features and study information features.

� Drug features are based on drug chemical compound, drug gene target, and gene-gene interaction.

�� Keyword features are latent topics derived from Detailed Description field, using Latent Dirichlet Allocation (LDA).

https://doi.org/10.1371/journal.pone.0253789.t001
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For all COVID-19 clinical trials, the distribution of their status is reported in Fig 1. Because

COVID-19 is a relatively novel disease, majority trials (50.24%) are still recruiting, and only

14.14% of trials have completed. Completed trials are those that have concluded normally and

participants are no longer being examined. Terminated trials are those that had participants

enrolled, yet stopped prematurely. Suspended trials are the ones that halted prematurely, but

may resume in the future. Withdrawn studies are those that stopped prematurely, prior to

enrollment of any participants. These three statuses, (Terminated, Suspended and With-

drawn), represent unintended cessation of clinical trials. In total, cessation trials represent

3.24% of all COVID-19 clinical trials registered on the ClinicalTrials.gov.

Fig 2 reports the data inclusion criteria. The trials included in analysis are those whose sta-

tus are marked as “Completed” (completion trials) and those that are marked as “Terminated”,

“Withdrawn”, or “Suspended” (cessation trials). In total, the final dataset has 772 clinical trials

with 81.34% completion trials and 18.65% cessation trials.

COVID-19 clinical trial features

Statistics features. Statistics features model clinical trials with respect to administrative,

study information, study design, and eligibility criteria, which are extracted from the clinical

trial reports by taking different part of information into consideration [10].

Table 2. The top 10 countries/regions with the most registered COVID-19 clinical trials.

Countries/Regions # Trials Countries/Regions # Trials

United States 901 China 154

France 571 Egypt 153

Italy 185 Canada 147

United Kingdom 182 Turkey 147

Spain 155 Brazil 123

https://doi.org/10.1371/journal.pone.0253789.t002

Fig 1. Status field distributions of all COVID-19 clinical trials.

https://doi.org/10.1371/journal.pone.0253789.g001
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Administrative features. Administrative features extract information about the clinical trial

administration, which may directly impact on a trial, depending on the funding source and

the person responsible for the clinical trial’s management. Administrative features include

industry sponsorship, industry collaborator sponsorship, the number of collaborators, number

of officials and the type of responsible party. The sponsor of the trial is the main organization

responsible for overseeing the clinical trial. A collaborator is an organization that may provide

support to the trial. Collaboration can be key for a trial completion, as collaboration between

entities can increase funds and resources required to reach the target enrollment [20]. Spon-

sors and/or collaborators can be industry or non-industry. Non-industry organizations

include government organizations such as National Institutes of Health (NIH). Officials are

those responsible for the scientific conduct of the trial’s protocol [19]. The responsible party

field indicates if the sponsor or principal investigator is the main responsible party for the trial.

Figs 3 and 4 report the distribution of trials with respect to industry sponsors and industry

collaborators, respectively. The statistics show that, on average, industry sponsors/collabora-

tors have a higher percentage in cessation trials. This means that trials involving industry spon-

sorship or collaborators are more likely to be ceased, rather than be completed.

Study information features. Study information features intend to capture basic clinical trial

information, such as whether the trial has expanded access, Data Monitoring Committee

(DMC) regulation, FDA regulation, the phase of the trial, if the study is interventional or

observational, and if the trial’s main country is USA. Trials with expanded access are those

studying an investigational drug for patients not qualify for enrollment in a clinical trial [19].

Expanded access participants are typically those having serious conditions and exhausted all

other medical interventions. Data monitoring committees are independent scientists oversee-

ing the data collected in a trial to monitor health and safety of participants [19]. In the case

that the intervention has shown to be not safe or effective, a DMC will recommend to termi-

nate the trial. FDA regulation indicates that the trial includes an intervention under FDA regu-

lation, such as investigational new drug trials. DMC regulation and/or FDA regulation may

Fig 2. Data inclusion criteria for COVID-19 clinical trials.

https://doi.org/10.1371/journal.pone.0253789.g002
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pose strict safety and efficacy guidelines for participants within the study. Trials do not meet

these guidelines under FDA and/or DMC regulation will halt prematurely.

The study phase of a trial indicates different stages of clinical research. In the case of device

or behavioral interventions, and observation trials, the trial could have no phase. For medical

intervention trials, the phase of a trial varies from 1 to 4. Phase 1 trials are initial studies aiming

at determining the initial dosage pharmacologic action and side effects with increasing doses.

Phase 1 trials can include healthy participants. Phase 2 trials evaluate the effectiveness of the

intervention with regards to participants with a particular condition under study. Phase 3 trials

are longer trials aiming to evaluate longer term safety and efficacy of the intervention. Phase 4

trials are those for FDA-approved drugs for additional long term data on safety and efficacy

[19].

Interventional clinical trials are those that introduce a behavioral, device or medical inter-

vention to participants. For COVID-19 clinical trials, these are often medical interventions aim-

ing at treating COVID-19. Observational trials are those not introducing an intervention, and

Fig 3. Distribution of trials that have industry sponsor with respect to all trials, completion trials, and cessation

trials, respectively.

https://doi.org/10.1371/journal.pone.0253789.g003

Fig 4. Distribution of trials that have industry collaborator with respect to all trials, completion trials, and

cessation trials, respectively.

https://doi.org/10.1371/journal.pone.0253789.g004
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participants are observed to gather data and information. The distributions of interventional to

observational trials for all trials, completion trials, and cessation trials are reported in Fig 5.

Fig 5 shows that, overall, 48.83% COVID-19 trials are interventional, whereas for cessation

trials, 93.06% are interventional. Interventional trials have more obstacles to hurdle, such as

proving their intervention is safe and effective and completing their participant enrollment

requirements.

Clinical trials can have sites in multiple countries. For trials in our dataset, the most com-

mon country listed as a trial’s site is recorded as the main country. In the case of a tie, the first

country listed as a site is recorded. For trials in the final dataset, there are 62 unique countries.

A feature is created to capture if the trial’s main country is USA or outside USA. A total of

14.12% of trials in the dataset are in USA. Among all cessation trials, 27.08% of them are in

USA. The distributions of outside USA to inside USA for all trials, completion trials, and cessa-

tion trials are reported in Fig 6.

Study design features. Study design features extract information about whether a trial has

randomized groups, the masking technique for groups, if the study includes a placebo group,

Fig 5. Distribution of trials that are interventional or observational with respect to all trials, successful trials and

unsuccessful trials.

https://doi.org/10.1371/journal.pone.0253789.g005

Fig 6. Distribution of trials that are outside or inside USA with respect to all trials, successful trials and

unsuccessful trials.

https://doi.org/10.1371/journal.pone.0253789.g006
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the number of groups, the number of countries with clinical sites and the total number of sites.

These features indicate key aspects about the protocol used in the clinical trial. Increasingly

complicated protocols, such as the masking technique and randomization of groups can add

increasing complicated procedures that may hinder the success of a trial. However, study

design aspects such as double blinding and randomised allocation of participants are required

to estimate intervention effects [12].

While the administration of additional sites increases the financial burdens on the trial,

increasing number of sites indicates that the trial has more access to enrolling participants.

This is often necessary when the number of groups to enroll is increased. The usage of a pla-

cebo group is often required for medical interventional drugs to compare their intervention

against a placebo control. However placebo groups indicate that the trial has to find additional

participants. Trial can’t meet their enrollment requirements will be ceased (terminated or

withdrawn).

The distribution of placebo groups with regards to all trials, successful trials and unsuccess-

ful trials is shown in Fig 7. Overall, a minority of clinical trials, 14.9%, in the data set use a pla-

cebo group. Of all cessation trials, 37.5% use a placebo group, which is five times higher than

the percentage in the completion trials.

Eligibility features. Eligibility features record aspects about a trials eligibility requirements.

Eligibility requirements are crucial to a clinical trial, because insufficient enrollment has been

cited as a major contribution towards terminated clinical trials [8, 9]. Eligibility features

include if the trial accepts healthy volunteers, has an age restriction, gender restriction and fea-

tures created from the eligibility requirements field. The eligibility requirements field lists the

inclusion and exclusion requirements for participants in the trial. A trial with too strict eligibil-

ity requirements has a high risk for insufficient enrollment. The eligibility field can be broken

into separate lines that describe each eligibility requirement. Accordingly, features are created

to count the number of inclusion and exclusion requirements. For trials do not have a distinc-

tion between inclusion and exclusion, the entire eligibility field is considered. Additionally, the

number of words per inclusion, exclusion, and entire eligibility field are recorded, as well as

the average words per inclusion/exclusion/eligibility line. Finally the number of numerical dig-

its listed for inclusion/exclusion/entire eligibility requirements is also extracted. The number

of numerical digits indicates strict requirements, such as the weight of a participant, which

may become a more strenuous requirement to meet.

Fig 7. Distribution of trials that have a placebo group respect to all trials, completion trials, and cessation trials,

respectively.

https://doi.org/10.1371/journal.pone.0253789.g007
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The distributions of clinical trials accepting healthy volunteers with respect to all trials,

completion trials, and cessation trials are reported in Fig 8. COVID-19 Clinical trials may not

accept healthy volunteers for multiple reasons. These might be observational trials for partici-

pants with COVID-19 or interventional trials that aim to study their intervention on partici-

pants currently diagnosed with COVID-19. Majority, 75.39%, of trials in the dataset do not

accept healthy volunteers. For cessation trials, 85.42% do not accept healthy volunteers.

In S1 Table, we summarize all 40 statistics features and their brief descriptions.

Drug features. As shown in Fig 5, while interventional trials make up 48.83% of all

COVID-19 clinical trials in our dataset, 93.06% of cessation trials are interventional, which

introduce a medical, device or even behavioral intervention to participants. Because drug

development is an expensive and time-consuming endeavor, research efforts are motivated to

re-purposing medical interventions to treat COVID-19. Many clinical trials have testing re-

purposed drugs safety and efficacy for COVID-19 treatment. Some of these re-purposed drugs

include Antivirals, Antimarial, Adjunctive pharmacological therapies and Corticosteroids

[21]. While the hope that existing medical treatments are effective in treatment of COVID-19,

not all of these treatments will provide positive results. Hydroxychloroquine, an antimalarial,

was discontinued from one clinical trial due to no evidence of efficacy [21]. In the case where

an intervention is noted as not safe or effective, the clinical trial will be terminated. Similarly, if

a trial is planned to use a specific intervention that was proven as non-effective from separate

sources or data, the planned trials will most likely terminate or withdraw as well.

Drug features are introduced to describe different interventions used to treat COVID-19.

At a given time, there may be multiple concurrent trials researching similar drug interventions

or drugs within the same drug class. The data that is reported about the safety and efficacy of

these interventions may directly affect the outcome of concurrent trials. Trials may be ceased

due to information from a different study or due directly to safety/efficacy concerns from their

own study.

Two separate types of drug features are created in our study; (1) top drug features, and (2)

top drug class features. These are derived from the Intervention Medical Subject Heading

(MeSH) field in the clinical trial report. In total, we create 55 drug features, including 20 top

drug features and 35 top drug class features.

Top drug features. The top 20 drug features are the 20 interventions with the most recorded

clinical trials. The top 20 drug features in our dataset are listed in Table 3, which covers 218/

Fig 8. Distribution of trials accepting healthy volunteers with respect to all trials, completion trials, and cessation

trials, respectively.

https://doi.org/10.1371/journal.pone.0253789.g008
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772 = 28.2% of all trials. To represent top drug interventions, we use one-hot encoding (i.e. a

binary feature) to represent each drug feature. If a trial uses a specific drug intervention, the

corresponding drug feature value is set as 1, or 0 otherwise.

In Fig 9, we report the distribution of Hydroxychloroquine with respect to different trials.

Hydroxychloroquine is the most frequent drug intervention in the dataset, 9.46% of all

COVID-19 clinical trials list Hydroxychloroquine as an intervention. For cessation trials,

31.94% of them use Hydroxychloroquine. The role of Hydroxychloroquine with COVID-19

has been an interesting one. Initial in vitro studies suggested that Hydroxychloroquine sulfate

is a viable option for SARS-CoV-2 infections. This study was followed by a small observational

trial that reported large clinical benefits. However, the study lacked key study design compo-

nents, such as large sample size, randomisation and inclusion criteria. Initial media and politi-

cal attention towards Hydroxychloroquine drove a large push for clinical trials to investigate

the safety and efficacy [20]. As of June 2020, 88% of participants enrolled in ongoing clinical

trials were those researching Hydroxychloroquine or Chloroquine [12]. Chloroquine is also an

antimalarial intervention, both drugs belong to the drug class Aminoquinolines. As more evi-

dence from clinical trials was analyzed, reports emerged that Hydroxychloroquine is neither

effective nor safe for participants. These reports resulted in a large decrease in clinical trials

Table 3. Top drug features and the number of clinical trials with the drug intervention.

Drug Feature # Trials Drug Feature # Trials

Hydroxychloroquine 73 Interferons 6

Azithromycin 30 Prednisolone hemisuccinate 5

Ivermectin 15 Doxycycline 5

Ritonavir 10 Methylprednisolone Acetate 5

Lopinavir 8 Prednisolone 5

Dexamethasone 7 Prednisolone acetate 5

Chloroquine 7 IL-1Ra Protein 5

Methylprednisolone 6 Methylprednisolone Hemisuccinate 5

Antibodies 6 Prednisolone phosphate 5

Ascorbic Acid 6 Chloroquine diphosphate 4

IL-1Ra represent Interleukin 1 Receptor Antagonist.

https://doi.org/10.1371/journal.pone.0253789.t003

Fig 9. Distribution of trials that used Hydroxychloroquine as an intervention.

https://doi.org/10.1371/journal.pone.0253789.g009
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studying Hydroxychloroquine and some ongoing and pre-planned Hydroxychloroquine trials

lost funding. Other trials are suspended or terminated due to the safety concerns [20]. This

illustrates the importance of drug features. With limited resources and time, trials investigating

interventions that are shown to be non-safe or ineffective from other ongoing research efforts

will likely be ceased.

Top drug class features. Top drug features only capture most frequent drug intervention,

and leave many unpopular drugs (the ones involving less than 5 trials) unrepresented. There-

fore, we use drug class features to summarize all drug interventions. In total, there are 141

unique intervention MeSH terms, which can be grouped into respective drug classes, which

are based on chemical substances or pharmacological action. Interventions belonging to

the same drug class will effectively have a similar mechanism of action and often may have

similar side effects or potential treatment power. Drug classes effectively summarize the simi-

larity between multiple interventions and decrease the large feature space across all unique

interventions.

For each intervention MeSH term, its drug class is found from NIH RxClass API [22], and

the class names are taken from Anatomical Therapeutic Chemical (ATC) classification system.

Drugs are classified based on Level 5, according to chemical substance. In the case where a

drug intervention is not found from ATC level 5 classification, MeSHPA drug class is used

instead. MeSHPA classifies drugs/chemicals based on MeSH terms that describe its pharmaco-

logical action (PA).

After obtaining drug classes for each drug intervention, the ones with at least 2 clinical trials

in the drug class are used as top drug class features. From 141 drug interventions, there are 85

drug classes. Of these, 35 drug classes have interventions from 2 or more clinical trials. The top

10 drug classes, according to the number of clinical trials with interventions belonging to the

class, are reported in Table 4.

After the 35 drug classes are found, for each clinical trial report, its top drug class features

are created to represent the number of drug interventions the clinical trial has in each drug

class, respectively.

Table 4. Top 10 drug classes, the number of clinical trials with interventions in each class and the interventions belonging to the class.

Drug Class # Trials Drug Intervention(s)

Aminoquinolines 85 Chloroquine Primaquine Hydroxychloroquine Chloroquine diphosphate

Macrolides 32 Azithromycin Clarithromycin

Corticosteroids acting locally 18
Prednisolone Budesonide Prednisone Prednisolone phosphate

Prednisolone acetat

Antivirals (HCV Treatment) 16
Ritonavir Ribavirin Sofosbuvir Ledipasvir

Ledipasvir, Sofosbuvir drug combination

Interferons 16 Interferons Interferon-alpha Interferon alpha-2 Interferon Type I

Interferon-beta Interferon-beta Interferon beta-1a

Other dermatologicals 15 Ivermectin

Heparin group 12 Heparin Calcium heparin Tinzaparin Dalteparin

Enoxaparin

ARBs, plain 10 Losartan Telmisartan Candesartan Olmesartan

Irbesartan Eprosartan

Corticosteroids (local oral treatment) 10 Dexamethasone Dexamethasone acetate

Antivirals (HIV Treatment) 8 Lopinavir

ARBs represent Angiotensin II receptor blockers.

https://doi.org/10.1371/journal.pone.0253789.t004
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Keyword features. Keyword features aim to capture important terms describing the

clinical trial’s summary. Within a clinical trial report, the keyword field has words or phrases

describing the protocol. These are created using US National Library of Medicine (NLM)

Medical Subject Heading (MeSH) terms. MeSH keywords are used for users to search for tri-

als in the ClinicalTrials.gov database [19]. In some cases, the keyword field is missing. Thus

keyword features are taken from the unique MeSH terms from the keywords field, condition

MeSH field and condition field for each trial. This creates a string of keywords, separated

with a comma, to describe each clinical trial. Keyword features are created from the Term-

Frequency-Inverse Document Frequency (TF-IDF) of the keyword string. The string is toke-

nized into separated terms and the TF-IDF of each term is calculated. Token terms are taken

by separating words by punctuation and spaces. Therefore, a multi-keyword term, like

“Coronavirus Infections”, would create multiple token terms, like “Coronavirus” and “Infec-

tions”. After the term strings are tokenized, the TF-IDF score from each term is calculated.

The top 500 terms from TF-IDF are used for keyword features, using their corresponding

TF-IDF score.

TF-IDF weights the term-frequency of a term by its inverse document-frequency. Common

terms appearing many times in a document will have a large term frequency tf(t, T) but the

weight value designated to them will be diminished by idf(f), if the term frequently appears in

many documents. Common terms (such as “the”) often carry less meaningful information

about the documents under study. In our research, each clinical trial report represents a

document.

The TF-IDF of a keyword term, f, in a clinical trial report, T, is defined by tf-idf(f, T), as

shown in Eq (1), where the term-frequency, tf(f, T), is the number of times term f appeared

in the clinical trial report T. This is weighted by the Inverse Document Frequency, idf(f), as

defined in Eq (2), where df(f) represents the document frequency of term f, or the number of

clinical trials that have the term; and n represents the total number of clinical trials in the data-

set (n = 772 in our study). The resulting TF-IDF values are then normalized by the Euclidean

Norm.

tf � idf ðf ;TÞ ¼ tf ðf ;TÞ � idf ðf Þ ð1Þ

idf ðf Þ ¼ log
1þ n

1þ df ðf Þ
þ 1 ð2Þ

Table 5 reports the top 30 keyword terms, with respect to their average TF-IDF scores for

all clinical trials. All clinical trials in the dataset represent those that are researching COVID-

19, thus COVID-19 related terms are listed on the top; such as “Covid”, “Coronavirus”,

“SARS” and “CoV”. Since the MeSH keyword “SARS-CoV-2” is tokenized into two terms,

“SARS” and “CoV”, these are two separated keyword features. Other high ranked keyword

terms indicate separated areas of research for individual clinical trials, such as “Depression”

Table 5. The top 30 keywords with respect to average TF-IDF score.

Keywords

Covid Infection Coronavirus SARS Pnemonia CoV Respiratory Disease Syndrome Acute

Severe Disorder Virus Hydroxychloroquine Anxiety Distress Stress Viral Failure Critical

Corona Depression Emergency Psychological Illness Health Lung Ventilation Care ARDS

ARDS represents Acute Respiratory Distress Syndrome.

https://doi.org/10.1371/journal.pone.0253789.t005
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and “Anxiety”. These trials are researching different health related fields with regards to

COVID-19 participants.

To further understand keyword feature difference between completion vs. cessation trials,

Table 6 lists the top 30 keyword features with respect to average TF-IDF score. The “Comple-

tion” and “Cessation” rows show high TF-IDF score terms in completion and cessation trials,

respectively. The “Difference” row shows the top 30 keyword features that have the largest dif-

ference between average TF-IDF score of cessation trials compared to completion trials.

Table 6 shows that terms related to COVID-19 are listed on the top for both completion

and cessation trials. Meanwhile, other terms may indicate the chance of success of trials with

specific to research focus. For example, “Cytokine” is listed high for cessation trials, but not

for completion trials. These trials are researching “Cytokine Storm” that is associated with

COVID-19 infections. Cytokine storm refers to a hyperactive immune response of cytokines

that are injurious to host cells. Cytokine storms have been associated with adverse outcomes in

patients with severe COVID-19. Clinical trials that introduce monoclonal antibodies interven-

tions often list Cytokine storm as their rationale [23]. These trials may be at a higher risk for

unsuccessful outcomes due to their requirements for participants with high levels of cytokines

or due to safety and efficacy concerns with the similar interventions under study for cytokine

storm.

Terms such as “Depression” and “Anxiety” are ranked on the top list for completion trials.

These trials may represent observational trials researching mental conditions of participants

during the COVID-19 pandemic. As shown in Fig 5, observational trials have a lower rate of

cessation outcome.

Embedding features. Each clinical trial report has a “Detailed Description” field provid-

ing textual descriptions of the clinical trial, such as the the objective of the clinical trials, the

expected participates, the process and procedures etc. Since our keyword features already

include top 500 terms, it will introduce significant redundancy to use Bag-of-words to repre-

sent such descriptions for prediction. Therefore, we propose to use embedding learning to

Table 6. The top 30 keywords with respect to average TF-IDF score for cessation trials, completion trials, and the keywords with the largest TF-IDF score difference

between cessation vs. completion trials, respectively.

Trial Type Keywords (ranked according to TF-IDF scores)

Cessation

Covid Coronavirus Infection SARS CoV Pneumonia

Respiratory Disease Syndrome Acute Hydroxychloroquine Severe

Failure Distress Virus Viral Novel Care

Corona Insufficiency Patient Prophylaxis Lung Healthcare

Worker Azithromycin Tract Cytokine Pulmonary Hypoxemia

Completion

Covid Infection Coronavirus SARS Respiratory Pneumonia

CoV Syndrome Disease Acute Severe Disorder

Anxiety Stress Virus Distress Critical Depression

Psychological Illness Emergency Health Corona Viral

Ventilation Hydroxychloroquine Lung Treatment Failure ARDS

Difference

Covid Coronavirus SARS CoV Pneumonia Infection

Hydroxychloroquine Respiratory Disease Anxiety Failure Critical

Novel Depression Emergency Psychological Viral Prophylaxis

Azithromycin Disorder Distress Syndrome Worker Diabetes

Treatment Healthcare Tract Mellitus Care Cytokine

ARDS represents Acute Respiratory Distress Syndrome.

https://doi.org/10.1371/journal.pone.0253789.t006
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represent each document as a feature vector [24]. Comparing to using keywords to represent

each clinical trial report as a bag-of-words, embedding features have the advantage that they

are dense vectors (whereas bag-of-word features are sparse), and users can freely change the

embedding feature size (we use 100 dimensions in the study).

To generate a feature vector to represent a clinical trial report, we use Doc2Vec [25], an

expansion of the Word2Vec [26] using neural network language model to generate vector rep-

resentations for words. Fig 10 shows the architecture of the network, which takes text as input

to learn a feature vector to represent each word and each report. The input layer of the network

corresponds to the vocabulary of all documents and the document IDs. The hidden layer has d
neurons, whose weight values will be used as the embedding vector (i.e.d = 100 in our study).

The output layer maps to the vocabulary of all documents. The embedding learning is to

train the network to predict surround words. For example, for a report sentence, such as

“Hydroxychloroquine in intensive care patients infected with “SARS-CoV-2”, because

“Hydroxychloroquine” and “SARS-CoV-2” both occur in the sentence, the input correspond-

ing to “Hydroxychloroquine” is set as one, and train network weights such that the output

node corresponding to “SARS-CoV-2” has the largest output.

In order to learn a vector representation for each clinical trial, each report is also added as

an extra input to the network. After training the model using all reports, the d dimensional

weight values connecting each report to the hidden nodes are used as the embedding features.

In our study, the Doc2Vec model creates a vector of length 100 to represent each detailed

description.

Feature selection. The above feature engineering efforts create 693 features in total to rep-

resent each clinical trial. In order to understand which features are most informative towards

the trial completion or cessation, we use ReliefF feature selection method [27] to study feature

impact.

ReliefF is a similarity based feature selection method. It evaluates quality of each feature, f,
on its capability to differentiate instances near to each other. Given a randomly selected

instance, xi, ReliefF first finds its nearest hit set Hi, which includes k nearest neighbors with

Fig 10. Doc2vec [25] neural network architecture for learning word and document embedding vector. The input

dimensions arem (corresponding to the vocabulary of documents) and n (corresponding the the number of

documents). The hidden layer has d nodes, representing the embedding feature size. The output dimensions arem
(corresponding to the vocabulary of documents). The principle is to learn to predict context. For example, if a report

has “hydroxychloroquine” followed by “SARS-CoV-2” in the same sentence, the input corresponding to

“Hydroxychloroquine” is set as one, and the Doc ID is also set as one. The network will learn weights to produce the

largest output values corresponding to the node “SARS-CoV-2”.

https://doi.org/10.1371/journal.pone.0253789.g010
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the same class label as xi, and nearest misses set Mi including k nearest neighbors with differ-

ent class label from xi.

For each feature f, its weight value w[f] is initially set to 0, and updated based on Eq (3). The

motivation is that if the feature f has different values from two instances in the same class, the

weight value is decreased, since the feature does not convey similarity between same class sam-

ples. However if the feature has different values from two instances from different classes, the

feature differentiates between opposite classes, and the features quality score increases.

According to Eq (3), for each instance xj 2 Hi in the nearest hit set of instance xi, feature f’s
weight value is decreased based on the difference score between xi and xj, diff(f, xi, xj), divided

bym×k wherem represents the number of features in the dataset. On the other hand, the

weight value w[f] is increased by the difference between xi and each miss neighbor xj 2Mi.

The contribution of miss class is weighted with prior probability of miss class C, P(C), divided

by 1 − P(xi) [27].

w½f � ¼ w½f � �
Xk

j¼1;xj2Hi

diffðf ; xi; xjÞ
ðm� kÞ

þ
X

C6¼classðxiÞ

PðCÞ
1� PðclassðxiÞÞ

Xk

j¼1;xj2Mi

diffðf ; xi; xjÞ

" #

ðm� kÞ

0

B
B
B
B
@

1

C
C
C
C
A

ð3Þ

The function diff(f, xi, xj) calculates the difference between two instances, xi and xj, with

respect to feature f. For nominal features, this is calculated using Eq (4), and for continuous

features, this is calculated using Eq (5) [27], where xi,f denotes xi’s value in feature f.

diffðf ; xi; xjÞ ¼

(
0; if xi;f ¼ xj;f

1; otherwise
ð4Þ

diffðf ; xi; xjÞ ¼
jxi;f � xj;f j

maxðf Þ � minðf Þ
ð5Þ

After ReliefF is applied, the end result is a ranking of features based on their weight scores.

For the top 50, 100, 200, 300, 400, 500, 600 and all features, the percentages of statistics, Key-

word, top drug, drug class, and embedding features are reported in Fig 11.

The results in Fig 11 show that, in terms of importance, the four types of features are ranked

in a descending order, from keyword features, drug features (including top drug class features

and top drug features), statistics features, to embedding features. When only a small number

of features (e.g. 50) are selected, the selected features mainly include keywords (76%), drug fea-

tures (22%), and statistics features (2%). Overall, embedding features are least informative.

This is different from our previous study [10], where statistics features are found to be more

informative than keyword features and embedding features. Nevertheless, our experiments in

the next section will show that, despite of the individual importance, all four types of features

contribute to the accurate prediction of COVID-19 trials. The models using all four types of

features often have the best performance.
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COVID-19 clinical trial prediction

Prediction framework. For the selected 772 COVID-19 clinical trials, we first create sta-

tistics features, keyword features, and drug features to represent each trial. The dataset is sepa-

rated into five subsets of training and test samples for 5-fold cross validation. Doc2Vec is

trained on each training dataset and the embedding vector is inferred for each training and

test dataset. In addition, feature selection or ranking is also carried out by using training data

only. The reason of using this step is to ensure that test data are completely held out during the

learning process, so we can validate the genuine model performance without knowing any of

the test data information.

Ensemble learning. Our research will study a variety of predictive models for trial predic-

tion. Meanwhile, in order to exploit the best possible performance, we will employ ensemble

learning to combine multiple models. Because there are only 144 cessation trials, out of all 772

trials, this results in class imbalance in the training set (i.e. completion trials dominate the

whole dataset). Therefore, random under sampling is applied to completion trials to produce a

sampled set relatively balanced to the number of cessation trials. In the original dataset, the

imbalance ratio between completion trials to cessation trials is 4.36 to 1. By using random

under sampling, we will vary the class distribution from 4.36:1 to 4:1, 3:1, 2:1, 1:1, and 0.9:1.

This allows our study to understand best under sampling ratios in order to achieve the best

model performance.

Because random under sampling may potentially remove important examples and intro-

duce bias to the trained models, the sampling are repeated 10 times, with each sampled data

set producing one predictive model. The 10 trained models are then combined to form an

ensemble to predict each test trial.

Predictive models. For comparison purposes, we use four models, Neural Network, Ran-

dom Forest, XGBoost and Logistic Regression, in our study for COVID-19 trial prediction.

Neural network. Our neural network implementation is a three layer feed forward neural

network, consisting of an input layer, one hidden layer with 50 nodes and an output layer with

a single node to produce the classification label (completion trial or cessation trial). Neural net-

work hyper parameters are optimized using an exhaustive nested 5-fold grid search. The grid

search determines a batch size of 50, 50 training epochs, 50 nodes and the sigmoid activation

function as optimal parameters. The Adam optimization function [28] is used during the back

propagation phase.

Random forest. Random forests are an ensemble of decision tree classifiers. Random forest

hyper parameters are optimized using an exhaustive nested 5-fold grid search. The final

Fig 11. Percentage of types of features within the top ranked 50–600 and all features.

https://doi.org/10.1371/journal.pone.0253789.g011
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random forest implementation does not use bootstrap samples, but uses the whole dataset to

build each tree (using random feature subsets). The entropy criterion is used to measure the

quality of split. The number of features to consider for the best split is set to
ffiffiffiffi
m
p

, wherem is

the number of features in the dataset. A minimum of five samples are set to split each node.

Trees are grown until there are at minimum two samples in each leaf node. The random forests

consist of 1,500 decision trees.

XGBoost. Extreme Gradient Boosting, XGBoost, is an ensemble decision tree algorithm

with gradient boosting framework. In order to optimize XGBoost, we use an exhaustive nested

5-fold grid search to find final hyper parameters. The final parameters use 600 trees. The mini-

mum loss reduction is set to two; maximum depth is five; minimum weight in a child node is

one; feature sub-sampling ratio is 0.6; sampling sub-sampling ratio is one (no sub-sampling on

training samples).

Logistic regression. Logistic Regression is a nonlinear classification model, using a logistic

function defined in Eq (6), to model probability of a trial xi belonging to a positive (y = 1

meaning cessation trial) or negative (y = -1 meaning completion) class, and w is the weight

vector [29].

Pwðy ¼ �1jxÞ ¼
1

1þ e� ywTxi
ð6Þ

In order to learn weight values w, a binary class l2 penalized normalization is used to mini-

mize the cost function in Eq (7), where C> 0 is a penalty parameter [29].

argminPðwÞ
w

¼ C
Xn

i¼1

log 1þ e� ywTxi
� �

þ
1

2
wTw ð7Þ

Performance metrics. To asses the performance of these models, we consider Accuracy,

Balanced Accuracy, F1-score and AUC. The dataset is imbalanced, the ratio between comple-

tion trials to cessation trials is 4.36 to 1, thus balanced accuracy can be a better indicator of

model performance. Balanced accuracy is the average of accuracy of each individual class.

Statistical tests. A Friedman test is used to determine if is there is a statistical difference

between the four models trained on different combinations of features, which are treated as

separate data sets [30]. Each classifier produces an average performance metric for each data

set. These performance metrics are then ranked in a descending order to evaluate the classifi-

ers, so the classifier with the highest scores on a dataset is ranked as 1. In the case of a tie, the

average rank is assigned. Then the average ranking of four classifiers are determined over the

seven combinations of features. The average rank of a classifier j is denoted as Rj as defined in

Eq (8), where rji is the rank for classifier j on dataset i. In our analysis, we have four classifiers

and seven data sets. The data sets are those created using top 100, 200, 300, 400, 500, 600 fea-

tures, and all features, respectively.

Rj ¼
1

n

Xn

i¼1

rji ð8Þ

The null hypothesis states that there is no difference between algorithms, thus their average

ranks is not statistically different. The Friedman statistic is defined by w2
F , in Eq (9), where k
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denotes the number of classifiers.

w2
F ¼

12n
kðkþ 1Þ

Xk

j¼1

R2

j �
kðkþ 1Þ

2

4

" #

ð9Þ

After rejecting the null-hypothesis that the classifiers are equivalent, a Nemenyi post-hoc

test can be performed for pairwise comparisons of performance. Classifiers are significantly

different if their average ranks differ by the critical difference, CD as defined in Eq (10), where

qα is the Studentized range statistic divided by
ffiffiffi
2
p

[30]. In our study, we have k = 4 classifiers

and α = 0.05, q0.05 = 2.569, and for a lower level of confidence, α = 0.10, q0.10 = 2.291. Since

there are n = 7 data sets, with α = 0.05, CD = 1.773, and with α = 0.10, CD = 1.581.

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6n

r

ð10Þ

The Nemenyi post-hoc test results, showing in a critical difference diagram, are reported in

Fig 15. The top line indicates the average ranks Rj of each classifier. The classifiers with the

highest performance and lowest ranks are displayed on the left, and classifiers with the lowest

performance and highest ranks are displayed on the right. Any two classifiers that are not sig-

nificantly different have average ranks that do not differ by the CD and are grouped together

with a bar.

Results

Feature selection for COVID-19 trial prediction results

In order to determine whether ReliefF feature selection helps COVID-19 clinical trial predic-

tion, four models are tested on different feature subsets. The top ranked 100, 200, 300, 400,

500, 600, and all features are tested separately. The average AUC values from 5-fold cross vali-

dation on the different feature subset are shown in Fig 12.

Generally, as the number of features increases, the AUC increases. Using all features has

similar, if not slightly decreased, results from using the top 600 ranked features. Embedding

features are ranked as the 100 lowest using ReliefF feature selection. The results from Fig 12

suggest that embedding features are the least helpful to increase prediction performance. This

is in contrast to our previous findings that the combination of embedding features, keyword

features, and statistics features provide the highest predictive power [10].

Fig 12. Mean AUC values and standard deviation of single models trained using increasing number of features.

https://doi.org/10.1371/journal.pone.0253789.g012
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Sampling ratio for COVID-19 trial prediction results

Our previous research demonstrated that ensemble models are able to handle the class imbal-

ance in clinical trials. Thus for the current study, we use random under sampling to the nega-

tive class (completion trials) to achieve a more even class proportion to cessation trials. Since

this introduces a bias, it is repeated 10 times to create an ensemble model, and the average of

all models is used for final test predictions. In order to find best sampling ratios, Fig 13 demon-

strates average accuracy, balanced accuracy, F1-score, and AUC for the four models using no

random under sampling and sampling rates of 4, 3, 2, 1 and 0.9 to 1. The sampling rate of 2:1

indicates that the ratio between number of negative class samples (completion trials) to posi-

tive class samples (cessation trials) is 2:1. A sampling rate of 1:1 indicates an even ratio and

0.9:1 indicates that there are more cessation trials than completion trials.

As the sampling rate decreases, the overall accuracy rate of the models decrease, while bal-

anced accuracy and F1-score increase. As the class ratios become even, the models increasingly

classify more samples as cessation trials. This increases the number of true positives (i.e., cessa-

tion trials are correctly predicted as cessation trials), while concurrently increases the number

of false positives (i.e., completions trials are predicted as cessation trials). This ultimately will

increase the balanced accuracy rate as more samples from both classes are classified correctly.

However, the accuracy rate will decline as more completion trials are incorrectly classified. As

F1 score and AUC do not differ greatly between 1:1 sampling and 0.9:1 sampling, we use 1:1

Fig 13. Mean accuracy, balanced accuracy, F1-score and AUC values comparisons using different sampling ratios. 4.36:1 indicates no random under sampling

(original sample distributions between completion trials vs. cessation trials in the dataset).

https://doi.org/10.1371/journal.pone.0253789.g013
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sampling rate for our final ensemble models. This still shows an increase of balanced accuracy

without the largest decrease of overall accuracy.

Ensemble learning for COVID-19 trial prediction results

For ensemble models, to determine if ReliefF feature selection aids in prediction power, we

test ensemble models on subsets of features from their ReliefF ranking. Fig 14 demonstrates

5-fold cross validation AUC on ensemble models using the top 100, 200, 300, 400, 500, 600

ranked features, and all features. Similar to the single model results, the best performance is

seen with top 600 features or using all features. The difference between using top 600 and all

features is minor. For example, random forest with top 600 features has AUC score of 87.58%

vs. AUC of 86.99% using all features. In addition, we also report the performance between sin-

gle models vs. ensemble models using all features and using top ranked 600 features in Table 7.

Overall, the results in Fig 14 show that feature selection does not improve AUC scores for

trial prediction. When a small number of features are selected (e.g. less than 100), the models

appear to deteriorate significantly. With increasing number of features being used in the classi-

fication models, AUC performance increases. This confirms that all four types of features (sta-

tistics features, keyword features, drug features, and embedding features) play important roles

and provide complementary information for prediction.

Table 7 list the average 5-fold cross validation performance of single models vs. ensemble

models trained using all features. The results show a decrease of accuracy for ensemble models;

while F1, Balanced Accuracy and AUC increase. Ensemble models utilize sampling to balance

the sample distributions in the training set. This ultimately will increase the number of cessa-

tion clinical trials predicted correctly, and concurrently will increase the number of completed

clinical trials predicted incorrectly, which decreases overall accuracy.

To compare the performance between ensemble classifiers tested on different combinations

of features, a Friedman test shows a significant difference for Balanced accuracy, F1, and AUC

Fig 14. Mean AUC values and standard deviation of ensemble models trained using increasing number of features.

https://doi.org/10.1371/journal.pone.0253789.g014

Table 7. Average performance comparisons between single models vs. ensemble models using all features.

Single Models Ensemble Models

Accuracy Balanced F1 AUC Accuracy Balanced F1 AUC

Neural Network 83.12% 70.32% 52.43% 84.20% 75.97% 77.53% 55.37% 84.37%

Random Forest 85.23% 62.42% 39.19% 88.05% 78.62% 81.21% 59.75% 86.99%

XGBoost 85.35% 66.27% 47.42% 87.23% 76.80% 78.60% 56.83% 86.35%

Logistic Reg. 80.43% 70.23% 50.49% 81.21% 76.29% 78.43% 56.15% 84.65%

https://doi.org/10.1371/journal.pone.0253789.t007
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scores. There is no statistical difference between accuracy scores. Fig 15 displays a critical dif-

ference diagram demonstrating the Nemenyi post-hoc test results. For balanced accuracy,

Friedman test demonstrates a significant difference between the four classifiers, w2
F ¼ 12:429,

p = 0.006. The Nemenyi post-hoc test results using α = 0.05 in Fig 15 (a) show that Random

Forest and XGBoost are significantly better than Neural Network. For F1 scores, a Friedman

test demonstrates a significant difference between the four classifiers, w2
F ¼ 13:286, p = 0.004.

The Nemenyi post-hoc test results using α = 0.1 in Fig 15 (b) show that Random Forest,

XGBoost and Logistic Regression are significantly better than Neural Network. For AUC

scores, a Friedman test demonstrates a significant difference between the four classifiers,

w2
F ¼ 13:971, p = 0.003. The Nemenyi post-hoc test results using α = 0.05 in Fig 15 (c) show

that Random Forest is significantly better than Neural Network.

Overall, the critical difference diagrams in Fig 15 demonstrate that Random Forest has the

best average ranking of model performance in Balanced Accuracy, F1, and AUC scores. While

Neural network has the lowest ranking in all three performance metrics. These statistical

results indicate two major findings; (1) Random Forest achieves the highest performance; and

(2) Neural network has the lowest performance.

Our results can be summarized into the following major findings:

• Feature selection does not improve AUC scores for trial prediction.

• Ensemble models show an improvement in F1 and balanced accuracy scores, a minimal

improvement in AUC scores, and a decrease in accuracy scores.

• Random forest has the best performance and neural network has the worst performance.

• Random Forest ensemble models achieve 81% in balanced accuracy and 87% in AUC, indi-

cating our model can achieve satisfactory accuracy for completion vs. cessation COVID-19

clinical trial prediction.

Discussion

Using feature engineering and predictive modeling, our research shows much higher AUC val-

ues and balanced accuracy in predicting COVID-19 clinical trials, comparing to our previous

study [10] which focused on all clinical trials. Because COVID-19 clinical trials all aim at

Fig 15. Critical difference diagram for ensemble models by comparing the four classifiers on different combinations of features; (a) Balanced

Accuracy scores with α = 0.05, the critical difference is 1.77; (b) F1 with α = 0.1, the critical difference is 1.58; (c) AUC with α = 0.05, the critical

difference is 1.77. Groups of classifiers not significantly different are connected.

https://doi.org/10.1371/journal.pone.0253789.g015
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researching COVID-19 (i.e. a particular disease), these trials share more common features

comparing to all clinical trials. The segregation of clinical trials based on research area shows

a large improvement in predictive power of modeling clinical trials. Previously, we demon-

strated single models that achieved only 50% balanced accuracy and F1-score of 0–2%, where

a whole class of samples were largely missclassified. Our current study shows single models

with balanced accuracy as high as 70% and F1-score of 50.49%. This observation suggests that

modeling clinical trials is best when segregating research areas or diseases.

The high ranking of drug features from ReliefF feature selection demonstrates their ability

to separate cessation vs. completion trials. Since the majority of COVID-19 clinical trials are

interventional, it’s understandable that drug interventions will be important key components

of a trial’s success.

The low ranking of embedding features from ReliefF suggest that the embedding feature

values are not as separable when comparing the two classes. This could be due to the large

similarities between the description fields of all COVID-19 clinical trials. Descriptions for

COVID-19 clinical trials may contain similar background information necessary for justifica-

tion of the trial. This may include details on the emergence of COVID-19 or the consequences

of the global pandemic. Finally the dataset is considerably smaller than our previous research.

The Doc2Vec models are only trained on the training datasets. With a smaller datasets, Doc2-

Vec has less samples to properly learn an embedding model.

Conclusion

This paper proposes to study factors associated to the COVID-19 clinical trial completion vs.
cessation, and further employs predictive models to predict whether a COVID-19 clinical trial

may complete or cease in future. Four types of features (statistics features, keyword features,

drug features, and embedding features) with 693 dimensions are created to represent each

clinical trial. Feature selection and ranking show that keyword features (which are derived

from the MeSH terms of the clinical trial reports) are most informative for COVID-19 trial

prediction, followed by drug features, statistics features, and embedding features. Using ran-

dom under sampling and ensemble learning, the results show that ensemble models achieve

significant gain in balanced accuracy and F1-score. Overall, the best models achieve over 0.87

AUC values and over 0.81 balanced accuracy for completion vs. cessation trial prediction.

A limitation of this study is that it is based on a rather small number of clinical trial reports

(772) which had reported completion or cessation (terminated, suspended, or withdrawn) sta-

tus in January 2021. As COVID-19 clinical research advances rapidly, more trials will have

updated status, and may contribute to the study. In addition, other machine learning models,

such as semi-supervised models, can also be integrated to combine COVID-19 trials not reach-

ing the completion or cessation states to improve the model performance.
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(PDF)
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