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Abstract

Loss of biological diversity through population extinctions is a global phenomenon that

threatens many ecosystems. Managers often rely on databases of rare species locations to

plan land use actions and conserve at-risk taxa, so it is crucial that the information they con-

tain is accurate and dependable. However, small population sizes, long gaps between sur-

veys, and climate change may be leading to undetected extinctions of many populations.

We used repeated survey records for a rare but widespread orchid, Cypripedium fascicula-

tum (clustered lady’s slipper), to model population extinction risk based on elevation, popu-

lation size, and time between observations. Population size and elevation were negatively

associated with extinction, while extinction probability increased with time between observa-

tions. We interpret population losses at low elevations as a potential signal of climate

change impacts. We used this model to estimate the probability of persistence of popula-

tions across California and Oregon, and found that 39%-52% of the 2415 populations

reported in databases from this region are likely extinct. Managers should be aware that the

number of populations of rare species in their databases is potentially an overestimate, and

consider resurveying these populations to document their presence and condition, with pri-

ority given to older reports of small populations, especially those at low elevations or in other

areas with high vulnerability to climate or land cover change.
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Introduction

Population extinctions are a major threat to plants, leading to range contractions, fragmenta-

tion and isolation (e.g., [1–4]), which together reduce the abundance of species. As Darwin [5]

pointed out, rarity is a precursor of extinction. Orchids in particular face a global conservation

risk with high species diversity but also a high rate of species that are rare or threatened with

extinction [6–12], and rare orchids are likely to need aggressive conservation actions to pre-

vent their extinction [13]. Nearly half of the genus Cypripedium may be threatened and in

need of protection if the species are to survive in the wild [14]. Therefore, accurate assessments

of the number of populations of a rare species and its major threats are crucial to conservation

planning and resource allocation for recovery actions [15, 16].

Several processes can contribute to rare plant population extinctions, including habitat loss,

interactions with invasive species, changes in disturbance frequency, etc. [17]. Climate change

in particular is affecting species ranges globally [18], with organisms shifting toward higher lat-

itudes [19] and elevations [20]. For example, plant ranges in western Europe have moved

upslope at 29 m/decade over the last century [21] and in California at similar rates [22]. Cli-

mate change effects on temperature and moisture may threaten plant diversity in Europe,

especially in mountains [23]. Low-elevation populations of organisms can be especially at risk

of extirpation as climatic conditions change and force upslope range shifts [24]. Any contrac-

tion in the range of a rare species can have significant effects on its long term conservation and

viability.

The number of individuals present can also affect the viability of plant populations, with

small populations having greater risk of extirpation. In general, the extinction probability of

a population increases as population size decreases [25, 26]. Small populations may be at

greater risk of extinction because of several factors, including losses in reproductive individ-

uals [27], Allee effects [28], declines in seed production [29] and viability [30], loss of

genetic diversity [31] and accumulation of genetic load [32], and demographic stochasticity

[33]. In empirical studies that surveyed the same locations of multiple plant species over

several years in Germany [4] and the Swiss Jura Mountains [34], extinction rates were

found to be higher for small populations. And although population size may be a strong pre-

dictor of population vulnerability, passage of time can compound the likelihood of extinc-

tion because as more time passes in stochastic environments the chances that a population

will fall to zero increase [25, 26].

Taken together, climate change, population size, and time since observation create consid-

erable uncertainty regarding the current status of wild plant populations recorded in various

rare species databases. Several US agencies and organizations (e.g., US Bureau of Land Man-

agement, US Fish and Wildlife Service, US Forest Service, NatureServe, state Natural Heritage

Programs) maintain databases of rare plant occurrences and many of these occurrences may

not have been visited recently. Therefore, the number of populations in the wild of some spe-

cies could be smaller than the number listed in databases due to extinctions that have not yet

been detected. Increasing our ability to estimate the number of populations that remain extant

or have gone extinct in these data bases will improve conservation planning for rare species.

We used information on repeated surveys in California and Oregon for a rare but widespread

orchid, Cypripedium fasciculatum (clustered lady’s slipper), to test the hypothesis that extinc-

tion probability is affected by elevation, population size, and time since observation. We

applied the resulting model to populations in land management databases in Oregon and Cali-

fornia, specifically the Geographic Biotic Observations (GeoBOB) data base maintained by the

US Bureau of Land Management and the US Forest Service Natural Resource Information Sys-

tem (NRIS-Terra), to estimate the number of populations that are still extant.
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Materials and methods

Study species

Cypripedium fasciculatum (clustered ladies slipper) occurs in scattered population centers in

western North America in California, Oregon, Washington, Idaho, Montana, Utah, Wyoming

and Colorado. In California and Oregon, this taxon occurs predominantly in the Klamath-Sis-

kiyou Mountains and Sierra Nevada Mountains. The United States Forest Service (USFS) con-

siders it to be a Sensitive Species and the Bureau of Land Management (BLM) lists it as a

Bureau Sensitive Species (designations that indicate population viability is of concern and the

species may need special management consideration), and it is considered globally secure

because of its widespread geographic range and abundance in some states [35]. In California

and Oregon the species is most often found on north facing slopes in mixed coniferous forests

of>60% canopy closure [36]. Pseudotsuga menziesii is the most common associated tree, but

other frequently noted forest components include Abies concolor, Cornus nuttallii, Pinus lam-
bertiana, and Calocedrus decurrens. Clustered lady’s slipper is known to occur in California

and Oregon at elevations from about 180 to nearly 2000 m. The species has a complex life-his-

tory and depends on specific mycorrhizal fungi [37], which may affect its seed germination

and growth. Mycorrhizal fungi may determine where and in which specific habitats this orchid

can grow and how it responds to disturbance, but little information is available on the fungi,

their requirements, associated tree species, and their function in forest ecosystems [36].

Data sources

We compiled repeated-survey data from multiple sources to test for effects of elevation, time

between surveys, and population size on extinction probability. The sources of these resurvey

data were from an assessment of the conservation status of C. fasciculatum in California that

reviewed available records (78 sites) for the species throughout that state [36] and from

repeated surveys in southwestern Oregon (127 sites) [38] conducted on federal lands. Both

resurvey data sources (205 populations combined) included sites revisited at least once and

documented site location, elevation, population size, and years between surveys. We used

information on population size from the first survey, and time between first and last surveys

was calculated as the number of years between the first and last (most recent) survey. The last

survey was used to score each population as either extant or extinct (no individual plants

found at the site). The time between surveys ranged from 1 to 29 years. While most observers

censused populations, some (particularly in the California portion of the data set) estimated

population size, and when this occurred we used the highest integer reported for a population

during the first survey. For example, if 50–100 plants were reported, we used 100 to be conser-

vative. If the number was vague (e.g., 75+, >30, or ca. 50) we used the actual integer listed (75,

30, or 50, respectively). Populations used in the analysis varied in size from 1 to 1084 individu-

als. C. fasciculatum plants that were single stems or clumps were considered individuals (fol-

lowing [39]).

Population viability analysis

We used logistic regression ([40], glm in R stats package) to construct models to estimate

extinction probability. The response variable was population status at the most recent visit (a

binomial response, either extinct or extant) and predictor variables were size of the population

at the first survey, number of years between the first and last survey, and elevation (m) of the

population. Population size was log-transformed in the logistic regression model to meet

assumptions of normality. We used a model selection routine comparing Bayes Information
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Criterion [41] values among models with all combinations of predictor main effects and inter-

actions, and we choose the most parsimonious model based on the smallest BIC value. All

analyses were performed in R 3.6.0 [42]).

Estimating number of extant populations

To estimate the number of populations of C. fasciculatum recorded as still extant in the land

management databases, GeoBOB and NRIS-Terra, for California and Oregon, we applied our

selected final model for predicting extinction probability to the 2896 populations recorded in

those databases based on their size, years since the last survey, and elevation. Predicting average

population survival is theoretically possible using regression coefficients, however prediction

uncertainty in logistic regression is not derived from coefficient uncertainty like in linear regres-

sion, and instead can be empirically derived. Logistic regression prediction uncertainty, which

assumes a binomial distribution, is inaccurately wide, even if predictions are converted to log-

odds ratios, when theoretically estimated using coefficient uncertainty, which assumes a Gauss-

ian distribution (see our R script for example). To empirically estimate uncertainty around pre-

dicted survival of all populations, we bootstrapped the coefficients in our chosen model by

randomly selecting 205 populations from our model building data set, with replacement, and

estimating the logistic regression coefficients at each iteration [43]. For each bootstrapped set of

coefficients, we calculated the extinction probability of each population in the land management

databases, subtracted from one and summed those probabilities to estimate the number of

extant populations, and repeated this bootstrap process 10,000 times to estimate 95% confidence

limits (i.e., prediction uncertainty). We performed this analysis in R 3.6.0 [42].

Results

Population viability analysis

Of the 205 populations in our data sets, 34% were no longer present when resurveyed. The

most parsimonious extinction model based on largest ΔBIC included only the main effects of

population size, time between surveys, and elevation. Each of these factors was significant in

the final model for predicting extinction probability of populations (Table 1). The general lin-

ear model suggested that small populations had a greater probability of extinction than large

populations, and extinction probability was near zero for populations with>100 individuals

(Fig 1, left). Extinction probability increased as the time between surveys increased (Fig 1, cen-

ter). Finally, populations at lower elevations were more likely to go extinct than those at high

elevations (Fig 1, right).

Estimating extant populations

A total of 2415 populations with one or more plants were reported in the land management

databases for Oregon and California. An additional 426 populations were reported as already

Table 1. Generalized linear logistic regression model for factors affecting the probability of population survival for C. fasciculatum with coefficient estimates, stan-

dard errors, z scores, and p-values. The resulting model takes the form loge(y/(1—y)) = β0 + β1X1 + β2X2 + β3X3.

Factor Estimate Standard Error z score p-value

β0 - (Intercept) 0.93 0.58 1.60 0.110

β1 - Starting population size -0.70 0.14 -4.93 <0.001

β2 - Years between surveys 0.12 0.029 4.28 <0.001

β3 - Elevation -0.0018 0.00059 -2.98 0.003

https://doi.org/10.1371/journal.pone.0210378.t001
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extinct by 2016. Populations in those land management databases ranged in size from 1 to

1859 individuals, years between surveys from 1 to 115, and elevations from 234 to 1851 (Fig 2).

The mean population size was 25 (95% CI ± 1.6). We estimated that of the 2415 populations

reported as extant, only 1,317 (95% bootstrapped quantiles: 1,164–1,476) were likely still pres-

ent. This is equivalent to an overall extinction rate of 45% (95% bootstrapped quantiles: 39%-

52%). The predicted probability of population survival varied widely across the landscape in

California and Oregon, with some population centers showing greater potential for population

extinction than others (Fig 3). For example, populations in southwestern Oregon had a pre-

dicted extinction rate of 57% (49%– 64%) of 1258 reports compared to 33% (25% - 41%) of

1157 records in California. This difference was driven in our model by the generally lower

population sizes in Oregon (mean: 12.7 95% CI: ± 1.5) than California (37.9 ± 6.6) and lower

elevations of populations in Oregon (757.2m ± 13.4m) than California (1319.2m ± 15.4m).

Years between observations did not differ between states, averaging 15.4 years overall (± 0.39).

Discussion

We found that population size, time between surveys, and elevation predicted extinction in

Cypripedium fasciculatum. When these factors were used to model the persistence of wild pop-

ulations, we found that only 55% of populations reported in land management databases (Geo-

BOB and NRIS-Terra) for California and Oregon are likely still present on the landscape.

Extinction rates are predicted to be higher in Oregon than in California, primarily due to the

lower average population size and elevation there. Many orchid species have populations with

a wide range of sizes [44], and small average population sizes are common. The average popu-

lation size of Cypripedium fasciculatum in California and Oregon was 25 individuals. The aver-

age population of C. kentuckiense has 40 individuals, C. calceolus in Europe generally has

Fig 1. Estimated extinction probability of Cypripedium fasciculatum as a function of population size (left), years between surveys (center), and

elevation (right). Shadings around each line represent 95% confidence intervals. Histograms indicate the frequency (labeled on right axis) of

mortality (top axis) and survival (bottom axis).

https://doi.org/10.1371/journal.pone.0210378.g001
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populations with fewer than 100 plants, and C. dickensonianum occurs as small colonies or sin-

gle individuals [45]. As population size declines in orchid species, gene flow by pollen may

Fig 3. Distribution of Cypripedium fasciculatum in California and Oregon showing the probability of persistence

estimated from population size, time since observation, and elevation. Insets show known locations of the species in

the western United States (data from GeoBOB and NRIS-Terra) and a photo of the plant from southwestern Oregon.

https://doi.org/10.1371/journal.pone.0210378.g003

Fig 2. Frequency distribution of population size, years since last survey, and elevation for populations in the land management databases.

https://doi.org/10.1371/journal.pone.0210378.g002
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decline [46], inbreeding may increase [47], pollination, fruit set and seedling recruitment may

decrease [48], genetic drift may increase [49], and genetic diversity may decline [50]. Transi-

tion matrix models of C. calceolus [51] indicate extinction probability over a 100 year period in

populations with 10 plants is 37%, and in populations with 5 plants it increases to 67% without

disturbance. In populations where flowers are removed or plants are dug up, extinction proba-

bility rapidly approaches 100%. The typically low population size in C. fasciculatum was a

major contributor to the high rate of predicted extinctions we have shown empirically for the

species.

Population extinction probability was associated with time between surveys in C. fascicula-
tum. In stochastic environments, even populations with stable intrinsic population growth

rates are vulnerable to extinction, and this vulnerability increases with time [25, 26]. In popula-

tions with declining growth rates, the rate of extinction will be even faster. Therefore, as time

between surveys increases, population extinction should also increase, especially for small pop-

ulations. Surprisingly, time between surveys had no significant effect on probability of extinc-

tion in eight rare plants in Germany [4], but the study was conducted over a relatively short

period (ten years).

We speculate that negative impacts from climate change might already be apparent for C.

fasciculatum through extinction of low elevation populations. Loss of low elevation popula-

tions may be expected when climates warm to the point that populations can no longer survive

in the hotter portions of their range. For example, loss of butterfly species at low elevations has

been attributed to warming trends in Spain [52]. Our findings with C. fasciculatum are gener-

ally consistent with orchid responses to climate change in North America and elsewhere. Doc-

umented declines of species in the Orchidaceae in eastern North America appear to be related,

at least in part, to an inability of these species to alter their phenology, particularly flowering

time, as climate has warmed over the last century and a half [53]. Climate change appears to be

a threat to orchids in Mexico [54], and orchids in general appear to be highly vulnerable to cli-

mate change in China [55]. In contrast, orchids were more likely to increase abundance in

mediterranean France from 1886–2001 compared to many other plant taxonomic groups [56].

Precipitation appears to be a strong driver of plant survival in C. reginae [57], making the spe-

cies vulnerable to changes in regional climate. And it is clear that climate has changed recently

and is forecasted to change further in California and Oregon, in part due to warming and dry-

ing that, when combined, exacerbate moisture deficits and increased evaporative demand

(e.g., [58]). Changes in land use and land cover could also explain the loss of low elevation pop-

ulations [59], but the lands on which this study derived its supporting data are public property

that is remote, often difficult to access, and largely sheltered from development and urbaniza-

tion. Also, the status of this plant as a sensitive species has led to the protection of most popula-

tions on public land from timber harvest, road building, and other land actions for the period

of this study. Nitrogen deposition has also contributed to large scale landscape changes that

affect plant distributions [60], but the populations examined here are not directly downwind

from urban centers with high N production and receive most of their precipitation from low-

N air masses blown in from the Pacific Ocean.

Resurveys of plant populations and communities can provide substantial insights into

the nature and causes of changes that occur in the natural world over time [61–64]. Even

so, there are some limitations to our estimates of extinction probability of C. fasciculatum
in this study. Repeated surveys may fail to relocate previously documented populations

even when they are still present [65–67] if the survey is not sufficiently thorough. The

datasets we used contained information on population resurveys that were carefully con-

ducted by trained botanists with precise location information, but the possibility remains

that some extant populations may have been missed. This could be aggravated by
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individual plant dormancy, which would make plants very difficult to detect during sur-

veys, and if all plants in a population were dormant at the same time–a possibility that

increases as population size declines–whole extant but dormant populations could be

falsely classified as extinct. Dormancy (years when no living tissue is visible above ground)

is not uncommon in terrestrial orchids [68], including Cypripedium [39, 69–73]. Cypripe-
dium reginae, for example, may be dormant for up to four years [57]. On the other hand,

dormancy is associated with decreased orchid reproduction [74] and survival [75], and if

all individuals in a population were dormant, the population might already be close to

extinction. These factors suggest that although we could have overestimated extinction

probability [65] due to dormancy, this same dormancy could suggest increased plant vul-

nerability. Either way, we are unable to quantify this potential bias in our results given the

available data.

Because orchids depend on fungi, at least in the early stages of plant development, the pres-

ence of appropriate fungi and the environmental factors that affect them may in turn deter-

mine the growth and survival of many orchids [76], including C. fasciculatum populations.

Soil and topography, and especially temperature and moisture are the most important factors

that control orchid distribution and survival [77], and this may be due to the influence of these

factors on mycorrhizal fungi. Cypripedium spp. are associated with fungi in the Sebacinaceae,

Ceratobasidiaceae, and especially the Tulasnellaceae [37]. The degree of specificity of orchids

with fungi is significant because orchids with highly specific associations may be more sensi-

tive to disturbance and environmental change than generalist species [78]. Further, climate

and fungal symbionts of orchids may interact to shape the evolutionary response of specific

vital rates to climate change, such as sprouting after dormancy [79].

Seed dispersal can lead to the recruitment of new populations on the landscape. Some

or all of the extinctions we observed and modeled could be offset but the establishment of

new wild populations. However, data from a portion of the geographic area of our study

system suggests that the rate of establishment of new populations is approximately

0.000018 populations/ha/yr, while extinction is 2.8 times that rate (0.00005 populations/

ha/yr) over the same time period (S3 File). Therefore, although new populations may con-

tinue to appear on the landscape, they may not balance the losses from extinctions. Also

they are not readily recorded unless they are discovered during new searches, contributing

to the lack of reliability of land management databases.

Implications for conservation

This study demonstrates the need for additional and more frequent surveys of rare plant popu-

lations to improve the reliability of information in databases used by land management agen-

cies. Land managers who make decisions on how best to conserve rare species often base their

decisions in part on the abundance and distribution of those organisms as reported in data-

bases. However, many reported populations may no longer be extant. Managers should be

aware that the number of populations of rare species in their databases is potentially an overes-

timate, and consider resurveying populations in databases to document their presence and

condition, with priority given to older reports of small populations, especially those at low ele-

vations or other areas with high vulnerability to change in climate or land use. Species like C.

fasciculatum may be candidates for assisted migration [80–82] as their low-elevation popula-

tions experience extinction and if expansion or colonization at higher elevation locations does

not occur naturally. We suggest that development of propagation and planting techniques

(e.g., [83–85]) to allow for intervention is warranted, and needs to consider the fungal depen-

dency of this rare orchid [86].
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Supporting information

S1 File. Data from resurveys of 205 populations of Cypripedium fasciculatum in Oregon

and California with elevation (m) of observation, years since original observation, pres-

ence or absence at last observation, original population size (oldsize), and population size

at last observation.

(CSV)

S2 File. Data from land management databases of 2415 populations of Cypripedium fasci-
culatum in Oregon and Washington with population size, elevation (m), year of observa-

tion, and years since observation.

(CSV)

S3 File. Methods and results of new population recruitment analysis for Cypripedium fasci-
culatum in southwestern Oregon, USA.

(PDF)
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