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ABSTRACT: AI-assisted synthesis planning has emerged as a
valuable tool in accelerating synthetic chemistry for the discovery
of new drugs and materials. The template-free approach, which
showcases superior generalization capabilities, is seen as the
mainstream direction in this field. However, it remains unclear
whether such an end-to-end approach can achieve problem-solving
performance on par with experienced chemists without fully
revealing insights into the chemical mechanisms involved.
Moreover, there is a lack of unified and chemically inspired
frameworks for improving multitask reaction predictions in this
area. In this study, we have addressed these challenges by
investigating the impact of fine-grained reaction-type labels on
multiple downstream tasks and propose a novel framework named
SynCluster. This framework incorporates unsupervised clustering cues into the baseline models and identifies plausible chemical
subspaces which is compatible with multitask extensions and can serve as model-independent indicators to effectively enhance the
performance of multiple downstream tasks. In retrosynthesis prediction, SynCluster achieves significant improvements of 4.1 and
11.0% in top-1 and top-10 prediction accuracy, respectively, compared to the baseline Molecular Transformer, and achieves a
notable enhancement of 13.9% in top-10 accuracy when combined with Retroformer. By incorporating simplified molecular-input
line-entry system augmentation, our framework achieves higher top-10 accuracy compared to state-of-the-art sequence-based
retrosynthesis models and improves over the baseline on the diversity and validity of reactants. SynCluster also achieves 94.9% top-
10 accuracy in forward synthesis prediction and 51.5% top-10 Maxfrag accuracy in reagent prediction. Overall, SynCluster provides a
fresh perspective with chemical interpretability and reinforcement of domain knowledge in the synthesis design. It offers a promising
solution for improving the accuracy and efficiency of AI-assisted synthesis planning and bridges the gap between template-free
approaches and the problem-solving abilities of experienced chemists.
KEYWORDS: synthesis planning, fine-grained type, transformer, unsupervised clustering

■ INTRODUCTION
Synthesis planning1 is a critical process in drug discovery and
chemical industry that involves fabricating reasonable pathways
for synthesizing given compounds. It entails multiple reasoning
tasks including forward synthesis prediction, reagent selection,
and retrosynthesis. The first two tasks deduce the possible
underlying product or reagents by providing building blocks or
complete reactions; while retrosynthesis operates in reverse
and requires logical disconnection of the desired starting
molecules, searching a vast space of possible chemical
transformations from a given state.2 With the continuous
expansion of accessible chemical space, the rapid growth in the
number of synthetic molecules has made traditional manual
treatment of this process inefficient.3 As a result, computer-
aided approaches are now in urgent demand to overcome the
limitations of manual methods.

Computer-aided retrosynthetic analysis strategies can be
divided into two main categories,4 template-based and
template-free models. The template-based model involves
matching generalized reaction rules with target molecules to
produce one or more candidate precursors based on defined
subgraph patterns of the chemical reaction.5 Most template-
based models6−9 leverage a classification model for selecting a
suitable reaction template, which can be interpreted as a
process of searching and matching within established domain
knowledge, rather than generating new chemical knowledge
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thoroughly.10 For example, Chen et al.11 have employed the
LocalRetro model, which uses a global attention mechanism
upon message passing neural networks12 (MPNN) for
searching the suitable atom-based or bond-based reaction
rules. Their approach represents the current state-of-the-art
(SOTA) in the template-based field. The template-free model,
in contrast, does not rely on predefined templates, but takes a
single product as input and uses deep learning techniques, such
as the Graph Neural Network13−15 (GNN) or the Trans-
former,16 to represent reactants as heterogeneous molecular
graphs or simplified molecular-input line-entry system
(SMILES) strings. While many template-free approaches rely
on predefined leaving groups13 or action space15 to generate
the precursors, sequence-based methods use SMILES strings to
capture the molecule representation and introduce powerful
language models like the Transformer.17−19 The Molecular
Transformer (MT),20 with its multihead attention mechanism,
has achieved impressive performance in the retrosynthesis task
based on the top-k accuracy evaluation. MT is even
generalizable to reactant-reagent mixed data, surpassing
human chemists in a benchmark test.17 Moreover, improved
models such as Retroformer21 have achieved remarkable
accuracy for end-to-end template-free retrosynthesis based on
the fundamental algorithm design of the Transformer.
Despite the efficiency and cost reduction offered by the

present retrosynthesis prediction algorithms compared to the
manual approach,8 they continue to face several challenges.
The rule-based approach in template-based models requires
significant domain expertise and limits the generalizability of
novel reactions.22 Although the template-free method has
superior generalization capability,13 it remains unclear whether
AI-assisted synthesis can achieve problem-solving performance

on par with experienced chemists.23 Moreover, most template-
free models report high benchmark performance without fully
revealing insights into the transition process of chemical
groups and other organic mechanisms, limiting the interpret-
ability of these models.8 To address this, one approach is to
split the retrosynthesis task into two steps: synthon prediction
and precursor prediction,13,24 where the model identifies the
reaction centers and generates the minimum edit distance in
SMILES accordingly. However, this approach may result in
additional computational overhead due to the specified
requirements for the reaction center.23 Additionally, there is
a lack of a unified framework for adapting multitask prediction
in synthesis design, which limits the model’s fine-tuning
possibilities for other tasks like yield prediction and reagent
prediction.11,25

In this work, we propose a novel two-stage framework,
named SynCluster, as a more integrated and efficient solution
for multiple synthesis design tasks, including retrosynthesis,
forward synthesis, and reagent prediction. This framework is
centered around the core concept of integrating data-driven
reaction-type predictions for target molecules into a
comprehensive AI-assisted synthesis planning workflow
(Figure 1). Unlike conventional template-based methods,
SynCluster for downstream task inference does not rely on
pre-existing template libraries. Unlike purely template-free
methods, our framework enforces output regulation via type
clustering, which imparts enhanced interpretability to the
obtained results. Compared with various baseline models,
SynCluster exhibits significant improvements in top-k accuracy
and generation diversity. It introduces several novel features:
(1) Fine-grained categorization of reactions through the
clustering of condensed reaction templates. This approach

Figure 1. Workflow of our two-stage framework. Workflow consists of three parts. (a) Template extraction and correction process. In the
standardization procedure, an automatic template extraction method72 based on the radius and functional group is employed. The reaction center
(Changed) and extended part (Special) of the compound are identified respectively, followed by round-trip verification and canonization.39 (b)
Reaction clustering is developed by substructure fingerprints in which the reaction is compressed as a local template. (c) Modeling procedure. In
the phase of inference, types are predicted (not included in reagent prediction) by a feed-forward neural network (part 1 of Figure 1c) and then
embedded and entered into a downstream model such as Transformer or Retroformer (part 2 of Figure 1c). In the phase of the multistep
application, the SynCluster framework is combined with Retro* search67 (part 3 of Figure 1c) to achieve the selection, expansion, and update.
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enables a more precise and visualizable classification of
reactions compared to the widely used NameRxn super-
classes.26 (2) Interactive application for retrosynthesis, forward
synthesis, and reagent prediction, providing novel and robust
multiscale expansion capabilities. (3) Enhanced reaction
diversity and validity offered by SynCluster, which brings
about more abundant chemical insight and addresses realistic
chemical needs more effectively. (4) Excellent compatibility
with various single-step models, which leads to significant
improvements in prediction accuracy across a broad range of
applications. (5) Great adaptability with tree-based searching
in multistep retrosynthesis prediction, enabling the generation
of shorter paths compared to SOTA models. (6) Minimal
additional computational burden.

■ MATERIALS AND METHODS

Data Set and Baseline
In this study, the benchmark data set for retrosynthesis and forward
synthesis prediction comprising the reaction SMILES was derived
from Lowe.27 It was further cleaned into the subset USPTO-50K28

(about 50,000 reactions) for our experiments. The training, validation,
and testing split for our models was 80, 10, and 10%, respectively.
Through our experimental procedure, we further cleaned the data set
by discarding the reactions featuring invalid template representations,
e.g., the reactions with an error in chirality. In detail, we cleaned 1439,
189, and 176 reactions for training, validation, and testing,
respectively (Table S1). Additionally, to push the limits of the
reaction reasoning ability of large-scale verification, USPTO-MIT29

(about 460k reaction) was investigated in the clustering phase. The
benchmark data set for the reagents prediction was provided by Lu et
al.25 15902 reactions were extracted from the USPTO_500_MT data
set, and the number of training and testing reactions was set to 14903
and 999, respectively.
In this research, our model was evaluated for multiple downstream

tasks. In the retrosynthesis prediction, LocalRetro,11 SCROP,30

Graph2SMILES,31 Graphretro,14 MEGAN,15 and AT32 were chosen
and trained from scratch. Considering that our model adds fine-
grained reaction types to MT,17 it was set as our baseline in the
retrosynthesis, forward synthesis, and reagent prediction. Besides, we
have investigated the performance of our additional framework when
combined with Retroformer,21 a new SOTA model for the end-to-end
template-free retrosynthesis. Thus, the baseline models of retrosyn-
thesis also include Retroformer. More details are provided in
Supporting Information, Part 1.
Overall Workflow of SynCluster
The workflow consists of three parts: template extraction/correction,
reaction clustering, and modeling. First, we automatically extract and
correct the templates (Figure 1a). Then, we clustered the accessible
chemical space into groups of similar reactions based on the distance
between their template difference fingerprints (Figure 1b). During
modeling (Figure 1c), we train a downstream model (e.g., MT or
Retroformer) through inputting the SMILES of products (retrosyn-
thesis), reactants (forward synthesis), or reactions (reagent
prediction) with corresponding clustering types. We then recommend
the reaction type based on the clustering using a trained feed-forward
neural network (FNN). Specifically, the inference pipeline involves
the following two steps: (1) Recommending (forward and retrosyn-
thesis) or retrieving (reagent prediction) the candidate reaction
clusters (i.e., types) based on the input of the task; (2) Accomplishing
the target task by given downstream models conditioned on the
chosen types and the previous input. Finally, for multistep prediction
of retrosynthesis, we have utilized a tree-based search to get the
complete routes.
Reaction Representation and Clustering
Several techniques have been proposed to gather similar reactions
together.33−35 The commercial software NameRxn26 has preset 11

superclasses, 69 classes/categories, and more than 300 named types to
match reactions. However, these relative and predetermined reaction
sets are invariably too specific to cover the accessible chemical space
for the hand-crafted templates.36 It has been reported37 that
NameRxn could only cover 54% of the extracted reactions in the
NextMove’s data set.38 To tag this problem, Schneider et al.37 have
revealed a data-driven chemical fingerprint to cluster the reactions.
Nevertheless, there remains space for trade-offs in which the reaction
representation at different levels (i.e., using the complete reaction or
specifying different sizes of reaction) contains multilevel informa-
tion.39 In our study, Schneider’s method was fine-tuned in the
scenario that the reaction was compressed as the local template.
In detail, the templatecorr toolkit39 was utilized to cut down the

number of extraction templates. With the advent of automated
template extraction and canonization software, reactions featuring an
invalid template representation were discarded. Besides, the template
difference fingerprint was embraced to map the template into a vector,
as expressed in eq 1.

=
i
k
jjjjjj

y
{
zzzzzzTemplate Fp ProTem FP ReacTem FP

Pro reac (1)

On this basis, the diverse types of chemical fingerprints
(Atompairs,40 ECFP,47 FCFP,41 and TopologicalTorsions42) were
investigated. The template fingerprints were clustered by Butina’s
algorithm43 integrated with RDkit to evaluate the similarity of the
fingerprints. In this phase, the first step is the generation of standard
Daylight’s fingerprints (ASCII), followed by the identification of
potential cluster centroids and clustering based on the exclusion
spheres by similarity. The similarity was calculated with the Tanimoto
coefficient:44

=
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where xi, yi represent the subpattern of the object of comparison.
Furthermore, the influence of the cutoff of Butina’s clustering was
included in the analysis, and the purities metric was calculated as
follows:

= | |C
N

cPurity ( , )
1

max j
k

k
(3)

where Ω, C represent the set of the NameRxn superclasses and the
clustering results, respectively. Furthermore, ωk and cj refer to the set
of detailed superclasses and clustering types, respectively.
For the sake of evaluating the overlap ratio of the 10 superclasses

given by NameRxn and our clustering types to further interpret the
clustering, TMAP tree-based45 and t-distributed stochastic neighbor
embedding (t-SNE) reduction46 are investigated. The details for the
reduction are provided in Supporting Information, Part 2.

SMILES Augmentation
Typical data enhancement methods in natural language processing
include back translation, synonym substitution, random insertion,
random deletion, and random exchange.47 However, these methods
are not compatible with our model because minor character changes
may induce semantic errors regarding SMILES. An alternative choice
is to introduce the SMILES Augmentation.48 Since SMILES is not
unique (i.e., multiple SMILES can represent the same molecule), we
have augmented the data set by creating new SMILES strings with
different starting points and traversal orders. In the setting of
augmentation in MT, we have adopted the 20-fold augmentation to
expand the data set ahead with randomly permuted SMILES. The
standard procedure of preprocessing is illustrated in Figures S1 and
S2. Otherwise, in the setting of Retroformer, we obeyed the original
on-the-fly augmentation in which a probability of 50% to permute the
product SMILES and the reactants ordering every epoch is adopted.
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Model Construction
Our model construction consists of three components: (1) the feed-
forward neural network and (2) the downstream model, including
Molecular Transformer (MT) or Retroformer. In the inference of
retrosynthesis or forward synthesis, the assignment of clustering type
was achieved through the utilization of an FNN. Conversely, in the
reagent prediction model, the type was directly retrieved for the
information about the complete reactions of the test set was given. (3)
A multistep application for retrosynthesis using a tree-based search.
In the first step, the dimension of an input vector was set as 8192. A

single layer with 2048 nodes was taken as the hidden. The output
layer nodes were set as the number of clustering types (77
dimensions). Furthermore, an Adam optimizer and dropout
technique were utilized in the training phase. The cross-entropy
loss and log-softmax activation were applied to the output layer.
Furthermore, we have checked the chemical interpretability of our
type of predictor with the integrated gradient. The standard
calculation procedure is as follows:
(1) Masking out one nonzero dimension of the fingerprint and

retrieving the predicted probability P(s) for the predicting
clustering type.

(2) Using the original fingerprint and retrieving the predicted
probability P̂(s) for the predicting clustering type.

(3) The integrated gradient is computed as P̂(s) − P(s).
Based on this, the top-k positive/negative bits that own the top-k

biggest/smallest P̂(s) − P(s) were chosen. For the sake of making a
quantitative inspection of those bits, we have computed the coverage
for active/negative fingerprint bits by the reaction center. In detail, the
reaction center is defined by template’s radius of 3 (merely on the side
of the product).
To compare the results of the first step where the imbalanced test

set is attached, we have calculated the confusion entropy of the
CEN49 and then computed the Kappa coefficient and overall MCC
score50 as follows:

=
p p

p
kappa

1
0 e

e (4)

_ =
×

X Y
X X Y Y

Overall MCC
cov( , )

cov( , ) cov( , ) (5)

where p0 represents the overall accuracy, pe is the weighted accuracy
by imbalanced classes, cov is the covariance function, and X, Y
represent the two matrices where Xsn = 1 if the sample s is predicted
to be of class n otherwise 0 and Ysn = 1 if the sample s belongs class n
otherwise 0.
The first choice of downstream model in this work was performed

with the versatile Transformer,16 which shares a consistent structure
with MT model.17 The details of the model are exhibited in
Supporting Information Part 3 and keep consistency in retrosynthesis,
forward synthesis, and reagents’ prediction.
The second choice of downstream model in this work was

performed with the Retroformer.21 It has proposed a special form of
local heads in the multihead mechanism to support efficient
information exchange between the local region of reactive importance
and the global reaction context. The details of the model are provided
in Supporting Information, Part 3.3.
The final part is a multistep application for retrosynthesis. We

endowed the A*-based algorithm model Retro* to our single-step
model. The ideal setting and details are presented in Supporting
Information, Part 4.
Output Ranking and Evaluation
During the process of generating the predictions, we adopted a beam
search and a hybrid scoring function when SMILES is augmented to
rank the output. The details are stated in Supporting Information,
Part 5 and Figure S1.
Consequently, a crucial phase is to make a reasoning evaluation of

the output. Under the hypothesis that the ground truth is always the

only choice,28,51 most research on evaluation index selection has
examined the degree of matching between the predicted results and
the ground truth. This metric, which is called the top-k accuracy, fails
to consider the diversity of chemical pathways. Although there are
some efforts to assess the diversification of results, the ease of these
new metrics is hampered by the request of the pretrained model.52

Hence, the Similarity distance metric was introduced to evaluate
retrosynthesis models thoroughly:

=
i

k
jjjjjj

y

{
zzzzzzc

dis Mean
dist(o, p)

1
c

i

o,p i

(6)

= {dist(o, p)
1 sim(o, p), if o, p exist

0, else (7)

where o, p represents the different reaction fingerprints for top-k
prediction, and ci denotes the top-10 outputs. Concerning diversity
evaluation, the prediction inputting is set as a pair to calculate the
reaction fingerprint, and the similarity is obtained using eq 2.
For the sake of a comprehensive assessment, the traditional top-k

accuracy was reported in both retrosynthesis and forward synthesis.
The Maxfrag coverage32 (defined as the top-k accuracy between the
maximum fragment of the output reactants and the ground truth) and
the Roundtrip accuracy52 (quantifies what percentage of the
retrosynthetic suggestions is valid through forward model) were
induced in retrosynthesis prediction. Finally, the Maxfrag coverage
was also considered in reagent prediction to encourage the
exploration of major solvents and catalyzers.

■ RESULTS AND DISCUSSION

Reaction Clustering
The number of the clustering types and their purities are
analyzed with different radii of reaction templates and cutoffs
in Butina’s clustering algorithm (Tables S2−S4) to evaluate
the quality of reaction clusters on the USPTO-50K data set. A
higher purity indicates better interpretability and a stronger
connection to human knowledge. The positive correlation
between the number of clustering types and the purity suggests
that fine-grained clustering leads to highly dispersed data.
When selecting clustering parameters, it is important to
consider the tradeoff between the cutoff in Butina’s clustering
and the number of clusters. A moderate cutoff of 0.6 is used for
further study, which provides an appropriate number of
clusters and relatively high purity. In addition, it is worth
noting the difference between ECFP and FCFP. With a
template radius of 1, which represents a moderate central atom
expansion capturing the essential information from the entire
reaction, FCFP showed a generally higher or equivalent purity
compared to ECFP. This can be attributed to FCFP’s ability to
acquire more abstract role-based substructural features, such as
the consistent identification of halogens.41 Therefore, we
utilized FCFP and a cutoff of 0.6 in Butina’s clustering to
achieve powerful interpretability and predictability. The
average purity of all the clusters is 0.784 (Table S3), which
suggests a significant correspondence between the 10
NameRxn26 superclasses (Table 1) and our clustering types,
which refer to 77 fine-grained types clustered by SynCluster.
We have then evaluated the overlap ratio between the 10

NameRxn superclasses and our clustering types in order to
interpret the clustering in the USPTO-50K data set. Figure
2a,b shows the trees generated using the TMAP package,45 a
knock-down toolkit for compressing high-dimensional data
sets into two-dimensional connection trees. Trees shown in
Figure 2a,b are colored by the superclasses and our clustering
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types, respectively, and adjacent tree nodes can be considered
as the same type of reaction. This indicates that the main
characteristics of our clustering types are consistent with the
chemical domain knowledge, and the assignment of our
clustering types is more fine-grained compared with the
broader superclasses given by NameRxn (Table 1). Taking the
superclass 6 as an example, clustering types 1, 2, and 10
exclusively spans the subtree of this superclass.
We then sorted the clustering types by their size (i.e., the

amount of reaction they cover). In this sorting, larger
clustering type numbers correspond to smaller cluster sizes.
This relationship is illustrated in Figure 2c−e, where the purity
is negatively correlated with the cluster size, as expected. It is
necessary to evaluate the clusters with low purity and explore
the contribution of different superclasses to these clusters. For
the purpose of illustration, we have selected clustering type 67,
which consists of 47% superclass 1, 40% superclass 3, and 3%
superclass 2. Figure 2f displays a typical reaction from this
clustering type, where S1, S2, and S3 represent the superclasses
1−3 given by NameRxn, namely, heteroatom alkylation and
arylation, acylation and related process, and C−C bond
formation, respectively. Interestingly, the nucleophilic reaction
can be captured even if the reactions come from different
superclasses. In superclasses 1 and 2, the nucleophilic
substitution by secondary amine is reported, while the
Grignard compound is reported as the nucleophile in
superclass 3. More generally, the carbonyl group is identified
as a vital center in the aforementioned examples. This indicates
that our clustering types have the potential to detect and rectify
certain inconsistencies in classifications that arise from the
limitations of the expert-defined NameRxn superclasses.
In addition, we provide experimental evidence for the

reasonable chemical interpretation of our clustering through t-
SNE reduction.46 We have performed the t-SNE analysis on
the 2048-bit FCFP fingerprints of the reaction templates in the
USPTO-50K cleaned data set. Figure 3a−f display the clusters
of large, medium, and small sizes, respectively, in line with the
cluster classification shown in Figure 2. The reactions are
color-coded to represent our clustering types (Figure 3a,c,e)
and the NameRxn superclasses (Figure 3b,d,f) for comparison.
Figure 3a−d demonstrates that our clustering types provide a
more distinct low-dimensional distribution for clusters of large
or medium size compared with the NameRxn superclasses.
Figure 3g−l presents several noteworthy case studies to
provide evidence for the benefits of this distinct distribution:
(1) the reactions shown in Figure 3g−j are all grouped into

superclass 3 (i.e., “C−C bond formation”) according to the
purpose of the reaction. In contrast, our clustering system has
divided these reactions into separate clusters, which is in line
with the organic reaction mechanism as well as the
transformation of reaction sites. (2) The reactions shown in
Figure 3k,l are both about the acylation reaction between
amine and acid, but they are confusingly grouped into different
NameRxn superclasses (superclass 9 and superclass 2). It is
corrected by our clustering, as they are both grouped in
clustering type 4, which is similar to the refactoring of
superclass 1 in Figure 2f. Remarkably, despite the fact that the
SynCluster classification system is entirely derived in a data-
driven manner, there is a significant global-level consistency
between it and NameRxn, owing to the high purity of our
clustering types compared to the NameRxn superclasses (as
shown in Tables S2−S4). It is evident that SynCluster is
capable of rectifying some inconsistencies in the classification
made by NameRxn.
We have extended our analysis to the larger USPTO-MIT

data set (Figure S3) by applying TMAP-tree and t-SNE
reduction. This allows us to visualize whether the model can
still distinguish the reactions within a highly diversified and
large-scale database of chemical reactions. The same parameter
settings are used as those on the USPTO-50K data set, and
433 fine-grained clustering types are obtained. As shown in
Figure S3a−c, t-SNE visualization indicates that our clustering
effectively distinguishes the reactions in general, especially for
the cluster with the larger size. This distinction is further
supported by the TMAP tree (Figure S3d,e). It is also worth
noting that several subtrees in the TMAP (Figure S3f,g)
closely group unique clustering types, suggesting the potential
for our clustering strategy to be applied to large-scale
applications.
Clustering Type Classifier

The performance of the clustering type classification should be
taken into account prior to the exploration of the effect of the
fine-grained reaction types on the downstream synthesis tasks.
We have benchmarked several clustering type classifiers and
compared their performance, including the FNN with ECFP,
XGBoost model with the same fingerprint,53 the basic Message
Passing Neural Network12 (MPNN) model including or
excluding global attention,11 MPNN model with Attentive
FP passing meachanism54 or Weave predictor,55 and path-
augmented graph Transformer predictor.56 For all graph-based
models, we have utilized the default hyperparameters
recommended by DGL-Life.57 For FNN and XGBoost, we
have performed a grid search to meticulously ascertain the
hyperparameters, which can be found in the Supporting
Information Part 6.1. As shown in Table 2, for our reaction
type prediction, the FNN achieves the best statistical
performance with the average top-1 accuracy of 0.654 and
average macro F1 of 0.518. Besides, the best statistical
performance with an overall MCC of 0.605 and kappa score
of 0.606 states the best ability of the FNN model to deal with
imbalanced data among investigated models. XGBoost
performs slightly worse than the FNN, reaching the top-1
accuracy of 0.640 and an overall MCC of 0.602. On the
contrary, MPNN and Graph Transformer models fail to show
satisfying results, where low accuracy and low metrics of
imbalance are perceived. In conclusion, we have found
traditional fingerprints to yield superior performance compared
to several graph-based models for the specific task of reaction

Table 1. Distribution of USPTO-50K

NameRxn’s
superclass reaction type

percent of USPTO-
50K (%)

1 heteroatom alkylation and
arylation

30.3

2 acylation and related process 23.8
3 C−C bond formation 11.3
4 heterocycle formation 1.8
5 protections 1.3
6 deprotections 16.5
7 reductions 9.2
8 oxidations 1.6
9 functional group interconversion

(FGI)
3.7

10 functional group addition
(FGA)

0.5
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type prediction in our work. The high expressivity of graph-
based models is accompanied by the requirement for a large
amount of data, which may hinder their performance in our
task. The macro F1-score is unsatisfying in general, which may
be caused by the poor prediction of small clusters (as shown in
Figure S4a,b). Considering the highly unbalanced distribution
of the original USPTO-50K data set (both in superclass and
clustering types, Figure S4c), an unsatisfying macro F1-score is
a comprehensible phenomenon58 in multiclassification pre-
diction. Nevertheless, we have chosen the FNN model and
moved on to the next stage due to its highest top-k accuracy
and metrics of imbalance.
To check the chemical interpretability of our type predictor,

the integrated gradient based on the captum toolkits59 has

been leveraged to analyze the developed FNN model. A
Grignard reaction (Figure 4a) is randomly chosen from
clustering type 67 as an example for further analysis. Herein,
the fingerprints dimension’s largest five (positive impact on
ground-truth type prediction) and smallest five attribution
values (negative impact on ground-truth type prediction) are
calculated and shown in Figure 4b, where the bit dimensions
2461, 4903, 3506, 3759, and 5250 are calculated as the five
highest contributing bits for the ground truth clustering type,
which corresponds to the Grignard reaction center. The FNN
successfully captures this knowledge, which is highly consistent
with human experts’ cognition (as analyzed in Figure 2f). The
inspection of the reaction fingerprint bits with a positive
contribution explicates the complete reaction framework (Bit

Figure 2. Analysis of clustering results. Distribution of the ground truth superclasses given by NameRxn (a) and the clustering types (b) are
displayed in the TMAP tree. The cooperative region of superclass 6, corresponding to the clustering types 1, 2 and 10, is displayed individually for
comparison. The superclass composition in various clustering types numbered by their size are presented in (c−e), i.e., the larger the clustering type
number, the smaller the amount of reactions that the cluster covers. Clusters are classified into large (c, 1−11), medium (d, 31−41), and small (e,
61−71) sizes. (f) Typical reaction obtained from the clustering type 67. S1, S2, and S3 represent the superclass 1−3 given by NameRxn, i.e.,
heteroatom alkylation and arylation, acylation and related process, and C−C bond formation as listed in Table 1, respectively. All experiments are
carried out using FCFP fingerprint and the cutoff of 0.6 in Butina’s clustering.
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2461, Bit 3506, and Bit 3759 in Figure 4c) and the hydroxyl in
the tertiary alcohol (Bit 4903 and Bit 5250). When it comes to
the bits with a negative contribution (Figure 4d), structures
similar to the carbamate are found (Bit 1033, Bit 7209, and Bit
5371). In a sense, these negative bits correspond to yet another
active reaction center in which the combination of isocyanate

and primary alcohol could be applied. To obtain an in-depth
appreciation, we have randomly collected more instances in
which the positive bits have a significant correlation to the
reaction center (Figure S5).
The statistical measures related to the integrated gradients

are axiomatic methods that are not affected by any bias. Thus,

Figure 3. t-SNE visualization of 2048-bit FCFP fingerprints of the reaction templates on USPTO-50K cleaned data set, in the clusters with (a, b)
large, (c, d) medium, and (e, f) small sizes. Reactions are colored by (a, c, e) our clustering types, or by (b, d, f) the NameRxn superclasses.
Visualized reactions are listed as (g−l) for comparison: (g) Suzuki reaction, classified in superclass 3 (i.e., C−C bond formation) and clustering
type 8; (h) reductive coupling reaction of Alkynes and Aldehydes,73 classified in superclass 3 and clustering type 9; (i) Stille coupling reaction in
superclass 3 and clustering type 37; (j) a Knoevenagel condensation reaction in superclass 3 and clustering type 32; (k) amide bond formation
reaction in superclass 9 (i.e., FGI) and clustering type 4; (l) another amide bond formation reaction in superclass 2 (i.e., acylation and related
process) and clustering type 4.
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the coverage for top-1 or top-3 positive/negative fingerprint
bits by the reaction center is calculated (Tables S5 and S6).

When the reaction center highly overlaps top positive bits and
rarely overlaps top negative bits, the capability of our classifier
to capture the local information on the veritable reactive center
and overlook the interfering substructure could be verified.
Thus, we also computed the difference between the coverage
for active and negative fingerprint bits. The comparative
experimental results in Tables S5 and S6 reveal significant
coverage differences among most clustering models. Partic-
ularly, the selected parameter (FCFP fingerprint, Butina’s
cutoff of 0.6, and template’s radius of 1) achieves the utmost
difference of 0.427 in the top-1 assessment (Table S5).
Furthermore, the coverage difference between top-k (k = 1, 3,
5 or 10) positive and negative bits is displayed in Figure S6
according to individual fine-grained clustering types to measure
the bias of unbalanced data. It is apparent from this figure that
irregular profiles are obtained, which may indicate that clear
features are captured by our classifier even for highly
generalized types due to the existence of a large number of
different reactions (such as clustering types 1−10).
Taken together, these results suggest a high relevance

between the learning of the model and the real chemical
meaning. These findings provide strong support for the
conceptual premise that chemical concepts can be understood
by deep learning models.
Retrosynthesis Prediction

Built on top of the clustering type prediction, we applied our
SynCluster framework to the task of retrosynthesis prediction.

Table 2. Performance Comparison in Type Prediction of Seven Models (Average in 3 Times Independent Runs)

method top-1 acc top-3 acc top-5 acc top-10 acc Marco-F1 Kappa overall_Mcc

FNN 0.654 0.871 0.928 0.970 0.518 0.605 0.606
Xgboost 0.640 0.863 0.924 0.967 0.523 0.602 0.603
MPNN 0.577 0.745 0.888 0.944 0.360 0.553 0.554
MPNN+Attention 0.605 0.765 0.900 0.952 0.419 0.583 0.584
weave 0.522 0.691 0.865 0.939 0.298 0.493 0.494
AttentionFP 0.488 0.644 0.820 0.914 0.215 0.458 0.460
GraphTransformer 0.553 0.730 0.898 0.961 0.390 0.530 0.530

Figure 4. Visualization of FNN prediction results. (a) Grignard
reaction randomly selected from the clustering type 67 for further
analysis. (b) Largest 5 and smallest 5 attribution values of the
fingerprints dimension. “Importance” refers to integrated gradient
value. (c) Reaction fingerprint bits with a positive contribution to
prediction probability. The center atom, aromatic atom, and aliphatic
atom are colored blue, yellow, and gray, respectively. (d) Reaction
fingerprint bits with a negative contribution to prediction probability.

Table 3. Top-k Retrosynthesis Accuracy and Maxfrag Accuracy on the USPTO-50K Cleaned Dataset

top-1 acc top-3 acc top-5 acc top-10 acc

acc MFa acc MF acc MF Acc MF

Sequence-Based Model
MT 0.444 0.491 0.591 0.643 0.630 0.680 0.675 0.728
Retroformerbase

b 0.467 0.616 0.661 0.696
Retroformer+SynCluster 0.477 0.525 0.679 0.718 0.751 0.788 0.835 0.867
Retroformer+SynClusteraug

c 0.507 0.553 0.704 0.746 0.776 0.813 0.858d 0.890
MT+SynCluster 0.485 0.531 0.657 0.708 0.722 0.772 0.785 0.834
MT+SynClusteraug 0.536 0.576 0.708 0.753 0.782 0.823 0.853 0.891
MT+SynClustersuperclass

e 0.476 0.529 0.641 0.698 0.698 0.746 0.726 0.785
ATf 0.537 0.585 0.739 0.776 0.786 0.820 0.825 0.860
Graph2SMILESg 0.522 0.575 0.668 0.717 0.702 0.751 0.728 0.782
SCROP 0.445 0.490 0.606 0.649 0.651 0.695 0.680 0.728

Graph-Based Model
GraphRetro 0.553 0.608 0.703 0.737 0.743 0.770 0.775 0.798
LocalRetro 0.535 0.575 0.765 0.797 0.851 0.878 0.921 0.989
MEGAN 0.492 0.549 0.724 0.768 0.801 0.839 0.871 0.899

a“MF” refers to “Maxfrag accuracy”. bRetroformerbase refers to the nonaugmented edition.
cThe augmentation applied in Retroformer is dynamic

permutation. dBest results of top-k and Maxfrag accuracy are bolded. e“Superclass” represents using NameRxn superclasses to replace clustering
types in whole process. fIn the scheme of reproduction, the parameter settings are consistent with the original text (×5 M training augmentation
and 100× testing augmentation). gIn Graph2SMILES, Molecular graph guides translation model generation.
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We take advantage of top-k accuracy, Maxfrag accuracy,32 the
Tanimoto Similarity distance among the predictions, and the
Roundtrip accuracy,52 in order to thoroughly evaluate the
reactants generation. To give an ablation study on the fine-
grained reaction type, MT,17 and Retroformer21 are set as our
baseline. Here, the SynCluster framework is added to the
retrosynthesis task and denoted as “MT+SynCluster” or
“Retroformer+SynCluster” for comparison. Besides, the
following models are also taken into consideration: Local-
Retro,11 the SOTA template-based model; SCROP,30 a
SMILES correction vision of Molecular Transformer; Graph-
retro,14 a graph to graph translation model; MEGAN,15 a
sequential graph editing model; Graph2SMILES,31 a graph to
SMILES translation model without the need of data
augmentation; and AT,32 a SMILES to SMILES translation
model with data augmentation. The hyperparameters of “MT
+SynCluster” are given in the Supporting Information, Part 6.
As shown in Table 3, the SynCluster framework greatly

improves the performance of the baseline models, as is evident
from the improvements in both top-k and Maxfrag evaluation
metrics. Especially for the top-10 accuracy, our framework
outperforms the MT and Retroformer models by 11.0 and
13.9%, respectively. Under the same nonaugmented setting for
SMILES, Retroformer combined with SynCluster demon-
strates superior top-5 and top-10 accuracy compared to
Graph2SMILES, and convincingly surpasses SCROP. We
further incorporate the SMILES augmentation techniques
into the two baseline models and achieve outstanding
performance. When the MT model is combined with
SynCluster and trained with SMILES augmentation, namely,
“MT+SynClusteraug”, the top-1 and top-5 accuracy reaches
53.6 and 78.2%, respectively, which would be as competitive as
the state-of-the-art sequence-based model AT. Furthermore,
the top 10 accuracy achieves 85.3%, surpassing the perform-
ance of the AT model. These results also highlight the
competitiveness of our model compared to the graph-based
model Graphretro, with better top-k accuracy in top-3, top-5,
and top-10 evaluations. Another significant finding to emerge
from the analysis is the superiority of the clustering type over
NameRxn’s superclass for the higher top-k accuracy when
combined with MT. When using superclass as a substitute and
completing the entire retrosynthetic prediction pipeline, the
top-10 accuracy suffers a dramatic drop of 5.9%. Although
LocalRetro is still leading on the board, it is noteworthy that
the reactant generation of our model is constructed on the
basis of translation and template-free formulation, which are
frequently regarded as more efficient ways to generate unseen
compounds without additional expert knowledge.13,14,24

Furthermore, our strategies are independent of any deploy-
ment model and present a promising technique for all single-
step models, especially considering consistent improvement
with either MT or Retroformer as the backbone model.
We further adopted the Roundtrip accuracy to evaluate the

validity of the predicted reactants. Roundtrip accuracy is
calculated by checking if it is the predicted product, which is
predicted by the forward model using MT, and can match the
original product. Here, we utilized a forward Molecular
Transformer model trained on the USPTO-50K data set.17

Consistent with the above results, our framework has elevated
MT and Retroformer noticeably in top-k Roundtrip accuracy.
After incorporating the SMILES augmentation technique for
training and the SynCluster framework, MT outperforms all
competitive methods listed in Table 4 on top-1 Roundtrip

accuracy (79.6%), top-3 Roundtrip accuracy (69.4%), and top-
5 Roundtrip accuracy (63.9%), which indicate the promising
improvement in chemical validity of sequence-based method
using our procedure. The single striking observation to emerge
from the comparison is that MEGAN’s top-1, top-3, and top-
10 Roundtrip accuracies lag behind our best model. This is an
impressive result considering that MEGAN is highly depend-
ent on the predefined action space and our SynCluster
framework is completely data-driven and unsupervised.
In terms of the diversity measure, we calculated the

Tanimoto similarity distance distribution for four types of
fingerprints among the top 10 predictions (Figure 5).
According to the higher average distance, our strategy has
improved upon the chemical diversity of the predicted
reactants for both MT and Retroformer. A surprising aspect
of the result is the different effects on the diversity by SMILES
augmentation. The average similarity distance in the top-10
reaction pairs is obviously smaller, while MT combines
SynCluster and augmentation. In contrast, such a phenomenon
is less obvious using Retroformer. The fundamental aspects of
augmentation in Retroformer are significantly different from
those in MT (as described in Method). This combination of
findings provides more information about optimizing the
augmentation strategy, which is worthy of further study.
To investigate the chemical validity and interpretability of

“MT+SynCluster,” we have inspected the self-attention
weights of SMILES tokens between input and output. When
comparing the “MT+SynCluster” model with the MT model,
the comprehensive impact of clustering type is observed in
Figures 6, S7, and S8. While adding the SynCluster framework,
MT has made a decision consistent with ground truth due to
the most significant concern between clustering type and
output token. For example, our “MT+SynCluster” model has
predicted the accurate Hantzsch thiazole synthesis in which the
clustering is associated with the bulk of outputting tokens
(Figure 6a). The MT model has reported an erroneous
reaction and simply copies the input SMILES in some areas
(Figure 6b).
Turning now to the experimental evidence on how

augmentation influences the focus of the clustering type.
Figure 7 measures the distribution of top attention weight
between the clustering type and outputting tokens. Under the
circumstance that MT merely attaches SynCluster framework,
the average top attention is much higher, which illustrates an
explicit positive correlation between the type-token and
outputting tokens. On the contrary, the additional augmenta-
tion results in a lower average top weight, which indicates that
it is not conducive to capturing the information of the

Table 4. Top-k Retrosynthesis Roundtrip Accuracy on the
USPTO-50K Cleaned Dataset

top-k acc

k = 1 k = 3 k = 5 k = 10

MT 0.756 0.554 0.450 0.336
MT+SynCluster 0.776 0.607 0.542 0.449
MT+SynClusteraug 0.796 0.694 0.639 0.534
Retroformerbase 0.729 0.655 0.592 0.486
Retroformerbase+SynCluster 0.774 0.691 0.638 0.560
Retroformerbase+SynClusteraug 0.775 0.682 0.628 0.553
Graph2SMILES 0.755 0.551 0.447 0.323
MEGAN 0.751 0.686 0.639 0.553

Best results of Roundtrip accuracy are in bold.
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clustering type when commonly used permutation is leveraged.
Besides, this extra augmentation would cause more repetitions
while directly embedding top-10 clustering types and
assembling top-1 results, as displayed in Figure S9. More
examples are shown in Figure S10 for a multifaceted
understanding of how models benefit from the embedding of
clustering types. For instance, the top-3 high probability
clustering types of targeting molecule in Figure S10b are
embedded and related to the generations of Wittig reaction,
Substitution Nucleophilic reaction, and reduction reaction of
amide respectively in the “MT+Syncluster” model, which
shows that the information extracted from the clustering type
may represent a crucial structure of precursors. In contrast, the
model would not capture the information of the third type and
generate duplicate reactants while adding augmentation. These
findings raise intriguing questions regarding the reasoning
application of augmentation for the implication that it may not
make a positive contribution to all indicators (consistent with
the results in diversity, Figure 5).
Finally, we also demonstrate predictions for difficult cases.

Reactions involving multiple reactants (more than two

reactants) are challenging to predict due to the multiple sites
of disconnection and rarity in the data set. However, our “MT
+SynCluster” model has predicted a cohesive chemical space
for instances involving multiple reactants, thereby producing
the highest top-1 accuracy (Figure S11). The above results
elucidate again that our model has acquired the capability to
perceive obvious characteristics of reactions and achieve
intricate disconnection.
Reference-Pathway Reproductivity and Multistep
Application

The synthetic examples in real-world situations are further
investigated to highlight the reliability of our retrosyn-

thesis procedure. To be more specific, we selected one testing
molecule and three FDA-approved drug molecules for
evaluation (Figure 8). All involved molecules are not included
in the USPTO50K training data set. In detail, we have checked
whether the reference route’s intermediates and building
blocks would appear in our single-step model’s top-10 output.
To give a thorough analysis, the ordering of every compound
in the LocalRetro model, our “MT+SynCluster”, and AT
model are compared. It is worth noting that “MT+SynCluster”

Figure 5. Distribution of Tanimoto similarity distance for six models using ECFP, AP, TT, and FCFP fingerprints.
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dominates less time consumption for inference than “MT
+SynCluster_aug” and AT. As the experiments were unified as
the batch size of 64 and inputting SMILES numbers of 100,

the total time consumption for the “MT+SynCluster”, “MT
+SynCluster_aug”, and AT models would be 32 s, 316 s, and
656 s, respectively (Figure S12). Thus, we only take “MT

Figure 6. Distribution of attention weight of the input-output pairs, a case study of retrosynthesis prediction using the MT model with or without
SynCluster. (a) Attention weight of the input-output pair (c, d) using the “MT+SynCluster” model. “Type” indicates the predicted corresponding
cluster label. “Smi” refers to the tokens of canonical SMILES. (b) Attention weight of the input-output pair (c, e) using the MT model.

Figure 7. Distribution of top attention weight between the clustering type and outputting SMILES. (a−d), respectively, represent the distribution
of top-1, 3, 5, and 10 biggest weights. “No_aug” refers to the “MT+SynCluster” model, and “Aug” refers to “MT+SynClusteraug” model.
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+SynCluster” into account in the repetition of the reference’s
route and hierarchical search but forsake any form of
augmentation.
These four examples provided in Figure 8 showcase the

synthesis of R-(1-azidoethyl)benzene (Figure 8a), Febuxo-
stat60 (Figure 8b), Rufinamide61 (Figure 8c), Lenalidomide62

(Figure 8d). The results clearly demonstrate the versatility and
effectiveness of our SynCluster in recovering real-world
retrosynthetic pathways. Specifically, our method demonstrates
its capability in handling reactions involving stereochemistry,
as evidenced by the paradigmatic process of nucleophilic
substitution depicted in Figure 8a. In addition, SynCluster
shows the ability to form C−C bonds through Suzuki coupling,
as exhibited in Figure 8b. The successful prediction of the
disconnection of Triazole derivatives through a Huisgen
reaction is presented in Figure 8c. Furthermore, Figure 8d
demonstrates a robust preparation method for the preparation
of halogenated hydrocarbons.
The example that deserves deep inspection is the synthesis

of Febuxostat, an antigout drug to inhibit xanthine oxidase60

(Figure 8b). Our framework has replicated the core strategy of
the literature63−65 and makes appropriate improvements in the
selection of the Suzuki reaction. The first reported step is to
complete the hydrolysis of ester, which is retrieved by our top-
1 prediction. Then, the following cross-coupling of the thiazole
and benzene rings is the core of the entire route. Here, our

framework precisely predicts two candidate Suzuki Cross-
coupling processes. In detail, a BPin ester and boronic acid are
reported in the top-4 and top-8 output, respectively.
Significantly, the preference for aryl boronic esters is proven
to contribute to the improvement of yield. It has been reported
that reductive dehalogenation is the major side reaction of this
step, and the introduction of aryl boronic esters reduces
byproduct generation.66 Previous work has demonstrated that
the structure of the boronic ester companies with higher yield
(75%) during the synthesis of Febuxostat,64 while the yield
decreases to 65.4%63 and 63%65 in the application of boronic
acid. To state the performance on the selection of boronic
esters or boronic acid is not caused by popularity trends, the
distribution of Boronic Esters (or Boronic acid) in the training
set, testing set, and top output of prediction is searched further
for additional illustration in Figure S13. Boronic acid appears
more frequently in training sets than BPin ester, which is
discrepant from our selection. Another interesting observation
that emerged from the figure was the discriminative trend
between our top output and training set. Actually, our output
demonstrates a distribution of boronic esters that closely aligns
with the testing set, indicating that the predictions are not
biased toward what the model has observed in the training set.
If we now turn our attention to the comparison with the AT

and LocalRetro models, we find that “MT+SynCluster” has a
higher coverage of intermediate candidates, indicating that our

Figure 8. Multistep retrosynthesis pathway reproduction for (a) (R)-(1-azidoethyl)benzene, (b) Febuxostat, used clinically as an antigout drug for
its orally effective inhibition of xanthine oxidase. (c) Rufinamide, used in adjuvant therapy for epilepsy Lennox-Gastaut syndrome (LGS). (d)
Lenalidomide, an immunomodulator that can be used as anticancer drug. The dotted line and arrow represent the unsuccessfully reproduced step
in the prediction. The red, blue, and green fonts in the figure represent the order of each step in the “MT+SynCluster,” LocalRetro, and AT models,
respectively.
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two-stage strategy bears the potential to meet the real route
node compared with the SOTA model. Although the AT
model has higher or commensurate orders of candidates in
some cases (cf. Figure 8a,c), it would be denoted that
retrieving is considerably more significant because the value
function mainly determines the actual orders in the multistep
search. In the synthesis of Febuxostat (as shown in Figure 8b),
the AT model fails to replicate the core strategy of Suzuki
cross-coupling. Likewise, LocalRetro exhibits a similar
performance in most steps but fails to show a satisfying result
where no coincidental prediction is perceived in the first case.
As the potential to reconstruct the reference-based pathway

is particularly high, it is reasonable to apply robust search
algorithms to recursively generate candidate pathways. Thus,
we have examined the potential of the SynCluster framework
in multistep retrosynthesis combined with the powerful search
algorithm − Retro*.67 In this experiment, we have utilized the
benchmark testing data set from Chen et al.,67 composed of
190 routes along with their corresponding target molecules.
Our evaluation criteria include both the successful rate and
planning quality, enabling a comprehensive comparison among
AT, LocalRetro, and “MT+SynCluster” in combination with
Retro*. As shown in Table S7, our model is able to achieve an
impressive 27.9% success rate and an average route length of
3.2, surpassing AT in all aspects. Moreover, even without
relying on the template library for generating candidate
reactants, our SynCluster framework is able to achieve success
rates and route lengths comparable to those of LocalRetro,
providing evidence of its substantial diversity and rationality.
Finally, as part of the case study, we have taken three FDA-

approved or withdrawal drugs as our target molecules and
conducted the multistep application. The generated synthetic
routes of LocalRetro, AT, and the “MT+SynCluster” model
combined with Retro* are described and analyzed in
Supporting Information Part 7. All results above further
substantiate the remarkable potential of our framework in the
realm of generalization, especially within the context of
multistep synthesis.
Multitask Expansion

We have further evaluated the generalizability of the “MT
+SynCluster” model to multitasks besides retrosynthesis. Here,
we have applied our model to a forward synthesis problem.
MT was set as the baseline. As shown in Table 5, our model
achieves higher top-k accuracy, and the most significant
difference is 3.8% on top-10. It indicates that our two-stage
strategy bears the potential to deal with the single-step
prediction problem of both retrosynthesis and forward
synthesis.
In addition to the forward synthesis, another practical

concern is the reagent prediction, where we have tailored our
“MT+SynCluster” model to approach this problem. The
learning scheme of the reagent prediction task is the same as
the forward synthesis task. Being subject to the flexibility of
reagent applications, the mapping between the reaction and

the reagents becomes somehow indefinite for the model to
capture. Such difficulty is confirmed by the Maxfrag accuracy,
in which both the MT’s (baseline) and “MT+SynCluster”
model’s top-1 accuracy is below 0.3 (Table 6), while the latter

still achieves a much higher top-k accuracy. Detailed case
studies are presented in Figure S14. The “MT+SynCluster”
model matches the ground truth better than the baseline,
revealing its potential for application in integrated synthesis
planning involved conditions. It should be pointed out that the
findings would be more persuasive if real-world validation had
been performed because reactions are known to have a
plethora of possible conditions. The metric (top-k accuracy) of
these results is subject to encounter greater challenges than a
retrosynthesis prediction while mismatching of MT does not
mean the completely wrong prediction. As an investigation of
methodology, we concurrently look forward to the broad
application of SynCluster in reality.

■ CONCLUSIONS
This study introduces an innovative two-stage synthesis
prediction model that combines unsupervised clustering clues
with two distinct baseline models, resulting in significant
improvements in retrosynthesis, forward synthesis prediction,
and reagent prediction. We validated that the clustering type
aligns with chemical domain knowledge, while the classifier can
effectively capture the relevance of substructures to each
clustering type. Moreover, we successfully combined robust
search algorithms with SynCluster to recursively generate short
and applicable pathways, providing further evidence of the
remarkable potential of our model for multistep retrosynthesis
prediction.
Our research makes a significant contribution by dividing

the end-to-end model, which has limited insights into core
organic mechanisms, into two more accessible models. In
combination with earlier studies9,68 proposing a novel type
generation model, this approach demonstrates the generation
of data-driven, unsupervised, and fine-grained clustering types,
which contribute to the comprehension of how AI models
extract chemical meaning from data. SynCluster, which serves
as a generally compatible framework, can be integrated with
downstream models for various tasks and consistently delivers
accurate, diverse, and interpretable results. Further inves-
tigation into the potential impact of the unsupervised types,
which play a crucial role in interpretation, would be highly
beneficial.

Table 5. Top-k Forward Synthesis Accuracy on the USPTO-50K Cleaned Dataset through 3 Times Independent Runs

top-k acc

k = 1 k = 3 k = 5 k = 10

MT 0.817 ± 0.001 0.888 ± 0.002 0.902 ± 0.002 0.911 ± 0.002
MT+SynCluster 0.825a ± 0.001 0.917 ± 0.002 0.940 ± 0.000 0.949 ± 0.000

aBest results of top-k accuracy are in bold.

Table 6. MaxFrag Accuracy of Transformer-Based Reagent
Prediction Model

top-1 top-3 top-5 top-10

MT 0.150 0.253 0.306 0.401
MT+SynCluster 0.276a 0.400 0.457 0.515

aBest results of top-k MaxFrag accuracy are in bold.
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This research also highlights several issues, primarily related
to the lack of clean data. For example, since the model is
unaware of the asymmetric reaction conditions, the repre-
sentation of regio- and stereoselectivity needs to be inquired
further.69 Another uncontrolled factor is the incompleteness of
many of the collected reactions. Predicting the leaving group
(such as the type of halogen) is complicated for the model to
do without byproducts.70 Additionally, mixing high-quality and
low-quality data (with incomplete annotations for all reactions
in the data set) introduces confusion, making these findings
less applicable to real-world settings. Therefore, it is crucial to
make additional efforts to standardize and enhance the
accessibility of chemical reaction data records.
In terms of the model level, this study aligns with earlier

research that suggests that the template-free generation model
is slightly inferior to the template-based model in terms of top-
k accuracy.4 However, as a critical technology for reproducing
human domain knowledge and driving reactions, the template-
free model is gaining more attention.22 Our standard
procedure offers a new viewpoint on the template-free
model, but further research is necessary to fully comprehend
the implications of fine-grained reaction types in AI models.
Furthermore, this study has not evaluated the use of different
reaction representations for clustering, and the issue of
clustering and reaction representation is fascinating and
would benefit from further exploration within the context of
various proposed methods.68,71 Finally, due to the weak
representation of SMILES, the occurrence of disordering
(error SMILES) remains a vital issue. Nevertheless, we aim to
provide a general technique for deep learning in chemical
reactions, and we believe that it can be even more promising if
the aforementioned limitations are addressed. Our future work
will explore other applications of this framework, such as
reaction yield prediction, to further demonstrate its general-
izability. In conclusion, the SynCluster framework proposed in
this study offers a fresh perspective for reasoning about
synthesis prediction and has significant implications for our
understanding of how models draw inspiration from chemical
knowledge.

■ ASSOCIATED CONTENT

Data Availability Statement

USPTO-50K data set is obtained from the previous study by
Dai et al.6 (https://github.com/Hanjun-Dai/GLN). USPTO-
500-MT data set is released in t5chem package25 (https://
github.com/HelloJocelynLu/t5chem). USPTO-MIT data set
is proposed by Jin et al.29 (https://github.com/wengong-jin/
nips17-rexgen). The testing data set used for multistep
synthesis comes from Chen et al.67 (https://github.com/
binghong-ml/retro_star).
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