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A B S T R A C T

Background: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for
maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia.
Methods: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians)
<21 years old hospitalized with COVID-19-related illness admitted between 15 March 2020 and 31 December
2020.We compared prevalence of assignedMIS-C labels and clinical features among clusters, followed by recursive
feature elimination to identify characteristics of potentially misclassifiedMIS-C-labeled patients.
Findings: Of 94 clinical features tested, 46 were retained for clustering. Cluster 1 patients (N = 498; 92%
labeled MIS-C) were mostly previously healthy (71%), with mean age 7¢2§ 0¢4 years, predominant cardiovas-
cular (77%) and/or mucocutaneous (82%) involvement, high inflammatory biomarkers, and mostly SARS-CoV-
2 PCR negative (60%). Cluster 2 patients (N = 445; 27% labeled MIS-C) frequently had pre-existing conditions
(79%, with 39% respiratory), were similarly 7¢4 § 2¢1 years old, and commonly had chest radiograph infil-
trates (79%) and positive PCR testing (90%). Cluster 3 patients (N = 583; 19% labeled MIS-C) were younger
(2¢8 § 2¢0 y), PCR positive (86%), with less inflammation. Radiographic findings of pulmonary infiltrates and
positive SARS-CoV-2 PCR accurately distinguished cluster 2 MIS-C labeled patients from cluster 1 patients.
Interpretation: Using a data driven, unsupervised approach, we identified features that cluster patients into a
group with high likelihood of having MIS-C. Other features identified a cluster of patients more likely to have
acute severe COVID-19 pulmonary disease, and patients in this cluster labeled by clinicians as MIS-C may be
misclassified. These data driven phenotypes may help refine the diagnosis of MIS-C.
Funding: This work was funded by the US Centers for Disease Control and Prevention (75D30120C07725) and
National Institutes of Health (K12HD047349 and R21HD095228).
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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1. Introduction

In April 2020, a severe illness in children and adolescents temporally
associated with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection, with features of Kawasaki disease [1�3] (KD) or
cardiovascular shock, was reported [4]. Criteria for this new illness
[5�9]called multisystem inflammatory syndrome in children (MIS-C)
by the US Centers for Disease Control and Prevention (CDC) and pediat-
ric inflammatory multisystem syndrome temporally associated with
SARS-CoV-2 (PIMS-TS) in Europe and the United Kingdom [10,11]were
published as online health alerts [12,13]. CDC criteria for MIS-C include
hospitalization, fever, elevated laboratory markers of inflammation,
involvement of at least two organ systems, and evidence of exposure to
SARS-CoV-2 [12]. These criteria, based on limited data from early case
series, were rapidly published for public health tracking [1,4]. With
incomplete understanding of disease pathophysiology and its temporal
course, MIS-C criteria were necessarily broad [14] and likely overlap
with those of severe coronavirus disease 2019 (COVID-19), which is
increasingly reported in young individuals [15�18]. Acute respiratory
distress syndrome (ARDS), common in critically ill patients with COVID-
19,[17] is often associated with hyperinflammation [19] and multiorgan
dysfunction with features of septic shock, similar to MIS-C. Some
authors have recently suggested framing these syndromes along a con-
tinuum of disease that includes Acute COVID-19 Cardiovascular Syn-
drome in adults, in whom the cardiovascular phenotype can present
contemporaneously with pneumonia.[20]
We sought to discover distinct subphenotypes, including MIS-C,
within a cohort of patients with COVID-19-related illness using unsuper-
vised (i.e., not based on clinician-assigned labels of MIS-C), data-driven
methods. Our hypothesis was that a machine learning approach would
differentiate patients with MIS-C from severe acute COVID-19 and milder
disease. We also hypothesized that clinician-assigned labels of MIS-C
would spanmultiple subphenotypes, demonstrating the heterogeneity of
this syndromic definition. Finally, we aimed to identify specific features
that differentiate MIS-C from severe COVID-19 respiratory illness.
2. Methods

2.1. Design and cohort

Data on children and adolescents hospitalized with COVID-19-
related symptoms from the Overcoming COVID-19 National Public
Health Surveillance Registry [5] were analyzed using a machine-
learning, unsupervised clustering approach. Data were abstracted by
trained research staff on patients admitted between 15 March 2020
and 31 December 2020. Inclusion criteria were: 1) hospitalization
with symptoms related to COVID-19; 2) age <21 years; 3) positive
SARS-CoV-2 test during illness (reverse transcriptase polymerase
chain reaction (RT-PCR) or antibody) or, if MIS-C, exposure to a per-
son with COVID-19. The study was conducted in accordance with the
Strengthening the Reporting of Observational Studies in Epidemiol-
ogy (STROBE) guidelines and a STROBE checklist is included with the

http://creativecommons.org/licenses/by-nc-nd/4.0/


Research in context

Evidence before this study

Consensus criteria designed for disease surveillance for multi-
system inflammatory syndrome in children (MIS-C) empha-
sized sensitivity over specificity and encompass some patients
with acute COVID-19 multisystem involvement. We performed
a search in PubMed on 9 April 2021 using the terms “multisys-
tem inflammatory syndrome in children” or “pediatric multi-
system inflammatory syndrome” or “pediatric inflammatory
multisystem syndrome.” Of 58 case series or cohort studies
with �20 patients meeting criteria for MIS-C (only six included
�100 patients), two studies applied an unbiased data-driven
approach to clinical features to refine the phenotype: one
focused solely on biomarkers; the other included only patients
diagnosed with MIS-C and did not compare them to non-MIS-
C-diagnosed COVID-19 patients.

Added value of this study

We used an unbiased, unsupervised clustering analysis to
group 1526 patients hospitalized with COVID-19-related com-
plications, including 684 labeled MIS-C, into subphenotypes
with distinct clinical and biological profiles and identified three
distinct subphenotypes: 1) hyperinflamed patients who were
SARS-CoV-2 antibody positive and RT-PCR negative, had cardio-
vascular involvement and/or Kawasaki-like features, and were
often critically ill requiring vasoactive infusions; 2). a respira-
tory cluster, 90% of whom were SARS-CoV-2 RT-PCR positive,
79% of whom had pulmonary infiltrates, and 36% of whom
required mechanical ventilation with the majority of patients
having underlying health conditions; and 3) patients who had a
relatively mild course of illness and rarely required critical care.
While 92% of patients in the first cluster were clinically labeled
as having MIS-C, nearly 30% of the patients in the respiratory
cluster were labeled as having MIS-C and were treated with
both antiviral and immunomodulatory therapies.

Implications of all the available evidence

These findings suggest there is a prototypical MIS-C phenotype
that includes severely ill, hyperinflamed patients with cardio-
vascular involvement and/or Kawasaki disease-like features.
Certain laboratory, clinical, and demographic features are help-
ful in classifying patients as MIS-C vs. acute COVID-19. The sub-
group of critically ill, SARS-CoV-2 RT-PCR positive patients with
pulmonary infiltrates and severe cardiovascular involvement
may be a distinct phenotype from prototypical MIS-C patients
meriting a different therapeutic approach.
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manuscript (see Supplementary) [21]. The registry was determined
by the institutional review board at Boston Children’s Hospital to
meet the requirement of public health surveillance with waiver of
informed consent and conducted consistent with applicable federal
law and CDC policy.

2.2. Variable definitions and data processing

Positive anti-SARS-CoV-2 antibody results were defined by indi-
vidual laboratories’ criteria. Specific medication and drug classes
included in the analysis are outlined in the appendix (pp. 6�7).
Patients were labeled as having MIS-C by clinician investigators at
each site, with secondary confirmation that each patient met CDC cri-
teria for MIS-C by registry principal investigators (MMP, AGR) [5]. All
variables with repeated evaluation during a patient’s hospitalization
were summarized using the worst (minimum or maximum) value
(appendix, pp. 89). Additional variable definitions are provided in the
appendix (pp. 6,7).

2.3. Unsupervised clustering

Our clustering approach identifies patterns in data that minimize
separation within clusters and maximize separation between clus-
ters, without reliance on a predetermined outcome variable to train
the algorithm (appendix, p. 11). We did not use clinician-assigned
MIS-C labels to train the clustering algorithm. This method avoids
investigator biases that may influence traditional classification meth-
ods, such as logistic regression, which use positively and negatively
labeled patients to train models.

Initial inputs to the clustering algorithm were 94 variables
(appendix, pp. 8,9). We did not include anti-SARS-CoV-2 serology as
an input variable because it was not measured in the majority (61%)
of patients who had otherwise complete data and because anti-SARS-
CoV-2 antibody testing was not broadly available early in the registry
period. Troponin was not included due to assay variability across clin-
ical site laboratories [22]. Whether various biomarkers were mea-
sured for each patient was at the discretion of the treating clinicians.
Therefore, when laboratory values were unmeasured (“missing”),
this missingness was not at random, and thus indicator variables for
whether each laboratory value was measured were included in the
model.

We used all candidate variables as initial inputs to a partitioning
around medoids (PAM) clustering algorithm. An initial cluster assign-
ment was recorded for each patient. Backwards selection using a ran-
dom forest classifier with cluster as the target class was used to
determine the optimal number of features needed for clustering. We
then reapplied the clustering algorithm using only the selected fea-
tures to assign final cluster membership to each patient. Details
of data preparation, variable selection, and clustering are in the
appendix (p. 4).

2.4. Cluster evaluation

Bootstrapping with 1000 clustering replications was used to
determine the precision around the number and percent of patients
in each cluster with an MIS-C label and with other clinical features.
Given the exploratory nature of this analysis, multiple comparisons,
and challenges in inference testing with variables used for clustering
[23], we report the spread around point estimates among the 1000
replications rather than p-values for statistical tests. Cluster stability
was assessed by counting the proportion of times a pair of patients
clustered together divided by the number of times the pair of patients
was selected in a bootstrap resample. Ideal clustering should result in
each pair of patients always or never clustering together (appendix,
p. 4).

To evaluate the relative importance of cluster assignment and
MIS-C labels, we fit univariable and multivariable logistic regression
models using cluster membership and MIS-C diagnosis as indepen-
dent variables and a composite critical illness outcome as the depen-
dent variable. Critical illness was defined as at least one of the
following: (1) death; (2) extracorporeal membrane oxygenation
(ECMO); (3) vasoactive infusions; (4) invasive or noninvasive
mechanical ventilation; or (5) new initiation of dialysis. We used C-
statistics to determine model discrimination and applied three meth-
ods to evaluate which variable most contributed to models’ overall
discrimination. First, we compared p-values obtained from likelihood
ratio tests comparing the multivariable model to each univariable
model with only cluster or MIS-C as independent variables. Second,
we compared C-statistics between univariable models. Finally, we
used dominance analysis [24], with Nagelkerke’s coefficient of



Table 1
Demographic and baseline clinical characteristics of the study cohort. All data are
shown as N (%).

Variable Overall MIS-C labeled Not MIS-C labeled
N 1526 684 842

Sex (male) 840 (55) 398 (58) 442 (52)
Age (years)
0 � <1 242 (16) 38 (6) 204 (24)
1�5 332 (22) 196 (29) 136 (16)
6�12 428 (28) 277 (40) 151 (18)
13�21 521 (34) 172 (25) 349 (41)
Missing/unknown 3 (0) 1 (0) 2 (0)
Race/Ethnicity
White, non-Hispanic 278 (18) 109 (16) 169 (20)
Black, non-Hispanic 408 (27) 213 (31) 195 (23)
Hispanic or Latino 570 (37) 226 (33) 344 (41)
Other, non-Hispanic 100 (7) 39 (6) 61 (7)
Unknown 170 (11) 97 (14) 73 (9)
Insurance
Public 1018 (67) 417 (61) 601 (71)
Self-pay 56 (4) 30 (4) 26 (3)
Private 354 (23) 188 (27) 166 (20)
Other or Unknown 98 (6) 49 (7) 49 (6)
At least one underlying

condition*
737 (48) 221 (32) 516 (61)

Respiratory 302 (20) 90 (13) 212 (25)
Cardiovascular 102 (7) 23 (3) 79 (9)
Neurological/

Neuromuscular
171 (11) 35 (5) 136 (16)

Oncologic 55 (4) 10 (1) 45 (5)
Immunosuppressed 40 (3) 4 (1) 36 (4)
Rheumatologic/

Autoimmune
24 (2) 7 (1) 17 (2)

Hematologic 87 (6) 13 (2) 74 (9)
Renal or Urologic 64 (4) 10 (1) 54 (6)
Gastrointestinal/Hepatic 155 (10) 27 (4) 128 (15)
Endocrine 118 (8) 18 (3) 100 (12)
Genetic/Metabolic (exclud-

ing obesity)
63 (4) 12 (2) 51 (6)

Trisomy 21 13 (1) 2 (0) 11 (1)

* Underlying conditions are not mutually exclusive.
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determination as the measure of fit [25], to determine variable
importance. Furthermore, we verified these results by using recursive
feature elimination to determine feature importance using a random
forest classifier (appendix, p. 4) with critical illness as the target class
and MIS-C label and/or cluster membership as the predictors.

2.5. Features distinguishing MIS-C and severe COVID-19 respiratory
illness

To identify features distinguishing patients closest to the decision
boundary between MIS-C and no MIS-C labels and between clusters
1 and 2, we selected patients whose MIS-C label diverged from the
majority label for the cluster in > 80% of bootstrap replications. That
is, we identified patients who were not labeled as having MIS-C but
consistently clustered with cluster 1 (N = 26) and patients labeled as
having MIS-C who consistently clustered with cluster 2 (N = 82). We
focus on these patients because they represent the patients that may
be most difficult to distinguish clinically whether their disease repre-
sents MIS-C or hyperinflammation in the setting of acute COVID-19
disease. We identified key differentiating variables between these
groups using backwards selection (appendix, p. 4).

2.6. Role of the funding source

The CDC participated in design and conduct of the registry; collec-
tion, management, and interpretation of data; preparation, review,
and approval of the manuscript; and the decision to submit the man-
uscript for publication.

3. Results

As of 4 January 2021, data abstraction was completed for 1526
patients from 62 US hospitals included in the Overcoming COVID-19
registry. Of 1526 included patients, 684 (45%) were labeled by clini-
cian investigators as having MIS-C (Table 1). Overall, 1097 (72%)
tested positive by RT-PCR for SARS-CoV-2, including 327 (48%) of 684
labeled MIS-C.

3.1. Identification of three clusters

A model with three clusters was optimal (appendix, p. 12) in 654
(65%) of 1000 bootstrap replications. Clusters appeared to be stable
(appendix, p. 13). Among 1526 patients, there were mean (95% confi-
dence interval [CI]) 498 (447�558) patients in cluster 1, 445
(353�667) in cluster 2, and 583 (381�667) in cluster 3 (appendix, p.
10). Feature selection yielded a model with 60 variables, including 33
clinical features and 13 biomarkers, as well as 14 indicator variables
(appendix, p. 14). The variables with the strongest contribution to
cluster assignment included myocarditis, lower respiratory tract
infection on presentation, and treatment with supplemental oxygen
or mechanical ventilation (appendix, p. 15). The selected variables
accurately classified patients to clusters (90% accuracy using 5-fold
cross-validation).

Among 684 patients labeled as having MIS-C, mean (percent §
standard deviation) 456 (67% § 3%) were in cluster 1, 118 (17% § 3%)
were in cluster 2, and 109 (16% § 3%) were in cluster 3 (Fig. 1A). Most
of the patients (mean 456 of 498 [92%§ 2%]) in cluster 1 were labeled
as having MIS-C (Fig. 1B).

3.2. Patient characteristics by cluster

There was notable variability in demographics, signs, and symp-
toms among the three clusters (Fig. 2).

Demographics: Patients in clusters 1 and 2 were older (mean
7¢2 § 0¢4 y and 7¢4 § 2¢1 y, respectively) compared with those in
cluster 3 (2¢8 § 2¢0 y). Mean BMI in cluster 2 (24¢3 § 2¢1) was higher
than in clusters 1 (20¢5 § 0¢45) and 3 (19¢9 § 1¢9). Most patients
(mean 75% § 3%) in cluster 1 were previously healthy, whereas 79%
§ 15% of patients in cluster 2 and 49% § 15% in cluster 3 had at least
one underlying medical condition (appendix, p. 10).

Biomarkers and SARS-CoV-2 testing: More patients in clusters 2
(90% § 4%) and 3 (86% § 3%) had positive RT-PCR testing for SARS-
CoV-2 than patients in cluster 1 (40% § 3%). More patients in cluster
1 (81% § 2% vs. 19% § 3% in cluster 2 and 19% § 2¢9% in cluster 3) had
positive testing for SARS-CoV-2 antibodies (Fig. 3A). This pattern of
differences persisted when grouping patients in each cluster by
whether they were labeled as having MIS-C, with 75% § 10% of MIS-
C-labeled patients in cluster 2 having positive RT-PCR results versus
only 40% § 2% of MIS-C-labeled patients in cluster 1 (appendix, p.
16). Compared with clusters 2 and 3, patients in cluster 1 had higher
inflammatory marker levels, including white blood cell (WBC) count,
neutrophil to lymphocyte ratio, C-reactive protein (CRP), erythrocyte
sedimentation rate (ESR) and fibrinogen, and higher D-dimers
(Fig. 3B). Cluster 1 patients also had higher B-type natriuretic peptide
(BNP) levels. These biomarkers were higher in MIS-C-labeled patients
compared with those not labeled as having MIS-C in all clusters,
although levels amongMIS-C labeled patients differed across clusters,
particularly for WBC count, platelets, CRP, and BNP (appendix, p. 16).

Clinical signs and symptoms: More patients in cluster 1 had muco-
cutaneous involvement and Kawasaki-like disease on presentation
(Fig. 2). Cardiovascular involvement was nearly three times as com-
mon for patients in cluster 1 compared with patients in clusters 2
and 3 (77% § 3% vs. 29% § 6% vs. 14% § 5%). Coronary artery aneur-
ysms were infrequent in all clusters, though they were more com-
monly observed in cluster 1 (14% § 2%) than in clusters 2 (4% § 1%)



Fig. 1. Proportion of patients within each cluster with a clinical label of multisystem inflammatory system in children (MIS-C). (A) Mean number of patients by cluster. (B) Mean
percentage of patients in each cluster.
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and 3 (2% § 0¢8%). Although most patients in all clusters had some
respiratory system involvement, 22% § 8% of patients in cluster 2
met criteria for pediatric ARDS (PARDS), compared with 7% § 2% of
patients in cluster 1 and 4% § 8% of patients in cluster 3 (Fig. 3A).
Nearly all patients in cluster 2—both those labeled and not labeled as
having MIS-C—had infiltrates on chest radiography during hospitali-
zation, whereas only a minority of patients in clusters 1 and 3 had
this finding (Figs. 3A and 4A).

Treatments: Patients in cluster 1 were more likely overall to
receive immunomodulatory therapy (89% § 2% vs. 44% § 8% in clus-
ter 2 and 22%§ 9% in cluster 3), including intravenous immunoglobu-
lin (IVIg) (Fig. 3A). However, patients labeled as having MIS-C were
more likely to be treated with IVIg, regardless of cluster (Fig. 4A). In
contrast, patients in cluster 2 were more likely to be treated with
SARS-CoV-2 antiviral therapy whether labeled as having MIS-C or not
(Fig. 4A). Anticoagulant use frequency was greater in clusters 1 and 2
(Fig. 3A) and was similarly frequent in cluster 2 regardless of MIS-C
label (Fig. 4A). Systemic corticosteroids were also more frequently
administered to patients in cluster 1 (70% § 3%) than to those in clus-
ter 2 (49% § 12%), and this difference persisted regardless of MIS-C
label. Of note, the reason for treatment with corticosteroids in 24% of
patients treated with steroids and not labeled ultimately as having
MIS-C was nevertheless “suspected MIS-C”; these patients were typi-
cally in cluster 2.

3.3. Association between clusters and critical illness outcomes

Patients in clusters 1 and 2 had similar frequency of intensive care
unit admission (75% § 3 vs. 67% § 14%), whereas the frequency was
lower in cluster 3 (36% § 13%). Critical illness outcomes were more
common in patients in cluster 1 (53% § 5%) and cluster 2 (44% § 12%)
than in cluster 3 (17% § 11%). However, patterns of severe outcomes
differed between clusters 1 and 2. Need for invasive or non-invasive
mechanical ventilation was more common in cluster 2 (36% § 12%)
compared with cluster 1 (22% § 4%). In contrast, vasoactive use was
more common in cluster 1 (47% § 5%) than in cluster 2 (20% § 7%).
Death was rare in all clusters, but more patients in cluster 2 died (3%
§ 1%) compared to clusters 1 (0¢8% § 0¢5%) and 3 (1% § 1%).
By multivariable regression, cluster assignment and MIS-C label
both independently discriminated critical illness, with C-statistic
0¢73 § 0¢02. However, by all three metrics analyzed and in all 1000
bootstrap replications, cluster assignment contributed more than
MIS-C label to models’ classification of a patient’s having critical ill-
ness. Models with cluster membership alone as compared to MIS-C
label alone had better discrimination (C-statistic 0¢71 § 0¢03 vs.
0¢64 § 0¢01), and p-values for models with cluster membership alone
were lower than those with MIS-C label alone. Cluster membership
was also the more important variable by dominance analysis. Using
recursive feature elimination and a random forest model, cluster
membership was the more important variable in 663 of 1000
replications.

3.4. Features distinguishing MIS-C from severe COVID-19 respiratory
illness

Patients in cluster 1 not labeled as having MIS-C were distin-
guished from those in cluster 2 labeled as having MIS-C by presence
or absence of underlying conditions and by gastrointestinal and
respiratory system involvement. Regardless of MIS-C label, patients
in cluster 1 were more often previously healthy and had more fre-
quent gastrointestinal system involvement, whereas patients in clus-
ter 2 had prior medical conditions and more frequent respiratory
system involvement (Fig. 4B). Using these variables in a random for-
est model differentiated cluster 1 patients not labeled as having MIS-
C from those in cluster 2 labeled as having MIS-C with 97% accuracy.
The most important variable distinguishing these patients, whose
MIS-C status was potentially mislabeled, was presence of infiltrates
on chest radiographs (appendix, p. 17).

4. Discussion

MIS-C criteria are broad and encompass other critical illness syn-
dromes such as PARDS with secondary organ involvement [5,6,8,26].
We identified three clusters of phenotypically distinct patients
among a large cohort of patients hospitalized with COVID-19-related
illness. Cluster 1, which we subsequently refer to as the “prototypical



Fig. 2. Overview of clinical variables among clusters. (A) Overview of differences among biomarkers and clinical features. For continuous variables, values are standardized to have
mean 0 and unit standard deviation across all patients. For categorical variables, values are expressed as percent of patients with that feature, standardized to have mean 0 across
all patients; thus, standardized values represent the proportion in each cluster above or below the overall mean proportion of patients having that feature. (B) Demographic and
general clinical features among patients by cluster. ALC = absolute lymphocyte count; ANC = absolute neutrophil count; BMI = body mass index; BNP = B-type natriuretic peptide;
CK = creatine kinase; CRP = C-reactive protein; ESR = erythrocyte sedimentation rate; MV = mechanical ventilation; NT-proBNP = N-terminal pro b-type natriuretic peptide;
O2 = oxygen; WBC = white blood cell count.

6 A. Geva et al. / EClinicalMedicine 40 (2021) 101112
MIS-C” cluster, included previously healthy patients with cardiovas-
cular and/or mucocutaneous involvement, often presenting with gas-
trointestinal symptoms, who had marked elevations of inflammatory
markers and BNP. Many had SARS-CoV-2 test results that appear
post-infectious (i.e., antibody positive but PCR negative) [5,27].
Indeed, 92% of patients in the prototypical MIS-C cluster were labeled
by clinicians and clinical researchers as having MIS-C. Cluster 2, or
the “respiratory cluster”, were mostly SARS-CoV-2 PCR positive, had
chronic conditions (most commonly respiratory), had infiltrates on
chest radiographs, and many needed mechanical ventilator support
and had a diagnosis of PARDS. Nearly 20% of patients diagnosed with
MIS-C by clinicians were in cluster 2, including many that received
vasoactive agents. Patients in cluster 3 were younger and less criti-
cally ill, and of the 16% of MIS-C-labeled patients in that cluster, 44%
had KD features. It is possible that patients labeled as MIS-C that
were not in the prototypical MIS-C cluster could be a subset with dis-
tinct phenotypes.

A prior study by Godfred-Cato and colleagues applied latent class
analysis to cluster patients with MIS-C, identifying three subpheno-
types [14]. They also identified a respiratory cluster among patients
with MIS-C, noting they likely had acute COVID-19, but did not
include other acute COVID-19 patients in their analysis for
comparison. By including patients not labeled by clinicians as having
MIS-C, we confirm that this subgroup of MIS-C is phenotypically sim-
ilar to patients known to have acute COVID-19 lung disease. The
Godfred-Cato study reported two other subphenotypes-one with car-
diovascular and gastrointestinal involvement and one with KD-like
features. In contrast, our analysis revealed one highly inflamed clus-
ter that predominantly included both patients with cardiovascular
involvement and those with KD features. Our approach was similar
to latent class analysis of adult ARDS patients that identified a hyper-
inflammatory subphenotype associated with differences in treatment
response [28].

We previously reported that most patients with MIS-C have respi-
ratory involvement similar to patients with acute COVID-19 [26], and
therefore its inclusion in the criteria for MIS-C may decrease diagnos-
tic specificity. The current work builds on the prior findings by show-
ing empirically that a subset of patients labeled as MIS-C appear
phenotypically more similar to COVID-19 patients in the respiratory
cluster. We identified a novel, important variable distinguishing
respiratory COVID-19 disease from MIS-C, namely, pulmonary infil-
trates on chest radiographs. Respiratory involvement is not included
as part of the multiorgan involvement criteria of the World Health
Organization (WHO) case definition for MIS-C, but is allowed in the



Fig. 3. Comparison of features by cluster. Boxplots show median (heavy horizontal line), 25th and 75th percentiles (bounds of box), and 150% the interquartile range below and
above the 25th and 75th percentiles (vertical lines). (A) Clinical features. (B) Biomarkers. PARDS = pediatric acute respiratory distress syndrome.
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CDC criteria for organ involvement [12,13]. Clinicians should consider
whether pulmonary infiltrates, especially non-cardiogenic pulmo-
nary edema, may suggest acute COVID-19 infection rather than MIS-
C. Importantly, our data suggest that many of these patients are
treated with SARS-CoV-2-targeted antiviral therapy despite being
labeled as having MIS-C and being treated with IVIg for that disorder.
Conversely, many patients in the respiratory cluster, ultimately
determined not to have MIS-C, were nonetheless treated with sys-
temic corticosteroids reportedly with MIS-C as the indication. This
treatment approach suggests that when clinicians cannot accurately
distinguish between MIS-C and acute COVID-19 pneumonia, they are
treating both phenotypes simultaneously, and better delineation
between the two diagnoses may allow more precise treatment.

Cardiovascular involvement and hyperinflammation are predomi-
nant features of MIS-C. Although lymphopenia was common in both
the prototypical MIS-C cluster and the respiratory cluster, prototypi-
cal MIS-C patients were more likely to have neutrophilia, higher CRP,
and higher BNP. Standardizing the use of diagnostic screening tests,



Fig. 4. Characteristics differentiating MIS-C-labeled and MIS-C non-labeled patients. Boxplots show median (white horizontal line), 25th and 75th percentiles (bounds of box), and
150% the interquartile range below and above the 25th and 75th percentiles (vertical lines). (A) MIS-C patients in cluster 2 had similar prevalence of infiltrates on chest x-rays,
mechanical ventilation, and treatment with antiviral therapy as non-MIS-C patients. However, MIS-C patients in cluster 2 also received intravenous immunoglobulin and vasoactive
infusions at the same frequency as MIS-C patients in cluster 1. (B) Clinical characteristics distinguishing patients in clusters 1 and 2 were similar among MIS-C labeled and non-
labeled patients in each cluster and accurately distinguished cluster 1 non-MIS-C patients from cluster 2 MIS-C labeled patients. Gastrointestinal involvement includes abdominal
pain, diarrhea, and vomiting. Respiratory involvement includes presence of infiltrates on chest radiographs, presentation with lower respiratory tract infection, and cough.
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such as complete blood count with differential, CRP, and BNP, could
help to develop cutoffs that distinguish acute COVID-19 fromMIS-C.

Our work had several limitations. Laboratory values were mea-
sured based on clinical judgment and missingness was likely non-
random. We therefore included indicator variables to allow assigning
a mean value to the missing laboratory variable without biasing the
model. More refined clusters may become evident by incorporating
temporal trends in laboratory values. We lacked accurate data on
timing between COVID-19 exposure or infection with SARS-CoV-2
and hospitalization. Although prevalence of RT-PCR positivity and
antibody response may suggest inferences regarding MIS-C as a post-
infectious phenomenon distinct from acute COVID-19 [29,30], we
cannot directly test this hypothesis. Lack of data prevented using tim-
ing of exposure to analyze association of laboratory values with dis-
ease progression. Additional variables not included in our models
may also help refine clusters. We also did not have a large, indepen-
dent cohort to validate our clustering results. However, our approach
does not train a classifier, so any potential biases are inherent to the
population studied rather than to the algorithm itself. Although
external validation of performance is not mandatory for clustering
analyses, whether patients from different populations exhibit similar
clustering patterns merits confirmation. Whether appropriate MIS-C
labeling and treatment decisions affect patient outcomes remains
unknown.

Applying an unsupervised, data driven analysis to children and
adolescents hospitalized with the full spectrum of COVID-19-associ-
ated complications, we identified a cluster of features characteristic
of patients with prototypical MIS-C and another cluster with likely
respiratory complications of severe COVID-19. The clustering analysis
further identified patients who were labeled by clinicians as having
MIS-C but who may have distinct subphenotypes, including acute
COVID-19 with cardiovascular involvement in the respiratory cluster
or Kawasaki disease in the less ill cluster. The extent to which these
subphenotypes should be included in the broader MIS-C definition or
represent distinct disease entities merits further study. Our findings
may be helpful in refining the criteria for MIS-C to identify pheno-
types that have different pathophysiology and that possibly need
alternate therapeutic strategies. Clinicians should especially question
whether patients with preexisting conditions and non-cardiogenic
pulmonary edema may have acute COVID-19 infection rather than
MIS-C and tailor treatment accordingly.
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