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Abstract
Purpose  An artificial neural network (ANN) has been applied to detect myocardial perfusion defects and ischemia. The 
present study compares the diagnostic accuracy of a more recent ANN version (1.1) with the initial version 1.0.
Methods  We examined 106 patients (age, 77 ± 10 years) with coronary angiographic findings, comprising multi-vessel dis-
ease (≥ 50% stenosis) (52%) or old myocardial infarction (27%), or who had undergone coronary revascularization (30%). 
The ANN versions 1.0 and 1.1 were trained in Sweden (n = 1051) and Japan (n = 1001), respectively, using 99mTc-methoxy-
isobutylisonitrile myocardial perfusion images. The ANN probabilities (from 0.0 to 1.0) of stress defects and ischemia were 
calculated in candidate regions of abnormalities. The diagnostic accuracy was compared using receiver-operating character-
istics (ROC) analysis and the calculated area under the ROC curve (AUC) using expert interpretation as the gold standard.
Results  Although the AUC for stress defects was 0.95 and 0.93 (p = 0.27) for versions 1.1 and 1.0, respectively, that for 
detecting ischemia was significantly improved in version 1.1 (p = 0.0055): AUC 0.96 for version 1.1 (sensitivity 87%, 
specificity 96%) vs. 0.89 for version 1.0 (sensitivity 78%, specificity 97%). The improvement in the AUC shown by version 
1.1 was also significant for patients with neither coronary revascularization nor old myocardial infarction (p = 0.0093): 
AUC = 0.98 for version 1.1 (sensitivity 88%, specificity 100%) and 0.88 for version 1.0 (sensitivity 76%, specificity 100%). 
Intermediate ANN probability between 0.1 and 0.7 was more often calculated by version 1.1 compared with version 1.0, 
which contributed to the improved diagnostic accuracy. The diagnostic accuracy of the new version was also improved in 
patients with either single-vessel disease or no stenosis (n = 47; AUC, 0.81 vs. 0.66 vs. p = 0.0060) when coronary stenosis 
was used as a gold standard.
Conclusion  The diagnostic ability of the ANN version 1.1 was improved by retraining using the Japanese database, particu-
larly for identifying ischemia.
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Abbreviations
ANN	� Artificial neural network
AUC​	� Area under the curve
MIBI	� Methoxyisobutylisonitrile

MPI	� Myocardial perfusion imaging
OMI	� Old myocardial infarction
ROC	� Receiver-operating characteristics
SDS	� Summed difference score
SRS	� Summed rest score
SSS	� Summed stress score

Introduction

The diagnostic ability of artificial neural network (ANN), 
which is a type of artificial intelligence, has been examined 
from the viewpoint of nuclear cardiology applications [1, 
2]. A multicenter study was the first in Japan to apply an 
ANN to myocardial perfusion imaging (MPI) during 2015 
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[3]. That ANN was trained to detect myocardial stress perfu-
sion defects and induced ischemia on a Swedish database, 
but its diagnostic ability was comparable to that of expert 
interpretation for Japanese patients. Thereafter, the diag-
nostic ability was further improved by training the ANN 
on a Japanese multicenter database (n = 1,001) using 99mTc-
methoxyisobutylisonitrile (MIBI) MPI [4]. That validation 
study indicated that the ANN had good diagnostic ability 
comparable to nuclear cardiology expert interpretation, as 
the area under the receiver-operating characteristics (ROC) 
curve (AUC) was 0.92.

However, whether or not the diagnostic accuracy of ver-
sion 1.1 actually improved from the initial cardioREPO soft-
ware version 1.0 (FUJIFILM RI Pharma Co. Ltd., EXINI 
Diagnostics, Lund, Sweden) has not been validated. In addi-
tion, the conditions under which the diagnostic ability of 
version 1.1 changed have remained unknown. The present 
study aimed to determine whether the diagnostic ability of 
version 1.1 trained on a Japanese database was improved 
over the original version by comparison with the same popu-
lation that was used before [3].

Methods

Participants

The participants were as described for the validation study 
of the first version (cardioREPO version 1.0) [3]. A total 
of 106 patients (male, 61%; mean age, 70 ± 10 years) who 
underwent coronary angiography within 1 month of MPI 
were selected from Public Central Hospital of Matto Ishi-
kawa, Kanazawa Cardiovascular Hospital, and Kanazawa 
University Hospital. When the number of vessels with 
coronary stenosis ≥ 50% was defined as abnormal, 25, 29, 
30 and 22 patients had 0, 1-, 2-, and 3-vessel disease (total 
of patients with multi-vessel disease: 52%). Comorbidities 
comprised hypertension (58%), diabetes mellitus (33%) and 
dyslipidemia (36%), and 27 and 30% of the patients had a 
clinical history of old myocardial infarction and coronary 
revascularization, respectively. All clinical data were com-
pletely anonymized and processed at Kanazawa University. 
The Ethics Committee at Kanazawa University approved the 
study.

Myocardial perfusion imaging and diagnosis

Patients were assessed using a stress–rest sequence with a 
standard dose (maximum, 1,110 MBq) and a protocol for 
99mTc perfusion tracers [5]. Acquired energy was centered 
at a 99mTc window of 140 keV ± 10%. Stress was imposed 
either by exercise (89%) or pharmacologically using 

adenosine (11%). Electrocardiographic gating on the dual-
headed SPECT system was 16 frames per cardiac cycle. 
Attenuation and scatter correction were not applied.

Left ventricular ejection fraction and volumes were also 
calculated [6, 7].

The final diagnoses of ischemia or infarction were the 
same as those in the first report [3]. Briefly, a diagnosis was 
concluded based on the consensus of three experienced 
nuclear medicine physicians similar to clinical diagnos-
tic procedures to determine ischemia. Original short-axis 
images and polar maps were presented with information only 
about age and sex. Left ventricular function, including vol-
umes and ejection fraction, was then added, and all subse-
quent information about coronary artery stenosis, restenosis, 
and location of stents or bypass grafts was added. Therefore, 
the presence of a stress abnormality and of stress-induced 
ischemia was determined based on the integrated under-
standing of coronary stenosis and the presence of infarction.

Artificial neural network training

The first version of the ANN was trained on data from 1,051 
Swedish patients (male: 47%; age, 62 ± 10 years) and experi-
enced Swedish physicians classified perfusion as normal or 
defective [2]. Twelve hospitals in Japan collaborated to train 
version 1.1 (n = 1,001 patients; 75% male; 69 ± 10 years) 
using 99mTc-MIBI as the tracer [4]. At least two Japanese 
nuclear cardiology experts determined abnormal stress 
defects and stress-induced ischemia by consensus. Areas of 
possible perfusion abnormalities in stress and rest images 
(stress and rest defects, respectively) were segmented, and 
the ANN judged candidate regions in terms of the probabil-
ity of abnormalities (ANN probability) based on 16 features 
extracted from the shape, extent, location, count, perfusion 
homogeneity, regional motion, wall thickening and sex.

Defect scoring

Scoring was based on a 17-segment model [8] and a 5-point 
scale (0, normal; 1, slight decrease; 2, moderate decrease; 3, 
severe decrease; 4, complete defect) and calculated automat-
ically by the cardioREPO software (version 1.1). Summed 
stress (SSS), summed rest (SRS) and summed difference 
(SDS) scores were included. Defect severity was classified 
using the database of the Japanese Society of Nuclear Medi-
cine working group that included normal stress–rest findings 
on SPECT images that were acquired using an Anger camera 
and not attenuation-corrected [9, 10].

Statistics

Data are shown as means ± standard deviation (SD). Dif-
ferences between groups were assessed using a one-way 
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analysis of variance, Student’s T tests and F tests, and areas 
under ROC curves were calculated using JMP version 12 
(SAS Institute Inc., Cary, NC, USA) statistics software. The 
appropriate threshold values for sensitivity and specificity 
were determined at the point at which the maximum sensi-
tivity + specificity − 1 was obtained. A significant difference 
was indicated when p < 0.05.

Results

Figure 1 shows differences in the segmentation of abnormal 
regions between versions 1.0 and 1.1 in a patient with ante-
rior myocardial infarction accompanied by exercise-induced 
ischemia. The area of ischemia was small (probability, 0.96; 
extent, 3%) in version 1.0. A larger area with a probability of 
0.88 and an extent of 9% was identified in the anterior wall, 
but a small basal region that was selected as candidate was 
determined as insignificant (probability, < 0.5).

Stress defects and induced ischemia were compared 
between ANN probability determined by both software 
versions and expert interpretation (Table 1). The ANN 
probability values for patients with and without stress 
defects were 0.87 ± 0.21 and 0.25 ± 0.34, respectively (F 

ratio, 134; p < 0.0001), with version 1.0, and 0.85 ± 0.21 
and 0.23 ± 0.28, respectively, with version 1.1 (F ratio 
170; p < 0.0001). Values for patients with and without 
stress-induced ischemia were 0.70 ± 0.40 and 0.01 ± 0.10 
(F ratio 152; p < 0.0001) with version 1.0, and 0.79 ± 0.20 
and 0.21 ± 0.22 with version 1.1 (F ratio, 195; p < 0.0001), 
respectively.

Figures 2 and 3 show the results of ROC analyses for 
detecting stress defects and induced ischemia, respec-
tively, and statistical measures of sensitivity, specificity, 
and accuracy. Figure 2 shows that the AUC for detecting 
stress defects calculated by versions 1.0 and 1.1 were 0.93 
and 0.95, respectively, which did not significantly differ 
(p = 0.27). The AUC did not significantly differ (p = 0.49 
and 1.00) even when patients were divided into groups 
without either revascularization or old myocardial infarc-
tion (OMI), and with revascularization and/or OMI. In 
contrast, Fig. 3 shows that the AUC for ischemia was 
better for version 1.1 (0.96) than for version 1.0 (0.89, 
p = 0.0055). The AUC was better for version 1.1 (0.98) 
than for version 1.0 (0.88, p = 0.0093) when patients 
had neither revascularization nor OMI, but did not differ 
significantly between those with revascularization and/
or OMI (p = 0.42). Using the version 1.1 sensitivity and 

Fig. 1   Comparison of segments of abnormality between versions 1.0 and 1.1. ANN probability (Prob) and extent (%) are shown as stress and 
difference polar maps
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specificity for all patients were 94 and 81%, respectively, 
with stress defect, and 87 and 96%, respectively, with 
stress–rest difference.

Figure 4 shows the relationship between ANN probability 
and summed scores. The ANN probability steeply increased 
in the range of SSS 0 to 5 for both software versions. With 
respect to induced ischemia, although many points of data 
overlapped at an SDS of 0–1 and an ANN probability of 0 in 
version 1.0, ANN probability scattered in a low SDS range 
of 0–4, indicating a higher prevalence of intermediate ANN 
probabilities in a range between 0.1 and 0.7.

In addition to expert interpretation, diagnostic accuracy 
was assessed using coronary stenosis as another gold stand-
ard. Patients with revascularization and those with OMI 
were excluded from this analysis, and patients with either 
single-vessel disease (coronary stenosis ≥ 50%, n = 22) or 
no stenosis (n = 25) were included. The AUC for versions 
1.0 and 1.1 were, respectively, 0.82 and 0.98 (p = 0.0099) 
when expert interpretation was the gold standard (Fig. 5a), 
and 0.66 and 0.81, respectively (p = 0.0060), when coronary 
stenosis was the gold standard. These findings indicate that 
the diagnostic accuracy of version 1.1 had improved. The 
statistical measures of sensitivity/specificity were 93/94% 

Table 1   ANN probabilities and 
expert interpretation by versions 
1.0 and 1.1

ANN artificial neural network, SD standard deviation

N Mean SD Lower 95% 
of mean

Upper 95% of 
mean

F ratio p

A. Stress defect
 Version 1.0
  No stress defect 37 0.25 0.34 0.13 0.36 134 < 0.0001
  Stress defect 69 0.87 0.21 0.82 0.92

 Version 1.1
  No stress defect 37 0.23 0.28 0.14 0.32 170 < 0.0001
  Stress defect 69 0.85 0.21 0.80 0.91

B. Induced ischemia
 Version 1.0
  No ischemia 55 0.01 0.10 − 0.01 0.04 152 < 0.0001
  Ischemia 51 0.70 0.40 0.59 0.82

 Version 1.1
  No ischemia 55 0.21 0.22 0.15 0.27 195 < 0.0001
  Ischemia 51 0.79 0.20 0.73 0.85

Fig. 2   Area under ROC curves to analyze stress defects in all patients 
(a). Without either revascularization or OMI (n = 47) (b). With revas-
cularization and/or OMI (c) (n = 59). The statistical measures of sen-
sitivity/specificity/accuracy were 83/86/84% and 94/81/90% for ver-
sions 1.0 and 1.1, respectively, for all patients (a); 91/74/83% and 

94/77/86% for patients without either revascularization or OMI (b); 
and 95/100/95% and 97/100/98% for patients with revascularization 
and/or OMI (c). OMI old myocardial infarction, ROC receiver-operat-
ing characteristics
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Fig. 3   Area under ROC curves to analyze induced ischemia. All 
patients (a), without either revascularization or OMI (n = 47) (b); 
with revascularization and/or OMI (n = 59) (c). The statistical 
measures of sensitivity/specificity/accuracy were 78/98/89% and 
87/96/92% for versions 1.0 and 1.1, respectively, for all patients (a); 

76/100/90% and 88/100/95% for patients without either revasculari-
zation or OMI (b); and 77/100/86% and 85/94/88% for patients with 
revascularization and/or OMI (c). OMI old myocardial infarction, 
ROC receiver-operating characteristics

Fig. 4   Relationships between ANN probability and summed stress and summed difference scores between two software versions. Summed stress 
(a, b) and summed difference (c, d) scores for versions 1.0 and 1.1, respectively
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and 64/92% using the expert interpretation and coronary 
stenosis as the gold standard, respectively.

Discussion

The present study showed that the diagnostic accuracy of 
version 1.1 was better than that of version 1.0 when assessed 
using the same validation database. The diagnostic accu-
racy was obviously improved in patients without a history 
of myocardial infarction or coronary revascularization (that 
is, without modification by therapeutic intervention).

Computer‑aided diagnosis

Visual assessment of myocardial perfusion SPECT for 
defects and reversibility is the initial step towards an appro-
priate diagnosis. Computer-assisted quantitation and evalu-
ation play important roles in aiding visual assessment [11], 
and the most popular method of predicting prognosis has 
been defect scoring, such as SSS, SRS, and SDS using a 17- 
or 20-segment model [12, 13]. The amount of infarction and 
ischemia can also be determined by statistical analysis of 
the regional count distribution with assistance from normal 
databases fitted to a study population [14, 15]. In contrast, 
the ANN determined the probability of abnormalities in can-
didate regions based on a learning experience similar to that 
used to train humans, which might be related to integrated 
information about defect size, location, extent, severity, 
regional wall motion, sex, and other factors. Therefore, the 
ANN might mimic the learning processes through which 
trainees develop the diagnostic ability to become nuclear 
cardiology experts. The superior diagnostic accuracy of the 
ANN system over scoring methods has already been estab-
lished [2, 3].

Gold standard for training

The definition of a true diagnosis was based on the expert 
reading for both versions 1.0 and 1.1 in the present study. 
Since the target of the artificial intelligence applied in this 
study was to achieve diagnostic accuracy comparable to that 
of human experts, gold standards of coronary stenosis and 
fractional flow reserve were not applied. A gold standard 
comprising physicians’ readings had been implemented in 
a study using the PERFEX system [1]. Although the detec-
tion of (for example) anatomical stenosis might be another 
target of ANN training, stenosis and physiological ischemia 
might not be identical [16]. Therefore, if experts cannot 
identify abnormalities on MPI acquired from patients with 
triple-vessel disease, an ANN would also be unable to do 
so. However, even when expert interpretation is defined as 
truth, the improved diagnostic ability of version 1.1 repre-
sents progress and support for clinical applications associ-
ated with coronary artery disease. Nevertheless, the ability 
of version 1.1 to accurately diagnose single-vessel disease 
was improved when coronary stenosis was the gold standard.

Improvement for detecting ischemia

The major improvement in version 1.1 was in its ability to 
detect stress-induced ischemia in patients without therapeu-
tic modifications resulting from coronary intervention and 
without myocardial infarction. From our experience with 
applying ANN version 1.0, we found that small areas or 
slight degrees of ischemia were overlooked [3]. Therefore, 
during the development of the new version, we tried to select 
more candidate regions of abnormalities, and trained the 
ANN to identify minor degrees of abnormality. That is, the 
ANN learned to judge minor abnormalities as positive dur-
ing the present training and development. The ANN was 

Fig. 5   ROC curves in subset of 
patients with either no stenosis 
or single-vessel disease. Patients 
with revascularization and/
or old myocardial infarction 
were excluded, and remain-
ing 47 patients were analyzed. 
Gold standards were expert 
interpretation (a) and coronary 
stenosis (b). The statistical 
measures of sensitivity/specific-
ity/accuracy were 64/100/89% 
and 93/94/94% for versions 1.0 
and 1.1, respectively, with the 
gold standard of experts (a) 
and 37/96/68% and 64/92/79%, 
respectively, with that of coro-
nary stenosis (b)
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trained using supervised learning; the quality of the content 
that experts use to teach the ANN is an important part of 
software development using artificial intelligence.

Although we could not differentiate contribution of each 
feature in the neural network system, the integrated learn-
ing process was effective for improved diagnostic accuracy. 
Interestingly, intermediate ANN probability values were 
more often calculated for detecting ischemia by the version 
1.1. Due to this change, sensitivity was improved for detect-
ing ischemia while specificity was kept high (or low false-
positive rate).

Neural network for clinical practice

The practical method of applying the ANN to clinical prac-
tice should be considered. The relationship between ANN 
probability and defect scores is not linear [3, 4]. Summed 
stress, rest and difference scores all steeply increased when 
the ANN probability was > 0.80, which means that the ANN 
probability could play a unique role in the diagnosis of coro-
nary artery disease. Clinical decisions as to whether or not 
infarction and ischemia actually exist on MPI are often 
borderline, and the truth is not always clear. Under such 
circumstances, expressing perfusion abnormalities as prob-
abilities might be more practical than simply announcing, 
for example, that ischemia is suspected or cannot be denied. 
However, diagnostic relevance should be further investigated 
since such approaches are not common to medical diagnos-
tics. Since estimated areas of ischemia vary widely among 
physicians, the presence of defects and ischemia suggested 
by appropriate software packages would help to reduce the 
inter-observer variability of clinical interpretations [17].

Limitations

One limitation of the present study is that it included only 
106 patients who had undergone coronary angiography. 
Considering that the diagnostic accuracy of version 1.1 has 
already been established based on 364 patients [4], the pre-
sent study seems sufficiently valid for comparisons between 
the two versions. When patients with old myocardial infarc-
tion and post-revascularization conditions were included, 
truth could not be established. However, more precise analy-
ses including follow-up and prognostic investigations might 
be feasible in future studies that include a sufficient number 
of patients.

Conclusions

The ANN version 1.0 was retrained with a Japanese database 
to create version 1.1 and then compared with the original 
ANN version 1.0 using the same dataset. The diagnostic 

ability of version 1.1 was better, mainly when patients had 
induced ischemia without revascularization and no myocar-
dial infarction. The new ANN version 1.1 could serve in 
clinical practice as a second opinion for diagnoses based on 
stress myocardial perfusion images.
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