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Abstract: Hyperspectral imaging covering the spectral range of 384–1034 nm combined with
chemometric methods was used to detect Sclerotinia sclerotiorum (SS) on oilseed rape stems by
two sample sets (60 healthy and 60 infected stems for each set). Second derivative spectra and PCA
loadings were used to select the optimal wavelengths. Discriminant models were built and compared
to detect SS on oilseed rape stems, including partial least squares-discriminant analysis, radial basis
function neural network, support vector machine and extreme learning machine. The discriminant
models using full spectra and optimal wavelengths showed good performance with classification
accuracies of over 80% for the calibration and prediction set. Comparing all developed models,
the optimal classification accuracies of the calibration and prediction set were over 90%. The similarity
of selected optimal wavelengths also indicated the feasibility of using hyperspectral imaging to detect
SS on oilseed rape stems. The results indicated that hyperspectral imaging could be used as a fast,
non-destructive and reliable technique to detect plant diseases on stems.
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1. Introduction

Crop diseases are major threats to crop growth, resulting in crop yield and quality loss [1–3].
Timely and proper disease control is crucial for crop safe and efficient production. Sclerotinia sclerotiorum
(SS) is one of the most serious diseases on oilseed rape. It can infect all aboveground parts of the
oilseed rape plants, including leaves, stems, flowers and pods [4,5]. Stems are the most sensitive parts
to SS, which also cause the most severe consequences. The ascospores of SS are generated from the
apothecia in the soil or the seeds. Treating soil and seeds with fungicides is the most effective method
to prevent SS. However, due to the complicated structure of soil, and the fact that some of ascospores
are dispersed more widely from other fields into surrounding crops, full prevention of SS on oilseed
rape is quite difficult.

Early detection, timely prevention and control of SS on oilseed rape plants provide another
effective method for disease control. The major issues then come to how to effectively and accurately
detect SS on oilseed rape plants. Traditional methods, including DNA, RNA and serological based
ones, are the most commonly used methods in disease detection. However, the above methods are
laborious, time consuming and requiring complex sample preparation. These methods cannot be used
in fields either to conduct rapid on-line, large-scale detection [6–9].

Rapid and accurate detection of crop diseases in large-scale field is essential for disease control at
early stage of infection. Imaging and spectroscopy techniques have been used to detect crop diseases
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as rapid and accurate methods, and their results were appealing with good detection accuracies.
Hyperspectral imaging, known as a technique integrating spectroscopy and imaging, shows the
advantage of acquiring the spectral and image information simultaneously. For each pixel, there is a
spectrum in the spectral range; for each wavelength, there is a grey-scale image. The advantage of
hyperspectral imaging makes it feasible to locate infected areas by applying the detection models on
the pixels.

Stems play an important role in plant growth. Plant diseases on stems can cause serious
consequences. Prior to stems, leaves are more frequently used for disease detection [10–12]. A fact
should be considered that once the stems are infected, the situation will be serious. Sometimes when
the infected leaves can be detected, the diseases on stems have become serious. Fast and accurate
detection of plant diseases on stems is demanded and of great practical value.

Chemometric methods, including preprocessing, feature selection and modelling methods,
are essential in data process of hyperspectral images. Many chemometric methods have been
developed based on different principles [13–17]. Robustness and applicability of chemometric methods
are essential for real-world application of hyperspectral imaging technique. Selection of optimal
chemometric method can lead to better results. Generally, the optimal chemometric methods are
selected based on the performances of the methods. Since the comparison is conducted on a single
sample set with limited samples [18–21], the effectiveness of chemometric methods cannot be evaluated.
The methods should also be studied in different sample sets to evaluate the robustness and applicability.

Plant stem disease detection as well as robustness and applicability of chemometric methods for
data analysis are important problems to be addressed in plant disease detection using hyperspectral
imaging. The objective of this study was to explore the feasibility of using hyperspectral imaging to
detect and locate SS on oilseed rape stems. The specific objectives were as follows: (1) to explore the
efficiency of hyperspectral imaging by comparing the results of two sample sets; (2) to explore the
efficiency of the optimal wavelengths of two sample sets; (3) to form visual prediction maps of the
infected stems.

2. Materials and Methods

2.1. Sample Preparation

Oilseed rape (Brassica napus L., cv. ZS758) seeds were sown into the seedbed at the experimental
farm of Zhejiang University (Hangzhou, China). The seedlings were transplanted into the experimental
fields a month later at the 5-leaf stage. The temperature and humidity of growth environment were
around 16 ◦C and 70%. After four months, the oilseed rape stems were suitable for experiments.
Two experiments were conducted. For the first experiment, 150 stems were collected without
leaves and branches, 60 stems were used as healthy samples and 90 stems were used for SS
inoculation. The collected stems were then placed in pallets with distilled water to keep the stems
fresh. Sclerotinia sclerotiorum were cultured in a potato agar for three days before the stem collection.
After the stem collection, the mycelial pellets were selected and inoculated onto the stems. The oilseed
rape stems were kept in a controlled environment with a temperature of 20 ◦C and a humidity of 80%.
Forty-eight hours later, 60 healthy stems and 60 infected stems were collected for hyperspectral images
acquisition. The second experiment was conducted 48 h after the SS inoculation of the first experiment.
The procedure of the second experiment was the same as that of the first one.

2.2. Hyperspectral Image Acquisition and Calibration

A hyperspectral imaging system covering the spectral range of 384–1034 nm was used to acquire
hyperspectral images of stems. The system was formed by an imaging spectrograph (ImSpector
V10E; Spectral Imaging Ltd., Oulu, Finland), coupled with a CCD camera (C8484-05, Hamamatsu,
Hamamatsu City, Japan). The major parameters of this hyperspectral imaging system are that the
spectral resolution is 2.8 mm, the pixel size is 6.45 µm × 6.45 µm and the frame rate is 8.9FPS.
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The operating temperature of the camera is 0–40 ◦C. The environment temperature was around
20 ◦C when the images were collected. The illumination light was provided by two 150 W tungsten
halogen lamps (Fiber-Lite DC950 Illuminator; Dolan Jenner Industries Inc., Boxborough, MA, USA).
The hyperspectral imaging system conducted line scanning, and a conveyer belt driven by a stepper
motor (Isuzu Optics Corp, Hsinchu, Taiwan) was used to move the samples to be scanned.

The hyperspectral images acquisition was controlled by the Spectral Image-V10E software
(Isuzu Optics Corp). The system was adjusted to be suitable to acquire the clear and non-deformable
images, and the height between the lens and the sample, the moving speed of the conveyer and the
exposure time of the camera was set as 40 cm, 2.05 mm/s and 0.13 s respectively.

The acquired hyperspectral images should be corrected from raw images to reflectance images by
the white reference image and dark reference image. The correction was conducted according to the
following equation:

IR =
Iraw − Id
Iw − Id

(1)

where IR was the corrected image, Iraw was the raw acquired image, Iw was the white reference
acquired by the special white Teflon tile with nearly 100% reflectance, Id was the dark reference image
acquired by turning off the light source together with covering the camera lens completely for nearly
0 reflectance.

2.3. Spectra Extraction

Two different procedures for spectral data extraction were applied. The first one was to extract the
average spectrum of each entire stem for analysis. This procedure was the most widely used spectra
extraction procedure in hyperspectral images. The second one was to extract pixel-wise spectra for
analysis. The pixel-wise spectra of healthy stems and the infected regions within the infected stems
were extracted.

As in many other studies, the average spectrum of each sample was acquired without
preprocessing of pixel-wise spectra [22–24]. Average spectra were extracted by averaging pixel-wise
spectra of all pixels, and the averaged spectra in many studies showed no absolute random noises
due to the average of thousands to hundreds of thousands pixel-wise spectra [22,23]. However,
the pixel-wise spectra showed obvious noises. To use pixel-wise spectra for analysis, pixel-wise spectra
should be preprocessed to reduce noises. In this study, 2000 healthy pixels and 2000 pixels of infected
regions were extracted of each sample set, and randomly divided into the calibration and prediction
set at the ratio of 3:1.

2.4. Multivariate Analysis

2.4.1. Discriminant Models

To accurately detect SS on oilseed rape stems, pattern recognition methods, including PLS-DA,
SVM, RBFNN and ELM, were applied to build discriminant models.

PLS-DA is a supervised pattern recognition method. PLS-DA is conducted in the same manner as
PLS regression (PLSR). PLSR or PLS-DA has great ability to explore the linear relationship between
the independent variable and the dependent variables [25,26], especially when the number of the
independent variables is greater than the number of dependent variables. PLSR uses numerical
variable as dependent variable Y, whereas PLS-DA uses categorical variables. The input of dependent
variable of PLS-DA is category values, and the output is numerical due to the regression procedure,
thus a threshold value should be set to determine which category the sample belongs to [27,28].

SVM is a widely used supervised pattern recognition method. SVM transforms the original
data into a high dimension space, and constructs a hyperplane or sets of hyperplane to maximize
the distance of samples from different categories. Kernel functions are essential in SVM to map the
original data into a high dimension space. Many kernel functions have been proposed, and radial basis
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function (RBF) is a widely used and efficient kernel function. In this study, RBF was used as the kernel
function of SVM. To conduct SVM, two parameters should be determined for better classification,
including the bandwidth of the RBF (γ) kernel and the penalty coefficient (C) [29]. A grid search
procedure was used to select the optimal combination of γ and C.

RBFNN is a feedforward neural network. RBFNN has an input layer, a hidden layer and an
output layer. In RBFNN, RBF is used as the activation function, and nonlinear transformation of
the data from the input space to the output space using the linear combination of RBF is utilized
in the network. RBFNN has the advantages of fast learning speed, high generalization ability and
arbitrary approximation [30,31]. To conduct RBFNN on Matlab, a spread value should be determined
and optimized.

ELM is an emerging learning neural algorithm. ELM contains one hidden layer and one linear
output layer, and the weights between the hidden layer and output layer are selected by minimal norm
least square method. Different from traditional learning algorithms, ELM can be trained much faster.
Because of its excellent performance in classification and regression problems, ELM has been used in
many researches of hyperspectral images [32].

2.4.2. Optimal Wavelength Selection

Optimal wavelength selection is quite efficient in spectral data analysis to reduce the collinearity
and redundancy of spectra data. The selection of wavelengths carrying the most information could
reduce the influence of the uninformative wavelengths, reduce the data amount and improve the
model performances. In this study, second derivative spectra and the PCA loadings were used to select
optimal wavelengths.

Second derivative is a widely used spectra preprocessing method. Derivative of spectra could
help to improve the spectral resolution and identify the spectral peaks. The spectral peaks of the raw
spectra could be highlighted in second derivative spectra (2nd derivative spectra), even quite small
peaks. The spectral peaks refer to the typical chemical bonds information, thus these peaks could
be selected and used to predict the quality parameters of the samples. Second derivative spectra of
different sample categories could be used to identify the differences of the typical chemical bonds.
The spectral peaks of 2nd derivative spectra with larger differences could be selected as the optimal
wavelengths to discriminant sample categories [33,34].

PCA is a widely used qualitative analysis method in spectral data. PCA linearly transforms the
original data variables into new orthogonal variables (called principal components, PCs). The new
variables are ranked by the data variances, and the first few PCs contain the most of the useful
information and explain most of the total variance. Loading vector of each PC represents the regression
coefficients of each wavelength at the corresponding PC, indicating importance of the corresponding
wavelengths. The peaks and valleys of the first few PCA loading plots could be manually selected as
the optimal wavelengths [35,36].

2.5. Localization and Visualization of Infected Region

Accurate detection of the stems infected by SS could help to treat the disease, which is quite
important in oilseed rape disease control, and reduce the use of fungicides. Furthermore, exact and
precise treatment of SS on stems needs to know the location of the infected area. Due to the advantage
of acquiring spectral and spatial information simultaneously by hyperspectral imaging, the pixels
within the stem could be classified to healthy and infected by the classification models. A distribution
map formed by the prediction of the pixels could provide direct visual presentation of the infection,
and could help to achieve point to point treatment. The general procedure of image visualization
is to apply the calibration models using the optimal wavelengths to predict the pixels within the
hyperspectral image. The optimal wavelengths and the calibration models are essential for obtaining
good distribution maps.
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2.6. Software and Model Evaluation

The cut of hyperspectral image to isolate each stem as individual hyperspectral images was
manually conducted on ENVI 4.6 (ITT, Visual Information Solutions, Boulder, CO, USA). The spectral
data extraction was conducted on Matlab R2010b (The Math Works, Natick, MA, USA). The image
visualization was also conducted on Matlab R2010b. PCA, 2nd derivative preprocessing and
PLS-DA was performed on Unscrambler® 10.1 (CAMO AS, Oslo, Norway). The performances of
the discriminant models were evaluated by the classification accuracy of the calibration set and the
prediction set.

3. Results

3.1. Sample Average Spectra Analysis

3.1.1. Spectra Features

The spectra of healthy and infected stems were acquired in the range of 384–1034 nm. Considering
the obvious noises in the head and end of the spectra, only the spectra of 439.89–950.13 nm were
analyzed. Moving average smoothing (MAS) with seven smoothing points was applied to preprocess
the spectra of the two sample sets. The spectra of sample set 1 and sample set 2 were similar, and it
could be observed that the spectral profile of oilseed stems were quite similar to that of oilseed rape
leaves [37,38]. The similarity of the spectra between the stems and the leaves were mainly attributed
to the pigments. No significant differences were observed in Figure 1a,b. The average spectra of the
healthy stems and the infected stems of the two sample sets are shown in Figure 1c,d. Slight differences
in the reflectance were observed, especially in the range of 750–900 nm.
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3.1.2. Discriminant Models Using Full Spectra

The partial least squares-discriminant analysis (PLS-DA), radial basis function neural network
(RBFNN), extreme learning machine (ELM) and support vector machine (SVM) models were built
using the full spectra to evaluate the discriminant performances. The results of the discriminant
models are shown in Table 1. The PLS-DA, RBFNN, ELM and SVM models of the two sample sets
obtained good performances, with the classification accuracies of the calibration and prediction set
equal to or higher than 87.5%. The ELM models performed best among all discriminant models.
Differences could be observed from the performances of the same model between two different sample
sets. Differences could also be observed from the performances of different models for the same sample
set. High classification accuracies by different discriminant models of different sample sets indicated
that hyperspectral imaging could be used to detect SS on oilseed rape stems. Use of two different
sample sets validated the feasibility and potential.

Table 1. Results of discriminant models using full spectra and pixel-wise spectra of sample set 1 and 2.

Models
Sample Set 1 Sample Set 2

par a cal b pre c par cal pre

Average
spectra

PLS-DA 9 98.75 100 10 98.75 92.50
RBFNN 0.8 100 97.50 0.1 100 87.50

ELM 20 100 100 19 100 97.50
SVM (16, 1.7411) 97.50 92.50 (9.1896, 0.0206) 97.50 90.00

Pixel-wise
spectra

PLS-DA 8 95.43 94.80 8 97.53 96.60
RBFNN 0.4 100 98.80 0.6 100 98.70

SVM (256, 0.0039) 99.27 99.00 (84.4485, 0.0118) 99.73 99.30
ELM 367 99.83 99.40 416 99.77 99.50

a: par represents the parameters of the models, meaning number of optimal latent variables (LV) in PLS-DA
model, spread value in RBFNN model, number of nodes in the hidden layer in EKM model, (C, γ) in SVM model;
b: cal represents the calibration set (%); c: pre represents the prediction set (%).

3.1.3. Optimal Wavelength Selection

Optimal wavelength selection was applied to select a few wavelengths carrying the most useful
information to best discriminate healthy and infected stems. Herein, second derivative spectra
(2nd derivative spectra) and principal component analysis (PCA) loadings were used to select optimal
wavelengths. Average spectra of healthy and infected leaves were used to perform second order
Savitzky-Golay (SG) derivative. The first 3 PCs of the two sample sets both explained over 97% of
the total variances, and loadings of the first three PCs were used to select the optimal wavelengths.
Figure 2 shows the optimal wavelengths selected by 2nd derivative spectra and PCA loadings, and the
selected optimal wavelengths are also presented in Table 2.

Figure 2a,b show the optimal wavelengths selected by 2nd derivative spectra. Obvious similarity
could be observed from the 2nd derivative spectra of healthy and infected stems between the two
sample sets. The peaks and valleys of 2nd derivative spectra of the two sample sets were nearly the
same. Optimal wavelengths selected by 2nd derivative spectra were based on the spectral features
of healthy and infected samples. Most of the selected optimal wavelengths in the two sample sets
were the same or similar. The optimal wavelengths were selected based on the differences in the peaks
and valleys of 2nd derivative spectra of healthy and infected stems. The differences in the peaks and
valleys of 2nd derivative spectra of healthy and infected stems for the two sample sets were different,
resulting in the differences in the selected optimal wavelengths.

Figure 2c,d shows the optimal wavelengths selected by PCA loadings of the two sample sets.
For sample set 1, PC1, PC2 and PC3 explained 67.360%, 27.673% and 2.913% of total variance,
respectively. For sample set 2, PC1, PC2 and PC3 explained 76.576%, 16.408% and 4.928% of total
variance, respectively. Although each PC between the two sample sets explained different percentage
of total variance, the loading lines showed similar shapes.
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Table 2. Optimal wavelengths selection of sample set 1 and 2 selected by 2nd derivative spectra and
the PCA loadings of sample set 1 and 2 using sample average spectra.

Method
Sample Set 1 Sample Set 2

Number Wavelength (nm) Number Wavelength (nm)

2nd
derivative

spectra
13

443.53, 460.58, 507.12, 547.86, 557.78,
578.91, 592.63, 606.38, 637.75, 690.83,

706.69, 712.45, 730.32
16

443.53, 459.36, 507.12, 533.01, 547.86, 557.78,
578.91, 592.63, 606.38, 637.75, 650.34, 659.18,

690.83, 706.69, 712.45, 730.32

PCA loadings 15
439.89, 550.34, 551.57, 571.44, 595.13,
610.13, 650.34, 656.65, 673.08, 678.15,
704.81, 735.43, 752.08, 761.06, 950.13

16
439.89, 547.86, 549.1, 581.4, 596.38, 608.88,
649.08, 660.44, 678.15, 685.76, 692.1, 703.54,

734.15, 754.65, 761.06,950.13

The selected optimal wavelengths of the two sample sets in Table 2 were similar with slight
differences. PCA extracted the useful information of the two sample sets, and the similarity of the two
sample sets resulted in the similarity of the optimal wavelengths. Therefore, a general trend could be
found that optimal wavelength selection showed good repeatability between different sample sets
under the same sample conditions.

3.1.4. Discriminant Models Using Optimal Wavelengths

The PLS-DA, RBFNN, ELM and SVM models using optimal wavelengths of the two sample sets
were built. The results are shown in Table 3. All discriminant models obtained satisfactory results,
with classification accuracies of the calibration and prediction sets equal to or over 80%. The ELM
models performed the best among all models. For each sample set, the same models using optimal
wavelengths selected by the two methods showed close results. Different models using optimal
wavelengths selected by one method showed significantly different results, indicating the importance
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of selecting discriminant models. For each optimal wavelength selection method, the same models of
different sample sets showed close results, indicating the effectiveness of optimal wavelength selection.

Table 3. Results of discriminant models using optimal wavelengths of sample set 1 and 2.

2nd Derivative Spectra PCA Loadings

par cal pre par cal pre

Sample set 1
PLS-DA 6 93.75 80.00 6 96.25 82.50

SVM (1.7411, 0.1895) 95.00 82.50 (48.5029,0.3299) 97.50 80.00
RBFNN 28 100 97.50 11 100 97.50

Sample set 2
PLS-DA 7 95.00 95.00 9 98.70 92.50

SVM (3.0314,5.2780) 97.50 82.50 (5.2780,3.0314) 98.75 87.50
RBFNN 31 100 92.50 16 100 95.00

3.2. Pixel-Wise Spectra Analysis

3.2.1. Spectral Profile

The use of average spectra of healthy and infected stems provided the potential of fast and
accurate detection of SS infected stems. A further study was conducted to locate the infected region
for precise detection and control. Knowing the precise location and region of the infected region,
the disease control would be more efficient, and the use of fungicides would be minimized.

The pixel-wise spectra were extracted from the healthy stems and the infected region in the
infected stems. Considering the obvious noises in the head and end of pixel-wise spectra, only the
spectra of 439.89–950.13 nm were analyzed. Pixel-wise spectra (Figure 3) showed obvious noises.
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Wavelet transform (WT) using wavelet function Daubechies 8 and decomposition level 6 was
applied to preprocess pixel-wise spectra of sample set 1, WT using wavelet function Daubechies 6 and
decomposition level 6 was applied to preprocess pixel-wise spectra of sample set 2 [39]. A fact should
be considered that the stem was not flat. Ten pixel-wise spectra of healthy stem from the middle part
along with the stem direction and 10 pixel-wise spectra from edge on both sides of the healthy stem
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sample set 1 are shown in Figure 3. The pixel-wise spectra from the middle part showed obviously
higher reflectance than those from the edge part, demonstrating the influence of sample shape. This
influence was considered for pixel-wise spectra extraction. Two thousand pixel-wise spectra each of
healthy and infected regions were selected for each sample set. Larger differences of spectra could be
observed when compared with Figure 1. The reason was that the pixel-wise spectra were extracted
from the infected regions, while average spectra were acquired from the uninfected regions and the
infected regions. The pixel-wise spectra were divided into the calibration set and the prediction set at
the ratio of 3:1.

3.2.2. Discriminant Models Using Full Pixel-Wise Spectra

The PLS-DA, SVM, RBFNN and ELM models were built using the full pixel-wise spectra.
The results are shown in Table 1. All discriminant models of the two sample sets obtained good
results, with the classification accuracies of the calibration and prediction set over 99%. Classification
accuracies of the RBFNN, SVM and ELM models were over 98%, and the PLS-DA model performed
relatively worse with the classification accuracies lower than 98%. The same models for the two sample
sets obtained similar results, with slightly differences caused by the sample sets.

3.2.3. Optimal Wavelength Selection for Pixel-Wise Spectra

PCA loadings and 2nd derivative spectra were used to select optimal wavelengths for pixel-wise
spectra. Average spectra of pixels from the healthy stems and the infected regions were used to
obtained 2nd derivative spectra. For sample set 1, PC1, PC2 and PC3 explained 85.199%, 12.022% and
1.506% of total variance. For sample set 2, PC1, PC2 and PC3 explained 81.493%, 13.694% and 3.279%
of total variance. The first 3 PCs of the two sample sets explained more than 98% of total variance,
and loadings of the first 3 PCs were used to select optimal wavelengths.
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Table 4. Optimal wavelengths selected by 2nd derivative spectra and the PCA loadings of sample set 1
and 2 using pixel-wise spectra.

Methods
Sample Set 1 Sample Set 2

Number Wavelengths (nm) Number Wavelengths (nm)

2nd
derivative

spectra
19

507.12, 519.44, 528.07, 556.54, 587.64,
598.87, 606.38, 617.65, 646.56, 657.92,
687.02, 707.36, 717.55, 729.04, 749.52,

759.78, 770.06, 780.36, 801.01

19

507.12, 519.44, 528.07, 536.72, 556.54,
586.39, 598.87, 606.38, 617.65, 646.56,
657.92, 685.76, 707.36, 729.04, 749.52,

758.5, 770.06, 780.36, 801.01

PCA loadings 14
439.89, 529.31, 549.1, 555.29, 627.69,
637.75, 676.88, 679.42, 681.95, 698.45,

745.67, 757.21, 758.5, 950.13
16

439.89, 526.84, 545.38, 549.1, 551.57,
587.64, 598.87, 620.42, 675.62, 676.88,
688.29, 698.45, 745.67, 754.65, 757.21,

950.13

The optimal wavelength selection by 2nd derivative spectra and PCA loadings are shown in
Figure 4, and the corresponding selected optimal wavelengths are presented in Table 4. Second
derivative spectra of sample sets 1 and 2 showed similar shape, and the selected optimal wavelengths
were the same. Although each PC explained different percentage of total variance between the two
sample sets, the loading line of each PC showed similar shape with slightly differences caused by the
samples. The selected optimal wavelengths by PCA loadings of the two samples were quite close.
The results indicated the repeatability of optimal wavelength selection by 2nd derivative spectra and
PCA loadings between different sample sets.

3.2.4. Discriminant Models Using Optimal Wavelengths

The PLS-DA, SVM, RBFNN and ELM models were built using the optimal wavelengths selected by
the two methods. All discriminant models showed good discriminant performances with classification
accuracies of the calibration and prediction set of the two sample sets over 90% (shown in Table 5).
The SVM, RBFNN and ELM models obtained better results, with classification accuracies over 98%,
while the PLS-DA model obtained slightly worse results with classification accuracies lower than 97%.
For each sample set, the same discriminant models using optimal wavelengths selected by the two
different methods showed quite close results. For different sample sets, the same models using optimal
wavelengths selected by the same method also obtained quite close results.

Table 5. Results of discriminant models using optimal wavelengths of pixel-wise spectra of sample set
1 and 2.

2nd Derivative Spectra PCA Loadings

par cal pre par cal pre

Sample set 1 PLS-DA 7 94.17 94.60 7 93.93 94.30
SVM (256, 9.1896) 99.40 98.20 (84.4485,5.2780) 99.47 98.50

RBFNN 3 99.37 98.40 1 99.63 99.10
Sample set 2 PLS-DA 7 96.60 96.40 4 95.07 95.50

SVM (256,16) 99.87 99.40 (27.8576,9.1896) 99.83 99.20
RBFNN 4 99.37 98.80 2 99.77 99.30

3.2.5. Visualization of Infected Regions within the Stem

The SVM models using optimal wavelengths selected from pixel-wise spectra of the two sample
sets were used to locate the infected regions within the stems. Two randomly selected infected stems
of the two sample sets were used for visualization. The same spectral preprocessing was conducted
on the spectra of each pixel within the two hyperspectral images. The visualization maps formed by
the SVM models using optimal wavelengths selected by 2nd derivative spectra and PCA loadings
are shown in Figure 5. The visualization maps matched well with the actual distribution in the two
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sample sets. The results showed that hyperspectral imaging combined with chemometric methods
could locate the infected region effectively.Sensors 2018, 18, 123 11 of 16 

 

 
(a) (b) 

Figure 5. Image visualization of one randomly selected sample from each sample set by the SVM 
models using optimal wavelengths (a) sample set 1, (b) sample set 2. 

4. Discussion 

A hyperspectral imaging system covering spectral range of 384–1034 nm was used to detect SS 
on oilseed rape stems. Two sample sets formed by healthy and infected stems were used to explore 
and validate the feasibility of the system. The overall results indicated that hyperspectral imaging 
could be used to detect and locate SS on oilseed rape stems. 

The feasibility and efficiency of plant disease detection based on leaves have been explored by 
hyperspectral imaging. However, some important issues needed to be addressed for plant disease 
detection by hyperspectral imaging. Based on the characteristics of different plant diseases, the 
influences of plant diseases on different plant tissues varied. Leaves were important tissues in plant 
growth, leaves were more easily to be infected and sampled than other tissues, and studies focused 
more on leaves than other tissues. But detection of plant diseases on leaves was not enough, 
especially when the disease firstly infected other tissues and caused more serious consequences in 
other tissues. In this study, the oilseed rape stems infected by SS caused the most serious 
consequences, thus detection of plant diseases were needed. The studies of other infected tissues of 
plants lacked and should pay attention to other infected tissues. 

Hyperspectral imaging provided average spectra of samples and pixel-wise spectra within 
samples. Utilization of spectral information was important for hyperspectral imaging application. 
Average spectra of each sample have been widely used in detecting plant diseases [40]. Use of 
average spectra of hyperspectral imaging was the same as Vis/NIR spectroscopy. The differences 
was that the spectra of Vis/NIR spectroscopy were collected from a small part of the leaves [41,42] 
and each sample has one spectra averaged by several times of scans, while average spectra of 
hyperspectral imaging was acquired from a predefined region of interest (ROI) in the sample. The 
use of average spectra of infected samples had two situations, average spectra of the entire sample 
including the infected region and the healthy region within the sample, and average spectra of only 
the infected region [40,41]. The former was more effective, samples with or without visible 
symptoms could be predicted in this situation. For the latter situation, samples without visible 
symptoms were impossible to be predicted, due to the unknown location of the infected regions. 

The use of average spectra would help to rapidly and accurately detect plant diseases. 
However, the location of infected regions could not be known by the average spectra. Models built 
by average spectra of just dozens to two hundred of samples may not cover the spectral features of 
different parts within a sample and the spectral features of unknown samples. Considering the 
difficulty of acquiring the large number of samples, the possibilities to acquire representative spectra 
were limited. Pixel-wise spectra within each sample showed features of each sample, including 
physicochemical properties. Pixel-wise spectra could provide detail information of each part within 
a sample, while average spectra showed the general information, and some detailed information 

Figure 5. Image visualization of one randomly selected sample from each sample set by the SVM
models using optimal wavelengths (a) sample set 1; (b) sample set 2.

4. Discussion

A hyperspectral imaging system covering spectral range of 384–1034 nm was used to detect SS on
oilseed rape stems. Two sample sets formed by healthy and infected stems were used to explore and
validate the feasibility of the system. The overall results indicated that hyperspectral imaging could be
used to detect and locate SS on oilseed rape stems.

The feasibility and efficiency of plant disease detection based on leaves have been explored
by hyperspectral imaging. However, some important issues needed to be addressed for plant
disease detection by hyperspectral imaging. Based on the characteristics of different plant diseases,
the influences of plant diseases on different plant tissues varied. Leaves were important tissues in
plant growth, leaves were more easily to be infected and sampled than other tissues, and studies
focused more on leaves than other tissues. But detection of plant diseases on leaves was not enough,
especially when the disease firstly infected other tissues and caused more serious consequences in
other tissues. In this study, the oilseed rape stems infected by SS caused the most serious consequences,
thus detection of plant diseases were needed. The studies of other infected tissues of plants lacked and
should pay attention to other infected tissues.

Hyperspectral imaging provided average spectra of samples and pixel-wise spectra within
samples. Utilization of spectral information was important for hyperspectral imaging application.
Average spectra of each sample have been widely used in detecting plant diseases [40]. Use of average
spectra of hyperspectral imaging was the same as Vis/NIR spectroscopy. The differences was that
the spectra of Vis/NIR spectroscopy were collected from a small part of the leaves [41,42] and each
sample has one spectra averaged by several times of scans, while average spectra of hyperspectral
imaging was acquired from a predefined region of interest (ROI) in the sample. The use of average
spectra of infected samples had two situations, average spectra of the entire sample including the
infected region and the healthy region within the sample, and average spectra of only the infected
region [40,41]. The former was more effective, samples with or without visible symptoms could be
predicted in this situation. For the latter situation, samples without visible symptoms were impossible
to be predicted, due to the unknown location of the infected regions.

The use of average spectra would help to rapidly and accurately detect plant diseases. However,
the location of infected regions could not be known by the average spectra. Models built by average
spectra of just dozens to two hundred of samples may not cover the spectral features of different parts
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within a sample and the spectral features of unknown samples. Considering the difficulty of acquiring
the large number of samples, the possibilities to acquire representative spectra were limited. Pixel-wise
spectra within each sample showed features of each sample, including physicochemical properties.
Pixel-wise spectra could provide detail information of each part within a sample, while average spectra
showed the general information, and some detailed information were missing. The use of pixel-wise
spectra could highly extend the range of spectra features. In this study, diameters of different stems
were different, and the distances between different parts of a stem and the detector were different,
resulting in the great differences on reflectance value. It should be noted that the typical symptoms of
SS on oilseed stem were the same among different stems of oilseed rape. Thus, the problem for stem
disease detection was to acquire representative spectra to form a spectra database and to overcome the
spectra differences caused by the different diameters.

The prediction maps formed by pixel-spectra based models showed that pixel-wise spectra were
effective for plant disease detection. A problem in bringing hyperspectral imaging to real-world
application was that it was quite difficult to obtain representative spectra from samples. Pixel-wise
spectra provided an alternative to obtain representative spectra from samples. Take oilseed rape stems
in this study for example, stems infected by SS showed similar symptoms, and the major difference in
shape was the diameters. Different stems might have different diameters, and the distance between
different parts of a stem and the detector was different. Pixel-wise spectra of healthy and infected
pixels in different parts covered spectral features relating to sample shapes and symptoms. Thus,
a pixel-wise spectrum could be used to present the spectral features of the pixels in different stems
which had the same distance between the pixel and the detector. Hence, there was no need to seek a
lot of samples to search for the representative spectra. A representative spectra database was feasible
by using pixel-wise spectra. As in this study, pixel-wise spectra extended the spectral features and
could be used to locate the infected regions in stems.

After selecting representative spectra, chemometrics was another essential important issue to be
addressed. To bring hyperspectral imaging to real-world application, qualitative analysis of spectral
features was not enough, discriminant models should be built [42,43]. Without robust and accurate
models, real-world application of hyperspectral imaging was impossible to achieve. Detection of
plant diseases was still at the research stage [44], the use of chemometric methods has not been fully
explored. There were many discriminant methods, some models obtained acceptable results, and they
performed differently. In general studies, discriminant models were used in one sample set, whether
the discriminant models could also be used in other sample sets or unknown samples needed to be
studied. In this study, the same discriminant models obtained different results for two different sample
sets, and the models with the best performances were different in the two sample sets. Therefore, it was
difficult to conclude which model was the best for real-world application. However, a general trend
could be found from different sample sets. Optimal discriminant models with greater applicability
and universality should be developed. Moreover, discriminant models using pixel-wise spectra all
showed satisfactory results in different sample sets, showing the effectiveness of pixel-wise spectra.
Models using more representative spectra could be more effective.

One other problem for hyperspectral imaging was that the large amount of data and the high cost
of hyperspectral imaging. Optimal wavelength selection was quite important in hyperspectral imaging,
which could result in significant reduction of data amount and improvement of modeling efficiency.
Multi-spectral imaging system could be developed using the selected optimal wavelengths, which
could significantly reduce the instrument costs. Selecting optimal wavelengths with great universality
and repeatability among different samples was essential for these purposes. According to previous
studies, optimal wavelengths selected by different methods were different [45,46]. However, some
of the optimal wavelength selection methods were based on performances of discriminant models.
For example, wavelengths selected by PLS (PLS regression or PLS-DA) based optimal wavelength
selection methods highly depended on the performances of the PLS models [47,48]. Different optimal
LVs and performances of the PLS-DA models in the two sample sets could be found, which would



Sensors 2018, 18, 123 13 of 16

affect optimal wavelengths selection. Optimal wavelengths selected by weighted regression coefficient
(Bw) are presented in Table 6 to show that the selected optimal wavelengths were different in different
sample sets. Selection of optimal wavelengths based on spectral features of the samples would help to
avoid the influence of model performances. Second derivative spectra for optimal wavelength selection
were based on the presented spectral peaks, and the PCA loadings for optimal wavelength selection
were based on the useful information of the spectra. It could be found that although discriminant
models showed different performances, optimal wavelengths selected by the two methods were
similar in the two sample sets for average spectra and pixel-wise spectra. The use of 2nd derivative
spectra and PCA loadings showed great potential in selection optimal wavelengths with universality
and repeatability in different sample sets, which showed great potential to develop low-cost on-line
multi-spectral imaging system for practical applications.

Table 6. Optimal wavelengths selection of sample set 1 and 2 selected by Bw using sample average spectra.

Method
Sample Set 1 Sample Set 2

Number Wavelength (nm) Number Wavelength (nm)

Bw 27

447.18,455.71, 474.02, 512.05, 533.01,
554.05, 585.14, 615.15, 633.98, 651.61,
685.76, 692.1, 701.1, 743.11, 789.39,
794.55, 803.6, 811.36, 825.62, 841.21,
847.72, 851.63, 859.46, 879.06, 898.72,

918.45, 950.13

30

460.58, 461.8, 470.35, 482.58, 500.98,
552.81, 580.16, 602.63, 615.15, 649.08,
664.23, 673.08, 683.22, 690.83, 697.18,
707.36, 716.28, 736.71, 761.06, 785.52,
794.55, 802.3, 806.18, 815.25, 825.62,
851.63, 862.07, 869.9, 898.72, 915.81

Besides, the results of visualization showed the great potential of hyperspectral imaging for early
detection and localization of disease infection when there were no visible symptoms, which could not
be rapidly, noninvasively and accurately detected by other techniques. The prediction maps would
provide visual information for plant disease location and regions. Knowing the infected regions in
hyperspectral images would help to evaluate the disease severity by identifying pixels of infected
regions and the sample regions. The use of hyperspectral imaging would provide great benefits in
crop disease detection and control.

In all, hyperspectral imaging as a rapid and nondestructive technique showed great potential
in plant diseases detection. Along with the technology development, the acquisition equipment
would be easier to carry and operate. It will provide not only canopy level but more information in
different levels. To bring hyperspectral imaging to real-world application, it was important to extend
the research from leaves to other tissues, to develop discriminant models with great universality
for real-world application and to select optimal wavelengths with great universality to reduce data
amount and develop low-cost multi-spectral imaging system. The results in this study could provide
valuable guidance for bringing hyperspectral imaging to real-world application of plant diseases
detection and control.

5. Conclusions

Hyperspectral imaging combined with chemometrics was applied to detect SS on oilseed rape
stems. Average spectra of healthy and infected stems as well as pixel-wise spectra of healthy stems
and infected regions within infected stems of two sample sets were extracted and studied. Optimal
wavelengths selected by PCA loadings and 2nd derivative spectra were similar between two sample
sets, indicating the effectiveness of optimal wavelengths selection by PCA loadings and 2nd derivative
spectra. PLS-DA, SVM and RBFNN models using full spectra and optimal wavelengths of average
spectra and pixel-wise spectra for two sample sets all obtained satisfactory detection results, indicating
that hyperspectral imaging was a promising technique to detect SS on oilseed rape stems. The use of
discriminant models and optimal wavelengths selection methods in two different sample sets indicated
that chemometric methods were important for hyperspectral imaging application, and selection of
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optimal discriminant models and optimal wavelengths selection methods which would obtain good
results in different sets was important and would help to bring hyperspectral imaging to real-world
application. In future studies, more samples and more chemometric methods will be studied under
different situations for using hyperspectral imaging to detect SS on oilseed rape stems, as well as other
organs and other crops.
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