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Abstract: This review is mainly focused on the optoelectronic properties of diamond-based one-
dimensional-metal-oxide heterojunction. First, we briefly introduce the research progress on one-
dimensional (1D)-metal-oxide heterojunctions and the features of the p-type boron-doped diamond
(BDD) film; then, we discuss the use of three oxide types (ZnO, TiO2 and WO3) in diamond-based-
1D-metal-oxide heterojunctions, including fabrication, epitaxial growth, photocatalytic properties,
electrical transport behavior and negative differential resistance behavior, especially at higher tem-
peratures. Finally, we discuss the challenges and future trends in this research area. The discussed
results of about 10 years’ research on high-performance diamond-based heterojunctions will con-
tribute to the further development of photoelectric nano-devices for high-temperature and high-
power applications.

Keywords: diamond-based; one-dimensional metal oxide; heterojunction; high temperature

1. Introduction

Metal oxide materials have attracted great attention from the scientific community
because of their important technical applications. One-dimensional (1D) nanorods (NRs),
nanowires (NWs) and nanotubes (NTs) formed from metal oxides (such as ZnO, TiO2
and WO3) enable fabrication of some specific nanodevices for optoelectronic applications,
for instance, photodetectors [1,2], light-emitting diodes (LED) [3], and solar cells [4,5].
This is because of the large surface-area-to-volume ratio, excellent charge carrier transport
performance and good crystallization ability shown by these types of nanostructures [6,7].
Thus far, heterostructure optoelectronic devices have been formed by depositing n-type
metal oxides on various p-type substrates, including Si [8–11], GaN [12–14], NiO [15],
Cu2O [16–19], graphene [20,21], boron-doped diamond (BDD) film [22–27], and organic
material [28]. Among them, BDD acts as an excellent p-type conductive material for high-
temperature, high-power and radiation-proof photoelectronic devices with its large band
gap at room temperature (5.47 eV) and high thermal conductivity [29]. When combining
1D metal oxide with p-type diamond, one has to explore the carrier transport behavior of
the formed heterojunction devices, which has both theoretical and application importance
for designing new photoelectronic devices for extremely harsh environments, such as outer
space or nuclear energetics industries. In recent years, p-type BDD has been used in combi-
nation with various 1D-structured metal oxides (for instance ZnO [22,30–33], WO3 [34–36]
and TiO2 [37–41]) to form heterojunctions demonstrating effects of rectification and neg-
ative differential resistance (NDR), which may be widely used in various technologies.
However, no comprehensive discussion focusing specifically on electrical characteristic
of diamond-based p-n heterojunctions has been published. Therefore, this review sum-
marizes the past progress in the device fabrication, electrical transport properties and
NDR-related applications of diamond-metal oxides (ZnO, TiO2 and WO3) heterojunctions.
The temperature-driven carrier injection mechanisms in such heterojunctions are described
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herein in further detail. The approximately 10 years of research discussed will benefit the
next step in the development of high-temperature and high-power optoelectronic devices.

2. Heterojunctions with 1D Metal Oxides Semiconductors

Since the discovery of carbon NTs by Professor Iijima in 1991 [42], 1D nanomaterials
have quickly become one of the hotspots in the research of nanomaterials and functional
devices. Carbon NTs have excellent physical and chemical properties, such as large surface-
area-to-volume ratio, high mechanical strength and brilliant thermal conductivity, as well
as good chemical stability. However, the use of presently existing growth technologies
does not allow a readily available effective chiral control over the synthesis of carbon
NTs [43], always resulting in a compound with both metallic and semiconducting proper-
ties. As such, it is impossible to obtain a completely pure semiconductor, which greatly
limits the applications of optoelectronic devices.

Because of the above limitation, researchers started with the development and inves-
tigation of other 1D semiconductor nanomaterials. Silicon (Si) is the most widely used
semiconductor material for optoelectronics devices. Professor Charles Lieber of Harvard
University, as the leading expert in this field, for the first time has successfully prepared Si
NWs [44] and employed them in photovoltaic sub-devices, biosensors, etc. [45,46], showing
the revealed nanomaterials and devices to have broad-range expectations in engineering.

However, Si NWs also demonstrate some shortcomings, such as easy oxidation to
form polycrystalline or crystal defects in air, which may have a prevailing effect on the
electrical transmission characteristic. Due to this fact, researchers reoriented to the develop-
ment and implementation of 1D nanometer semiconducting materials with less oxidizing
ability and higher stability. In 2001, the discovery of metal oxide semiconductor nanobelts
pushed the study of nanomaterials forward to a new challenge. Metal oxides as the prime
candidates for new functional inorganic materials are finding many promising applications
in aerospace, biological engineering, semiconductor electronics, functional ceramics, and
other fields. The 1D metal oxide nanosystems belong to the most prominent examined
systems due to their good crystal quality, low defect density, excellent charge-carrier mo-
bility, and fast response [47], thereby forming a promising replacement for traditional
silicon-based electronic and optical devices.

The most recent studies have reported on the excellent optical–electronic performance
of 1D metal oxides as well as new functional devices based on various substrate materials.
Du et al. prepared a high-speed ultraviolet photoelectricity detector of ZnO-NWs Schot-
tky barrier based on the surface-ionic-gate powered by tribo-nanometer generator [48].
Wang et al. demonstrated a novel bipolar response in self-powered ZnO NWs/Sb2Se3
heterojunction photodetector with adjustable polarity switching wavelength. As demon-
strated in Figure 1, the output signal shows the change in the photocurrent polarity between
shorter (405 nm–690 nm) and longer (760 nm–880 nm) wavelength regions [49]. Gao et al.
have recently obtained a UV-free white LED based on high-level Fe-doped p-ZnO NWs ar-
rays on the n-GaN substrate [12]. Peng et al. developed a real-time wearable UV-radiation
monitor by exploiting the excellent properties of p-CuZnS/n-TiO2 photodetector [50].
Tang et al. proposed a feasible way to improve the hole doping in ZnO:N films with
introduced beryllium and demonstrated strong near-band edge UV emission of the ZnO
homojunction LED devices, which can be observed even at 400 K under continuous current
injection [51]. Ye et al. improved the performance of n-ZnO NRs/p-GaN LED with the
use of transparent graphene electrode. The transparent graphene electrode was used
as the current diffusion layer, showing better performance compared to that in the ITO
analogs [52]. The photoelectrochemical self-powered photodetectors related to ZnO/CdS
NWs were manufactured by Zhang’s group [53]. The ZnO NWs were used as the carrier
collection channels and UV absorbers with a well-organized structure to efficiently absorb
light, whereas CdS nanoparticles were used as the visible photosensitizers. Prepared ZnO
NWs/CdS structures demonstrate superfast response time and effective sensitivity to
visible light and UV in the absence of power.
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Figure 1. (a) Schematic view of the photodetector and (b) normalized photocurrent under illumina-
tion of light with different wavelengths [49].

Cheng et al. fabricated a SnS/TiO2 NTs arrays photoelectrode synthesized by an-
odization combined with electrodeposition technique, which was used to degrade 2,4,6-
trichlorophenol under simulated visible light irradiation [54]. Yan et al. prepared pho-
tocatalytic binary composite MoS2/TiO2 (NTs) heterojunction (Figure 2). The composite
material has demonstrated good photocatalytic disinfection effect and recyclability and as
such has a broad field of potential applications in water disinfection [55]. Gu et al. reported
on the preparation of novel WO3 NRs/graphene/BiV1−xMoxO4 heterojunction photoelec-
trode for photoelectrochemical water splitting. The heterojunction exhibits an enhanced
photocurrent density, which makes light conversion efficiency significantly improved [56].
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Figure 2. (a) Schematic diagram and (b) SEM image of the MoS2/TiO2 NTs fabrication process [55].

Specifically, these studies provide new strategies and insights for the fabrication of
high-efficiency optoelectronic devices. One may see that most of the existing 1D metal
oxide heterojunctions are generally based on Si, GaN and Cu2O, etc., and such devices show
excellent photoelectric performance under normal environmental conditions. However,
due to the small size of nanostructures, both light and injection current will cause a
significant thermal effect. Since the thermal conductivity of the listed substrates is low,
it leads to the rise in the thermal noise phenomenon and fluctuation of the effective barrier
height at a high temperature. With the temperature rise, an increase in the leakage current,
a drift of the threshold voltage and enhanced thermal noise degree will affect the sensitivity
and reliability of the device. In addition, there is a large thermal coefficient difference
between the metal oxides and the Si substrate. The interface between these two materials
plays an important role in the device performance: the heterogeneity at the interface will
cause the effective barrier height to fluctuate with the reduced performance of a device.
This phenomenon is more evident in harsh environments such as high temperature and
high flux [57–59].
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3. P-Type B-Doped Diamond Films

Compared with other wide band gap semiconducting substrates (NiO2, GaN, SiC, etc.),
diamond has favorable intrinsic optoelectronic performance, for instance, high thermal con-
ductivity (22 W·cm−1·K−1), high carrier mobility (2200 and 1800 cm2·V−1·s−1), high electri-
cal breakdown field (10 MV·cm−1) and high saturation velocity (2.7 × 10−7 cm·s−1) [60,61].
Therefore, diamond is regarded as a suitable material for high power and high temperature
to cooperate with metal oxide semiconductors in optoelectronic devices. So far, the main
requirements include high-quality epitaxial growth as well as doping. However, because of
the contradiction between structural quality and the electrical properties of p-diamond, it is
still a challenge to produce high-quality p-type diamond structures. With boron doping,
diamond can be transformed from an insulator into a semiconductor or even a supercon-
ductor, wherein a boron atom is in the form of a host impurity in the diamond. High-boron
doping in the diamond film may enhance its electrical resistivity (up to 10−3 Ω·cm order).
In order to improve the efficiency of B-doping pursuing high mobility and high crystal
quality, many efforts have been implemented.

Experimentally, Li’s group obtained the BDD film synthesized by hot filament chemi-
cal vapor deposition (HFCVD) [62]. B(OCH3)3 was utilized as the boron doping source
in a methane (CH4) and hydrogen (H2) reaction atmosphere with a flow rate of 0, 2, 5,
10 and 20 sccm. The resistances decrease for the B-doping diamond films grew with in-
creasing the H2 flow rate tested by Hall-effect measurement. The undoped diamond film
consists of pyramid-shaped grains. With the increase of the B-flow rate up to 2 sccm and
10 sccm, the majority of grains showed lamellar-shaped twin characteristic, on account of
the renucleation induced by B-doping. As for 20 sccm, the grains showed a dominating
pyramid-shaped morphology, and a twinned crystal appeared (Figure 3). Raman spec-
troscopy (Figure 4) is an effective technique to investigate the structure of doped diamond.
It is worth noting that owing to the high content of BDD, the p-degenerated diamond peak
(1332 cm−1) shows an asymmetric curve and shifts towards the lower wavelength values
in the region-centered phonon bands. Moreover, two wide bands that appear at 500 cm−1

and 1200 cm−1 in the low-frequency spectrum portion are consistent with two maximum
values of phonon density in the diamond state.
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Figure 4. Raman pattern of BDD grown with the boron of (a) 0 sccm, (b) 2 sccm, (c) 5 sccm, (d) 10 sccm
and (e) 20 sccm [62].

In the most recent study [63], a small amount of sulfur was added during the deposi-
tion of BDD films by microwave plasma chemical vapor deposition (MPCVD), as reported
by Liu’s group. The results show the highest values of at once doping efficiency, growth
rate, hole mobility and concentration, crystal mass and surface morphology of boron at-
tained with the addition of sulfur (Figure 5). In the presence of an appropriate amount
of sulfur, a high carrier concentration of 1.2 × 1019 at/cm3 may be obtained during the
growth process when the B-C ratio is only 2.5 ppm, which denotes a high efficiency of
boron doping. The regulation mechanism of sulfur addition has been considered in terms
of sulfur-induced plasma changes and possible boron-sulfur complex formation.

Wei et al. [64] reported on the B-doped double-layer diamond films fabricated by
MPCVD and discussed the influence of B-doping concentrations on the surface morphol-
ogy, crystal quality, surface composition, conductivity and secondary electron emission
properties. With increasing boron doping amount, the conductivity becomes beneficial to
the emission of secondary electrons. However, as a consequence of the declining quality
of the diamond crystals (Figure 6), the increased sp2 carbon on the surface and the boron
segregation on the surface will reduce the effects of secondary electron emission in the
films. Therefore, this improves vertical conductance, which increases the escape depth of
secondary electrons and obviously leads to the reduced surface performance with the B
doping. The results show that the films with the boron-doped layer demonstrate a low
concentration of the crystals with excellent quality and sufficient conductivity, which helps
to attain the outstanding properties of the secondary electron emission.

Specifically, the discussed results referring to BDD demonstrate strategies for im-
proving the doping efficiency, hole mobility, carrier concentrations, conductivity and the
diamond crystal quality to further provide an efficient way to grow high-quality p-diamond
material, restoring its lattice mismatch and demonstrating potential for p-BDD-based ap-
plications in optoelectronics.
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4. Diamond-Based 1D Metal Oxide Heterojunction Classes

The combination of metal oxide and BDD has attracted wide attention, the main
reason for which is the lack of effective n-type doping in diamond and p-type doping in
metal oxide. The configuration of p-BDD and n-metal oxide has been most widely studied.
In contrast to a continuous uniform film [26,27,32,65–73], the 1D nanostructure (e.g., NRs,
NWs and NTs) that is free of defects, quantum-enhanced and has a large surface-area-to-
volume ratio will not encounter the thermal mismatch with diamond, thereby substantially
improving the performance of the hybrid structural heterojunction. For simplicity, we will
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focus on three different 1D n-type metal oxide (ZnO, TiO2 and WO3)/p-BDD heterojunction
structure types in this review in the following general examples.

4.1. D N-ZnO/P-Diamond Heterojunction

ZnO is a suitable unintentionally doped n-type semiconductor with the wide band
gap of 3.7 eV and exciton binding energy as high as 60 meV, which is promising for a wide
range of applications. Various forms of ZnO nanostructures, such as NWs [15], NRs [74],
nanobelts [75] and nanosheets [76], have been commonly studied because of their favorable
optoelectronic performance compared with the bulk material. In these nanomaterials
mentioned above, 1D n-ZnO nanostructures are supposed to be the most efficient for
optoelectronic diodes owing to their high-density surface trap states, fewer interference
states, excellent carrier confinement and grain boundaries [77]. They are able to improve
the optoelectronic performance of photodiode devices [6,78].

4.1.1. Epitaxial Growth of 1D ZnO NRs/Diamond Facet

At room temperature and normal pressure, ZnO shows the hexagonal wurtzite struc-
ture (Figure 7). Each Zn2+ ion is surrounded with four O2− ions corresponding to tetrahe-
dral coordination (sp3 orbital hybridization) corresponding to the C6V

4 class and P63mc
space group. The shape of Zn2+-O2− tetrahedrons, as well as the ionic–covalent nature of
Zn-O bonding, define the intrinsic polarity in the ZnO crystal growing along the c-axis
[0001] orientation. Therefore, various 1D nanostructures are readily formed in the ZnO
growth process [79].
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Diamond is a typical atomic crystal with a face-centered cubic structure, belonging to
the equiaxed crystal system. The carbon atoms in the diamond structure are bonded by sp3,
with each carbon atom being bonded with four adjacent carbon atoms. The arrangement
of diamond carbon atoms is shown in Figure 8, which contains a carbon atom centered in
a regular tetrahedron and a carbon atom at each of four vertices, wherein carbon atoms
at each vertex are covalently bonded with C-C bonds and shared by four tetrahedrons to
form a three-dimensional network of diamond crystal [80].

In terms of theoretical background, Li’s group proposed the epitaxial growth mecha-
nism for the structure of ZnO-diamond. Since both ZnO crystal (0001) facet and diamond
(111) facet have the same hexagonal atomic arrangement, ZnO (0001) planes and dia-
mond (111) are geometrically matched. The [0001] oriented 1D ZnO NRs are normally
aligned and epitaxial grown perpendicular to the diamond (111) plane. The epitaxial
growth relation between the ZnO (0001) and diamond (111) is suggested in compliance
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with (0001) [1120]ZnO//(111)[110] diamond or (0001)[1010]ZnO//(111) [110]diamond
(Figure 9a), and the epitaxial growth relation between the (0001) ZnO and (100) diamond is
primarily of (0001)[0001]ZnO//(101) [101] diamond (Figure 9b) [23]. An in-depth study of
1D ZnO/diamond system will not only contribute to understanding the physical mecha-
nism for epitaxial growth but also to extending the area of ZnO/diamond applications in
optoelectronics devices.
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4.1.2. 1 D N-ZnO/P-Diamond Related Optoelectronic Devices

In the past, the existing ZnO types were usually deposited on a diamond substrate
in the form of thin-film, which was used for surface acoustic wave (SAW) filters applica-
tions [65], examining structural and electrical properties [66,67,72], and for constructing
p-n junction diode [68]. In the last ten years, composite 1D ZnO related-nanostructures and
diamond nano-optoelectronic p-n junction devices were extensively studied. Zhi et al. [69]
developed novel tyrosine biosensor with the biological function based on ZnO NRs on
the BDD substrates. The ZnO NRs were for the first time deposited on BDD thin film
by a low-temperature solution method. Boron-doped ZnO nanorods were fabricated on
the BDD by hydrothermal technique and showed high photocatalytic performance [33].
Gao et al. [81] reported on photocatalytic activity of the n-ZnO NRs/p-BDD heterojunction
fabricated with the hydrothermal degradation of methyl orange dye, which depended
on the density and diameter of ZnO NRs, the distance between NRs and the interface at
ZnO-BDD heterojunction (Figure 10). Vertically aligned ZnO NRs were synthesized by
Wang et al. [82] for the first time by using a low-temperature solution method on the BDD
films. The heterojunction showed typical rectification characteristics with the standard
ideality factor approaching theoretical values under both low and high forward-biasing
voltages (Figure 11).
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heterojunction. A diode ideality factor n1 = 1.0 in the range from 0–0.3 V and n2 = 2.1 in the range
from 1.2–3.0 V were simulated [82].

In recent years, ZnO NRs/BDD have been prepared and used as an anode for pho-
tocatalytic oxidation of aniline. The results showed that ZnO NRs/BDD is a promising
photoanode for organic degradation [83]. Huang et al. [84] proposed a low-temperature
annealing process to improve the optical response of the ZnO NRs/nano-diamond film
substrate for the UV photodetector. Furthermore, novel ZnO NRs/ultra-nanocrystalline
diamond may be used as a high-sensitivity device for hydrogen gas sensing (Figure 12) [85].
They also reported ZnO NTs, with the diamond NWs enhancing UV detection and field
emission properties [86].

Compared to n-ZnO NRs/p-BDD heterojunction, n-ZnO NWs/p-BDD heterojunction
reported by Sang et al. shows better I-V electrical properties and higher electrical transport
performance (Figures 13 and 14) [30]. By comparing both dark and UV illuminated I-V
characteristics, one may see that the UV illumination reduces the turn-on voltage and
ideality factor of the tested heterojunction. At 10 V, the UV positive current is more than
4 times as much as the dark [31]. To sum up, the high UV response rate, long device life and
fast switching speeds of the heterojunction make it an ideal material for multifunctional
optoelectronic applications.
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4.1.3. Electrical Transport Behavior of N-ZnO NRs/P-BDD Heterojunction at
Elevated Temperatures

Both diamond and ZnO are significant high-temperature materials, so the behavior of
n-ZnO/p-BDD system is investigated at elevated temperatures. Sang et al. [24] reported on
the preparation progress of n-ZnO NRs/p-BDD heterojunction devices and their electrical
transport behavior in the temperature range from 25 ◦C to 220 ◦C. The device exhibits
representative rectifying behavior at all test temperatures (Figure 15). The turn-on voltage
of heterojunction decreases at higher temperatures. This is due to the fact that at higher
temperatures, more holes are produced on the BDD side. The conductivity was lower than
that of n-ZnO NRs/p-Si heterojunction [87], indicating that n-ZnO/p-BDD-based devices
have better electrical properties at high temperatures. The decrease of n at higher tempera-
tures is due to the increasing number of thermally excited carriers, the enhanced barrier
tunneling, and the recombination process in the depletion region. At higher temperatures,
both the carrier injection and ohmic behavior are improved. The detection temperature of
n-ZnO NRs/p-BDD reaches about 220 ◦C, which is currently the maximum temperature
for the p-n heterojunctions based on n-ZnO NRs.

4.1.4. NDR for 1D N-ZnO/P-Degenerated BDD Heterojunction at Elevated Temperatures

When p-diamond is degraded by heavy boron-doping (higher carrier concentration,
1020 orders of magnitude), the heterojunction exhibits the NDR phenomenon. The n-ZnO/p-
degenerated BDD heterojunction provides a new way to form an NDR tunneling diode.
The NDR phenomenon of 1D n-ZnO NRs/p-degenerate BDD was observed by Li et al. [23],
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and the forward I-V plots can be divided into three regions. The NDR phenomenon occurs
with the peak-valley current ratios (PVCR) of ~10 (Figure 16a). The generation of NDR is
caused by the tunneling current in the ZnO and p-degenerated BDD structures.
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diamond, displaying the NDR phenomenon. The inset shows a thermal equilibrium energy band
diagram heterojunction. (b) The I-V curve of the n-ZnO NRs/p-degenerated diamond at 20~120 ◦C.
The inset presents a linear relationship of I-V plots for ohmic contacts of Ag/p-degenerated diamond
and Ag/ITO [23,31].

In our most recent study [31], we reported on n-ZnO NRs/p-degenerated BDD tunnel
diode and its NDR characteristics with temperature change as well as carrier tunnel injec-
tion behavior. The results show that the prepared heterojunction exhibits NDR performance
at 20 ◦C and 80 ◦C. Subsequently, NDR disappears, and rectifying properties become visible
at 120 ◦C (Figure 16b). The PVCR is reduced at higher temperatures. The tunneling current
from diamond valence states to ZnO deep levels leads to the reduction in the turn-on volt-
age at higher temperatures and promotes the appearance of NDR. The high-temperature
NDR phenomenon of 1D n-ZnO NRs/p-degenerated BDD heterojunction may extend the
resistance switches and resonant tunneling diode applications to high-temperature and
high-power environments.

Table 1 provides an overview of a portion of recent investigations based on 1D n-
ZnO/p-diamond heterojunction for various applications and properties.

Table 1. Heterojunction applications and properties of 1D n-ZnO/p-diamond.

Heterojunction Morphology Synthesis Route Applications (Properties) Ref.

ZnO film/diamond Magnetron sputtering Surface acoustic wave [65]
ZnO film/diamond Magnetron sputtering Films’ quality [66]
ZnO film/diamond MOCVD Electrical properties [67]
ZnO film/diamond Atomic Layer Chemical Vapour Deposition Electrical properties [72]
ZnO film/diamond Magnetron Sputtering Heterojunction diode [68]
ZnO NRs/diamond Low-temperature solution Tyrosinase biosensor [69]
ZnO NRs/diamond Hydrothermal method Photocatalytic activities [33]
ZnO NRs/diamond Hydrothermal method Photocatalytic activities [81]
ZnO NRs/diamond Low-temperature solution Electrical properties [82]
ZnO NRs/diamond Hydrothermal method Photoelectric anodes [83]
ZnO NRs/diamond Hydrothermal method UV photodetector [84]
ZnO NRs/diamond Sol-gel method Hydrogen gas sensors [85]
ZnO NTs/diamond Hydrothermal method UV detection and field emission [86]
ZnO NWs/diamond Hydrothermal method Electrical transport properties [30]
ZnO NRs/diamond Thermal evaporation method NDR properties [31]
ZnO NRs/diamond Thermal evaporation method UV photoelectrical properties [22]
ZnO NRs/diamond Thermal evaporation method Electrical transport behavior [24]
ZnO NRs/diamond Thermal evaporation method NDR properties [23]

4.2. 1 D N-TiO2/P-Diamond Related Optoelectronic Devices

1D TiO2 nanostructures with a wide bandgap (3.2 eV) and a large surface area [88]
were selected as a promising material for application in electronics [89–91]. Common
functional TiO2 nanomaterials have attracted widespread attention due to superior perfor-
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mance derived from their inherent 1D architecture [92–94]. 1D nanostructures offer more
possibilities for better optical and electrical properties, such as faster carrier generation,
better charge separation, and longer charge carrier life [95–97]. TiO2 is an intrinsic n-type
semiconductor and may form a p-n heterojunction combined with the p-type semiconduc-
tor [98–102]. N-type TiO2 and p-type BDD have excellent and unique properties, which
make them ideal semiconductors for forming heterojunction structures.

In their previous study, Li et al. [103] deposited 1D TiO2 NRs with different mor-
phology grown on BDD film with ZnO layer using the hydrothermal method. TiO2 NRs/
ZnO/BDD heterojunction may enhance the photocatalytic activity of TiO2 NRs/ZnO and
TiO2 NRs/BDD heterojunctions, respectively. In addition, TiO2 NTs arrays were fabri-
cated on the p-type BDD substrate by means of liquid phase deposition using ZnO NRs
template. Compared with the case of a single TiO2 NTs, n-TiO2 NTs/p-diamond het-
erostructure shows significantly enhanced photocatalytic activity and good recyclability
(Figure 17) [38,39]. Afterward, TiO2 NTs were deposited by the same method on hemispher-
ical CVD diamond films. The degradation of reactive yellow 15 (RY15) solution showed
that the product exhibits high photocatalytic performance (Figure 18) [104].
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TiO2 NTs/BDD composite electrode (Figure 19a) was fabricated by microwave plasma-
enhanced chemical vapor deposition (CVD) by the Siuzdak group, which greatly enhanced
the electrochemical properties. Compared with the BDD prepared on a Ti plate (0.11 mF·cm−2),
the composite electrode provides high capacitance (Figure 19b). The enhanced capacitive
effect in TiO2 NTs/BDD can be understood as follows: (1) the particular cooperative mor-
phology of TiO2 NTs and BDD provides a more efficient conduction route for ion diffusion;
(2) NTs are partially decomposed and converted to Ti2O3 and TiC fractions. Finally, TiO2
NTs, which demonstrate high ordering attained by a simple, rapid and controllable anodic
oxidation method, can be used as the conductive BDD layer deposited on a substrate and
then embedded into the structure of a supercapacitor [70,105,106].
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Most recently, Miroslav et al. [41] reported on the development of a unique photoelec-
trochemical electrode consisting of a nanostructured BDD layer covering an n-type TiO2
film (Figure 20). The effects of the nanostructure, B doping level and TiO2 film thickness on
the properties of PEC were studied. Using RF magnetron sputtering, the BDD films with
two doping levels (gas phase B/C = 1000 ppm and 10,000 ppm) that had already grown
and plasma-nanostructured were used as the substrates to deposit TiO2 layers of 20, 100
and 500 nm. BDD was used as the structure electrode. When the gas phase B/C ratio was
1000 ppm, the surface was covered with a TiO2 layer 500 nm thick, and the photocurrent
was the highest (60 µA/cm2 and 3.2 mA/cm2 at 0 and 2 V vs. Ag/AgCl respectively).
The favorable influence of the nanostructure type and pn junction on the hole injection
was confirmed by experiments. Suzuki et al. [37] prepared a mesoporous TiO2 layer on
the BDD and found that deep-UV illumination could improve its photocatalytic efficiency.
They also used this hybrid electrode in water electrolysis to produce O3 gas and other
reactive oxygen species (ROS). In addition, ROS produced by electrochemistry were tested
in water treatment under UV illumination and demonstrated the system’s suitability for
advanced oxidation processes [27]. This simple water treatment system can be used to
break down refractory organic matter in wastewater, a process that is still being studied.
Basically, the 1D n-TiO2/p-BDD device suggests a new strategy, which is expected to be
used for its wide-range implementation in photocatalysis, photoelectric chemical electrode
and sensor, etc.

A summary of different synthesis routes and applications (properties) of 1D n-TiO2/p-
diamond heterojunction is presented in Table 2.
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Table 2. Heterojunction applications and properties of 1D n-TiO2/p-diamond.

Heterojunction Morphology Synthesis Route Applications (Properties) Ref.

TiO2 film/diamond Sol-gel method Photoelectrocatalytic activities [102]
TiO2 NRs/diamond Hydrothermal method Photocatalytic activities [103]
TiO2 NTs/diamond Liquid phase deposition method Photocatalytic activities [38]
TiO2 NTs/diamond Liquid phase deposition method Photoelectronic nanodevices [39]
TiO2 NTs/diamond Liquid phase deposition method Photocatalytic devices [104]
TiO2 NTs/diamond Anodization method Hybrid electrode [105]
TiO2 NTs/diamond Anodization method Supercapacitor or Energy Storage Devices [106]
TiO2 NTs/diamond Anodization method Supercapacitor [70]
TiO2 film/diamond Radio Frequency sputtering Photoelectrochemical performance [41]
TiO2 film/diamond Sol-gel method Photocatalytic activities [37]
TiO2 film/diamond Sol-gel method Hybrid electrode [27]

4.3. 1D N- WO3/P-BDD-Related Optoelectronic Devices

WO3 is a low-cost metal oxide semiconductor with a wide band gap (2.7 eV), excellent
electron transport and unintentionally n-type doping performance. WO3 is considered as an-
other candidate material for applications in electronics [7,107]. 1D WO3 nanostructures (such
as NRs, NWs and nanoneedles) have been used in photocatalytic applications [108,109],
sensor switching devices [110], gas sensors [111,112] and UV photodetectors [2]. Because
of the excellent performance of 1D WO3 and BDD, it is worth combining them in 1D n-
WO3/p-BDD heterojunction to provide new applications in electronics, especially at higher
temperatures.

In 2017, Li et al. [34] studied the high-temperature electrical transport behavior of n-
WO3 NRs/p-BDD heterojunctions fabricated by the hydrothermal method. WO3 NRs with a
square feature of the top surface were deposited onto the BDD with perpendicular alignment
to the substrate plane (Figure 21a–c). The p-n heterojunction demonstrated excellent thermal
stability and rectified characteristics within the temperature range from room temperature
to 290 ◦C. The turn-on voltages declined, and the rectified ratio was relatively high with
the temperature increase. The ideality factor decreases with the increase in temperature
(Figure 21b). Under the influence of high temperature, when the reverse voltage is large,
both the forward current and the reverse leakage current increase (Figure 22).

At elevated temperatures, the EF value of the heterojunction semiconductor usually
moves close to the middle region of the bandgaps (shown in the energy band diagrams,
Figure 21d,e) [113]. More intrinsic carriers are thermally excited, and it becomes easier for
electrons (holes) to pass from the n-WO3 conduction band (p-BDD valence band) to the
p-BDD conduction band (n-WO3 valence band) under the voltage applied, which leads to
the decreasing turn-on voltage, increasing forward current, and slightly improved injection
efficiency. At higher voltages and for temperatures above 200 ◦C, the traps are filled
with more thermally excited carriers, and the injected current complies with the trap-free
SCLC law, with an exponential power of about 2. The Et value of the characteristic trap
energy obtained from the heterojunction is 50 meV (inset of Figure 22). The characteristic
trap energy values measured for ZnO NRs/BDD heterojunction [24], amorphous polymer
semiconductor [114] and organic heterojunction [115] are higher than the listed value.
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Compared with the previously reported heterojunctions comprising WO3 (n-WO3/p-
carbon NTs [116] and WO3/SnO2 [117]), the structure of 1D n-WO3/p-BDD has better
electrical transport performance at higher temperatures. This study extends the ranges of
the design and application for heterojunctions based on BDD, especially their employment
at high temperatures, high power and in various harsh environments.

5. Conclusions and Future Perspective

In this review, we have summarized recent general findings for diamond-based metal
oxide p-n heterojunctions, especially those that comprise three important types of 1D
nanostructures studied in this photoelectric decade. The features of p-type BDD films and
corresponding epitaxial growth relationships of 1D ZnO NRs on diamond facet have been
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experimentally and theoretically predicted. High-temperature electrical transport behavior
and NDR of n-ZnO NRs/p-BDD heterojunction have been presented in detail. 1D n-
TiO2/p-BDD heterojunction-related optoelectronic applications, including photocatalysis
and photoelectrochemical electrode, have been presented. The fabrication of 1D n-WO3/p-
BDD heterojunction and its electronic behavior at high temperature are discussed.

These above-mentioned reports provide a greatly expanded understanding of the
background of electrical properties in diamond-based 1D metal oxides p–n heterojunctions.
In the future, it is also desirable to find new fabrication routes and types of electrodes for a
device to improve the device performance. For instance, by introducing a doping element
into the metal oxide, one may increase the carrier concentration or fabricate composite 1D
metal oxide with other nanomaterials to form complex structures. Optimization of the
growth quality for BDD will raise the operating temperature of the device. By changing
the electrode configuration of the heterojunction and controlling highly oriented nano-
sized 1D metal oxide and boron doping concentration of the BDD, we could construct a
variety of heterojunction devices and optimize the preparation process. In order to better
understanding the device tunneling physical mechanism, it becomes essential to simulate
semiconductor theoretical and computational models for the development of diamond-
based metal oxides p-n heterojunctions. This is not a comprehensive investigation, but
rather a report on the most cited and unique explanations that look promising for the
future. These may be only a small part of the possibilities, and the authors hope that this
review will inspire further research activities to make more discoveries in the future.
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