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Accurate early prognostication is vital for appropriate long-term care decisions after traumatic brain injury. While measures of

resting-state EEG oscillations and their network properties, derived from graph theory, have been shown to provide clinically useful

information regarding diagnosis and recovery in patients with chronic disorders of consciousness, little is known about the value of

these network measures when calculated from a standard clinical low-density EEG in the acute phase post-injury. To investigate

this link, we first validated a set of measures of oscillatory network features between high-density and low-density resting-state

EEG in healthy individuals, thus ensuring accurate estimation of underlying cortical function in clinical recordings from patients.

Next, we investigated the relationship between these features and the clinical picture and outcome of a group of 18 patients in

acute post-traumatic unresponsive states who were not following commands 2 daysþ after sedation hold. While the complexity of

the alpha network, as indexed by the standard deviation of the participation coefficients, was significantly related to the patients’

clinical picture at the time of EEG, no network features were significantly related to outcome at 3 or 6 months post-injury. Rather,

mean relative alpha power across all electrodes improved the accuracy of outcome prediction at 3 months relative to clinical fea-

tures alone. These results highlight the link between the alpha rhythm and clinical signs of consciousness and suggest the potential

for simple measures of resting-state EEG band power to provide a coarse snapshot of brain health for stratification of patients for

rehabilitation, therapy and assessments of both covert and overt cognition.
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Introduction
Early and efficient stratification of patients after a trau-

matic brain injury (TBI) requires accurate prognostication

in the intensive care unit. Of those individuals who enter

a coma as a result of a TBI, 40% will die in the inten-

sive care unit, 40% will achieve a good recovery and

20% will develop a prolonged disorder of consciousness

such as unresponsive wakefulness syndrome (or vegetative

state) in which they appear entirely unaware of

themselves and their environments.1,2 More accurate

prognoses in acute states of unresponsiveness will allow

for more appropriate critical care decisions relating to

continuation or withdrawal of therapy, thus increasing

the effectiveness of public health services and ensuring

quality of life for those who progress beyond coma.

Recently, Claassen et al.3 demonstrated that a significant

minority of patients (16/104) in the acute period after se-

vere brain injury could modulate their EEG-detected brain

activity in response to verbal instructions. Furthermore,

half of those patients (eight in total) progressed to being

able to function independently (i.e. Extended Glasgow

Outcome Score (GOSE) �4),4 compared with a quarter of

patients who did not exhibit evidence of instruction-

induced EEG modulations. This result builds on evidence

of the diagnostic and prognostic utility of task-based EEG

modulations in more chronic stages of brain injury.5,6

These task-based approaches identify those patients with

the highest level of residual (though covert) cognition and

consciousness, thus allowing strong conclusions regarding

long-term outcomes. Nevertheless, the evidential ‘bar’ set

by task-based approaches limits their sensitivity to those

patients who possess the necessary residual cognition to

produce appropriate EEG changes. Indeed, EEG changes

due to motor imagery—the task employed by Claassen

et al.—have low sensitivity in healthy individuals.7

Consequently, while the active motor imagery approach

allows for strong predictions about future recovery in the

15% of patients who return positive results (i.e. 16/104;

see also8), there is little clinical benefit for the 85% of

patients who return null results.

One approach to address the relative insensitivity of

task-based approaches is to use resting-state measures

of brain activity, such as band power and functional

connectivity. Indeed, resting-state measures from EEG

and PET appear to be the most useful for diagnoses in

chronic (prolonged) disorders of consciousness.9,10

Evidence also suggests that EEG spectral measures across

Graphical Abstract

Alpha Part. Coe .

Delta DWPLI

Delta Power

Alpha DWPLI

Alpha Power

EEG Canonical Variate

C
lin

ic
al

 C
an

on
ic

al
 V

ar
ia

te
r=0.901, p=0.042

of patients in acute post-traumatic unresponsive states

Outcome at 3-months is predicted by mean alpha power during the acute period post-injury

Healthy Patient

R
el

at
iv

e 
al

ph
a 

po
w

er
 (

%
)

R
el

at
iv

e 
al

ph
a 

po
w

er
 (

re
si

du
al

s)

3-month outcome (residuals)
0 1-1

0

-3

3

}0

60

20

40

2 | BRAIN COMMUNICATIONS 2021: Page 2 of 10 A. O’Donnell et al.



canonical frequency bands (alpha, theta, and delta) may

hold prognostic value for acute post-traumatic coma. For

example, alpha power is negatively associated with

outcome in early studies11 (although see12) and, building

on these findings, a recent study by Tolonen et al.13 dem-

onstrated that alpha band power correlated with clinical

outcomes 6–12 months post-injury, as measured by the

Glasgow Outcome Scale (GOS). Schnakers et al.14

reported a significant positive relationship in a group of

13 patients in acute severe post-TBI coma between alpha

power and GOSE at 6 months, which survived statistical

controlling for confounds including sedation level.

Furthermore, they observed that the weaker the alpha

power in the acute stage, the greater the atrophy of the

left dorsal and ventral thalamus at 6 months, indicating a

link with the known thalamic pathology of prolonged

disorders of consciousness15,16. Greater percentage alpha

variability (a measure of the daily waxing and waning

rhythm of alpha power) has also been demonstrated to

predict higher GOS scores at 30 days17 and 6 months

post-admission,18 while other studies have indicated

prognostic utility across multiple canonical frequency

bands.19,20 Finally, Beridze et al.21 observed that an

increase in delta band power was associated with

progression from coma to unresponsive wakefulness syn-

drome and death. The correlations between alpha/delta

power and positive/negative outcomes, respectively, high-

light the utility of these specific measures for prognostic

purposes in post-traumatic coma.

Beyond measures of EEG band power, the importance

of EEG derived connectivity metrics for prognostication

in disorders of consciousness has also been highlighted in

recent work. For example, Chennu et al.22 identified

high-density EEG (hdEEG) as a tool to characterise EEG

connectivity networks, using graph theory to extract sum-

mary signatures of those networks. In that study, Chennu

et al. demonstrated that not only did relative alpha and

delta power relate to a patient’s diagnosis, but that the

structure of the alpha band connectivity networks—as

measured by participation coefficient and modular span

(see Materials and methods for definitions)—also related to

the patients’ behavioural signs of awareness. Furthermore,

in a larger group of patients, Chennu et al.23 investigated

the prognostic value of network measures in prolonged dis-

orders of consciousness and observed that delta band net-

work modularity and clustering best discriminated good

from bad outcome (i.e. death and unresponsive wakefulness

syndrome). More recently, Bareham et al.24 demonstrated

that the accuracy of 3-month outcome predictions could be

augmented by the addition of a composite measure of EEG

band power, connectivity and graph theory metrics, adding

to the body of evidence surrounding the value of EEG in

prolonged disorders of consciousness.

Although these graph theory metrics for prognostic

purposes appear promising, their utility in the context of

acute TBI is yet to be investigated. Nevertheless, and

consistent with the potential added value of EEG

connectivity measures beyond more conventional meas-

ures of spectral power, Kustermann et al.25 reported that

alpha band connectivity on the first day of post-anoxic

coma distinguished between patients with good and bad

outcome. We therefore hypothesized that EEG connectiv-

ity networks, summarized by graph theory metrics, would

predict outcome of patients at 3 and 6 months post-TBI.

To test this hypothesis, we recorded resting-state EEG in

a group of patients who were entirely sedation free and

who had not regained the ability to follow verbal com-

mands in the intensive care unit. Furthermore, we aimed

to test the reliability of network measures in the conven-

tional 10/20 EEG recordings made in typical acute care

settings. Indeed, while the literature on the clinical value

of EEG connectivity networks in chronic patient groups

has used high-density recordings (i.e. 64þ electrodes),

conventional clinical EEG recordings worldwide are con-

ducted with a low-density montage. We therefore first

investigated the reliability of the individual network

measures across high- and low-density montages to

robustly estimate the underlying cortical dynamics in a

group of healthy control participants, before investigating

their prognostic utility. This approach ensures confidence

that a low-density EEG network measure is a reliable

estimate of the same network measure that has shown

clinical value in hdEEG of chronic patient groups.

Materials and methods

Healthy participant data

We used healthy participant EEG data from the baseline

resting-state recordings made for a previous study.26 Data

from 20 participants with clean EEG data were included in

the analyses (11 females; mean age ¼ 30.85; SD ¼ 10.98).

Patient participants

We screened all 139 TBI admissions to the intensive care

unit of the Queen Elizabeth Hospital, Birmingham, UK,

between April 2018 and October 2019. Inclusion criteria

of this study required patients to have a Glasgow Coma

Scale (GCS)27 motor score below 6 (i.e. not obeying com-

mands), to be aged over 18 years and to be receiving

care as a result of a TBI. Exclusion criteria were: patients

moribund, those with prior history of moderate or severe

TBI or neurological disorder, those who were not English

speakers, those with CT evidence of brainstem-only

lesion (i.e. suspected locked-in syndrome), those with CT

evidence of focal left lateral temporal lobe lesions

(i.e. suspected specific language deficits) and those with

known hearing impairments (due to the use of auditory/

linguistic stimulation in other aspects of the research

protocol).

Of the 139 screened patients, 28 patients were con-

sented onto the study and 21 patients met all inclusion/
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exclusion criteria at the time of EEG, between 48 h and

7 days after sedation hold. After excluding data from one

patient due to technical issues with the recording, 18

patients were available for follow-up at 3 months (me-

dian age: 59, range 20–86; 3 females), and 17 patients

were available for follow-up at 6 months (median age:

59, range 20–86; 3 females). All patients scored below 6

on the GCS Motor score at the time of EEG—i.e. they

did not obey verbal commands (see Table 1 for patient

details).

EEG acquisition and processing

A clinical electrophysiologist recorded the EEG data at

256 or 512 Hz with a 19-electrode clinically certified

EEG system, using an XlTek Brain Monitor EEG ampli-

fier (Natus Medical Incorporated, Pleasanton, USA) with

a 10/20 montage and additional right and left mastoid

electrodes. The ground and reference electrodes were

placed across the vertex. Data quality was monitored

during acquisition and in subsequent offline artefact cor-

rection. We aimed to record between 5 and 10 min of

resting-state data per patient, dependent on their level of

agitation or immediate care needs.

EEG data were analysed in MATLAB using the

MOHAWK toolbox (https://github.com/srivaschennu/

MOHAWK).22,23,28,29 This toolbox performs the same

pre-processing and feature extraction methods employed

in previous studies of resting EEG in disorders of con-

sciousness.22,23 Briefly, EEG data are filtered between 0.5

and 45 Hz and segmented into 10-s epochs. A semi-auto-

mated combination of visual inspection and independent

component analysis removes channels and epochs conta-

minated by excessive artefact. Finally, the EEG data are

re-referenced to the average of all channels. Across

patients, a mean of 5.389 min (SD ¼ 1.656) of data was

available for analysis.

EEG feature extraction

We extracted EEG features using the MOHAWK tool-

box. Briefly, spectral phase and power of the pre-proc-

essed EEG data are estimated in three canonical

frequency bands: alpha (8–13 Hz), theta (4–8 Hz) and

delta (0–4 Hz) frequency bands. For each frequency

band, connectivity between all channel pairs is estimated

with the debiased weighted phase lag index.

This matrix of channel-pair connectivity estimates in

each frequency band is then submitted to graph theory

analyses. Graph theory metrics seek to describe a high-di-

mensional network as a series of connected nodes. We

elected to extract only those graph theory and spectral

metrics that have previously been demonstrated to pro-

vide diagnostic and/or prognostic information in disorders

of consciousness, namely: Relative alpha power (mean

over channels), alpha connectivity (median debiased

weighted phase lag index over channels), alpha modular

span, alpha participation coefficient (standard deviation

over channels), relative delta power (mean over channels),

delta clustering coefficient (mean over channels) and delta

modularity. All graph metrics were averaged over connec-

tion density thresholds (90–10%). We also included delta

connectivity (median debiased weighted phase lag index

over electrodes) in our analyses for symmetry with the

alpha features, although removal of this feature does not

change our results. ‘Modular span’ describes the average

topographical distance spanned by a module in a net-

work. ‘Participation coefficient’ measures the centrality of

a network that identifies nodes linking several modules.

‘Clustering coefficient’ describes the local efficiency of

Table 1 Demographics and clinical data of the patient cohort

ID Gender Age at injury

(years)

CT grade Time since

injury (days)

Total GCS

at EEG

3-month

GOSE

6-month

GOSE

1 Male 72 2 5 5 1 1

2 Female 86 2 5 6 1 1

3 Male 26 5 17 6 2 2

4 Male 40 5 12 5 3 3

5 Male 59 5 13 5 3 3

6 Female 44 5 10 6 3 3

7 Male 82 5 3 3 2 3

8 Male 20 6 17 11 4 4

9 Male 70 5 5 6 3 2

10 Male 24 5 24 8 3 4

11 Male 70 6 10 10 6 7

12 Male 27 2 19 7 3 3

13 Male 77 2 12 6 3 3

14 Male 54 2 10 6 6 6

15 Male 59 3 9 6 3 Lost to follow-up

16 Female 59 5 14 8 3 3

17 Male 61 2 15 8 4 6

18 Male 32 2 17 10 4 5
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nodes in a network. ‘Modularity’ describes the separation

of network nodes into isolated modules.

EEG feature validation

In previous studies using similar graph metrics, hdEEG

has been available for each patient (at least 91 channels).

However, hdEEG is a challenge in the acute setting due

to intracranial pressure monitors, head wounds, etc.

Therefore, clinical EEG data are typically recorded in a

low-density montage of 19 channels. Therefore, to assess

which of the above EEG features can be accurately esti-

mated with this low-density montage, we first pre-proc-

essed and extracted EEG features for each of our healthy

participants twice: once using data from the 91 high-

density channels, and once using only data from the 19

channels of the 10–20 system. Note that we selected the

19 channels before pre-processing, rather than after, to

ensure that the data are processed in the exact same

manner as the clinical data. Next, we calculated the cor-

relations between each of the EEG measures across mon-

tages. The logic here is that those low-density EEG

features that significantly correlate with their respective

high-density features are those that robustly estimate the

underlying cortical dynamics and, therefore, have poten-

tial prognostic value.

Statistical analysis

Following a similar approach to a study of prolonged

disorders of consciousness,24 we performed a canonical

correlation analysis (CCA) to investigate the relationship

between EEG features identified from the validation pro-

cedure above and the clinical picture at the time of EEG.

CCA is beneficial when investigating the relationship

between two sets of multiple variables—in our case, the

set of clinical variables describing the clinical picture at

the time of EEG [age, total GCS score, CT grade (1 ¼
No visible intracranial pathology; 6 ¼ non-evacuated

mass lesion30), days since injury] and the set of EEG fea-

tures identified from the validation procedure above.

CCA returns canonical variates—linear combinations of

variables within each set—that maximally correlate across

sets. To test the significance of our canonical variates, we

conducted a randomization test with 2000 permutations

in which we randomly shuffled the rows (i.e. patients)

of the clinical variables relative to the EEG variables,

conducted the CCA analysis and recorded the largest

correlation between pairs of canonical variates. This

approach produces a distribution of 2000 possible

correlations between canonical variates under the null

hypothesis of no true relationship between patients’ clin-

ical and EEG variables. The P-value of the correlation

between our true observed canonical variate pair is

therefore the proportion of larger correlations observed

in the randomization test.

To investigate the prognostic value of the EEG features

at 3 and 6 months, we conducted a stepwise linear re-

gression (entry P ¼ 0.05, removal P ¼ 0.10; using JASP

software version 0.12.231) at each follow-up point using

GOSE as the dependent variable and the EEG features

and five clinical features above as predictors. The GOSE

score was normalized using the rank-based inverse

Gaussian method prior to analyses to achieve a normal

distribution of the dependent variable prior to

regression.32

Ethics

The clinical study was approved by the West Midlands

Coventry and Warwickshire Research Ethics Committee

and the Health Research Authority and was sponsored

by the University of Birmingham, England. Personal or

Nominated Consultees of each patient were identified by

the clinical team and approached to provide written

consent. Consultees also consented to be contacted for

outcome interviews. Patients who regained capacity

during the follow-up period also re-consented. The study

was coordinated by the National Institute for Health

Research Surgical Reconstruction and Microbiology

Research Centre, University Hospitals Birmingham.

The results of this study are reported according to the

‘STrengthening the Reporting of OBservational

studies in Epidemiology’ statement for reporting

observational studies.

Data availability

All data and analysis scripts are available in the follow-

ing repository: https://osf.io/8w6qr/.

Results

Reliability of EEG features across
montages in healthy participants

Of the eight EEG features investigated, five significantly cor-

related across montages in healthy participants (P < 0.05):

mean relative alpha power (r ¼ 0.988, P < 0.001), me-

dian alpha connectivity (r ¼ 0.958, P < 0.001), standard

deviation of alpha participation coefficient (rho ¼ 0.489,

P ¼ 0.030; Shapiro–Wilk test for bivariate normality

P ¼ 0.031), mean relative delta power (r ¼ 0.991,

P < 0.001) and median delta connectivity (rho ¼ 0.534,

P ¼ 0.017; Shapiro–Wilk test for bivariate normality

P < 0.001). We can therefore be confident that these five

features, which have previously been linked to diagnosis

and prognosis in high-density data from chronic disorders

of consciousness, can be reliably estimated from the

low-density montages typical of clinical EEG recordings.

We therefore selected these five features for investigation

in our clinical data below.
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Relationships between EEG features

and clinical picture

Our CCA approach identified a significant correlation be-

tween the first pair of clinical and EEG canonical variates

(r ¼ 0.901, randomization test P ¼ 0.042; Fig. 1A). All

other pairs of canonical variates were non-significant in

the randomization test (all P > 0.561; Fig. 1B). The first

EEG canonical variate significantly correlated with all

clinical variables (Fig. 1D) while the first clinical

canonical variate significantly correlated with the

standard deviation of alpha participation coefficient only

(r ¼ �0.622, P ¼ 0.007; Fig. 1C).

EEG features for prognostication

The adjusted variance of outcome at 3 months was best

explained by a model containing GCS at the time

of EEG (beta ¼ 0.684, P ¼ 0.001) and mean

relative alpha power [beta ¼ 0.389; P ¼ 0.039;

adjusted R2 ¼ 0.502, F(2,15) ¼ 9.580, P ¼ 0.002].

This model explained significantly more variance of

outcome at 3 months than a model containing GCS at

the time of EEG alone (R2 change ¼ 0.150) indicating

the added value of mean relative alpha power beyond

behavioural measures alone (see Fig. 2). At 6 months,

the adjusted variance of outcome was best explained by

a model containing only GCS at the time of EEG

[beta ¼ 0.590, P ¼ 0.013; adjusted R2 ¼ 0.305,

F(1,14) ¼ 8.018, P ¼ 0.013].

Discussion
The relative preservation of resting-state EEG oscillatory

networks has been shown to provide diagnostic and

prognostic information for prolonged disorders of con-

sciousness.9,22,23 Here, we tested the hypothesis that simi-

lar network measures in clinically-standard resting-state

EEG recordings have prognostic value for acute post-

traumatic unresponsive states. While our results indicate

a valuable relationship between resting-state EEG

oscillations and outcome at 3 months post-injury, we

find no evidence for the prognostic utility of network

measures in this data.

Our primary finding is that relative alpha power, aver-

aged across the head during the acute stages of injury,

provides prognostic information beyond that provided by

conventional clinical measures for prognosis at 3 months.

Importantly, this link is evident for those patients who

remain unresponsive to verbal commands after washout

of sedation, and who are therefore otherwise in positions

of greatest prognostic uncertainty.

The lack of evidence for prognostic value of network

measures may reflect our low-density scalp coverage.

Indeed, graph theory measures of EEG frequency band

connectivity networks are valuable as summary descrip-

tors of high-dimensional relationships. It is possible that

the low-density coverage of the standard clinical 10/20

EEG is not sufficiently high-dimensional for graph theory

metrics to capture relationships that cannot otherwise be

estimated from the signal itself. Indeed, of the graph met-

rics we considered, only one (SD of alpha participation
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coefficient) could be significantly estimated from low-

density recordings in healthy participants, and its rela-

tionship was the weakest of all other significant measures

(rho ¼ 0.489, P ¼ 0.030). While our current data cannot

address this, it is further possible that the cross-montage

validity of graph metrics varies across patient groups

and/or levels of consciousness, thus obscuring their prog-

nostic value here. Nevertheless, a simple measure of

relative alpha power averaged across the head augments

prognostic accuracy at 3 months post-injury. Indeed, in

our comparison of low-density and high-density estimates

in healthy participants, mean relative alpha power is

highly consistent regardless of the level of scalp coverage,

with a correlation coefficient of 0.988, thus indicating its

utility across EEG provision.

Similarly, the average length of our EEG data (�5 min)

was somewhat lower than the �10 min used in previous

studies,22–24 which may have contributed to the decreased

efficacy of the graph theory metrics. However, in a post

hoc analysis, we calculated our graph theory measures of

interest from both 10 and 5 min of healthy control

hdEEG data and found large and highly significant corre-

lations between recording lengths for all measures (all

r � 0.800, all P < 0.001; see ‘Data Repository’), giving

us confidence in the robustness of graph theory metrics

in 5-min hdEEG recordings.

The prognostic importance of relative alpha power is

consistent with the mesocircuit hypothesis,33 which pro-

poses that alpha activity reflects the intact functioning of

thalamo-cortical loops. These loops are considered a

prerequisite for consciousness.33,34 When they are not

functional, for example due to thalamic damage or

inhibition caused by reduced background neuronal

activity, consciousness is impossible.35 The presence of

alpha activity thus suggests that connections in the

thalamo-cortical loop are intact, and future recovery of

consciousness is possible.33 The mesocircuit hypothesis is

supported by the observation that damage to the

thalamus is very common in disorders of consciousness,

and the level of damage is greater in unresponsive wake-

fulness syndrome compared to the minimally conscious

state.15 The sedative Zolpidem, which indirectly causes

disinhibition of the thalamus via inhibition of the globus

pallidus, also increases the level of consciousness in some

patients with disorders of consciousness,35–38 and there is

some evidence that electrical stimulation of the thalamus

increases patient responsiveness.39 In summary, alpha ac-

tivity may reflect the necessary structural and functional

connections required for the brain to support conscious-

ness in the future, despite the apparent absence of

consciousness at the time of the EEG recording.

A second, complementary, hypothesis is that alpha ac-

tivity shapes the contents of consciousness.40 Jensen and

Mazaheri41 propose that alpha oscillations play an active

role in perception and cognition by inhibiting task-

irrelevant processing. In support of this hypothesis, alpha

power is observed to increase in the primary sensory cor-

tices of task-irrelevant sensory modalities.41 Pre-stimulus

alpha activity in a motor task is also negatively associ-

ated with performance, perhaps predicting attentional

lapses before they occur.42 This inhibition appears phasic,

with periods of inhibition enhancing perceptual abilities

at certain phases of alpha activity.41,43,44 It follows from

this hypothesis that the relatively preserved alpha

rhythms evident in some patients may reflect conscious

contents at the time of EEG recording. However, the

data do not allow us to draw this conclusion as it

requires a significant reverse inference, and because we

Healthy Patient

R
el

at
iv

e 
al

ph
a 

po
w

er
 (

%
)

R
el

at
iv

e 
al

ph
a 

po
w

er
 (

re
si

du
al

s)

3-month outcome (residuals)
0 1-1

0

-3

3

}
0

60

20

40

Figure 2 The prognostic value of relative alpha power. (Left) Tukey boxplot of relative alpha power for the healthy control group and

the patient group. (Right) Residuals scatter plot of relationship between relative alpha power (mean across electrodes) and outcome at 3

months.

EEG for prognosis in unresponsive states BRAIN COMMUNICATIONS 2021: Page 7 of 10 | 7



have no corroborating evidence of the covert conscious

state of the patients. Future studies that combine results

of both passive and active measures are required to delin-

eate the functional significance of alpha network activity

in non-responsive patients.

Our lack of evidence that EEG features contribute to

the accuracy of outcome prediction at 6 months, despite

being relevant for 3-month outcome prediction, raises an

interesting possibility regarding EEG-based methods for

prognostication after severe brain injury. Indeed, Claassen

et al.3 observed a relationship between 12-month out-

come and acute EEG evidence of cognitive–motor dissoci-

ation—i.e. a high level of complex cognition indicative of

residual, but undetected, consciousness. While we do not

have sufficient 12-month outcome data for our cohort,

the evidence that the value of acute resting-state EEG

markers reduces over time (from 3 to 6 months) suggests

that the two types of EEG approach—passive and

active—characterize distinct and complementary aspects

of potential for recovery. A resting-state EEG may pro-

vide a coarse snapshot of residual brain health, including

the level of acute damage within the mesocircuit, and

thereby indicate the relative preservation of the necessary

neural precursors to consciousness in the future.

Nevertheless, evidence of these precursors alone is insuffi-

cient at longer timescales, as some, but not all, patients’

recoveries build upon those neural precursors. An active

command-following EEG, on the other hand, indicates

acute preservation of the cortical networks that actively

support the contents of consciousness, and so may be

more robust to longitudinal variation. A regular schedule

of resting-state EEGs after severe brain injury may allow

for a richer picture for long-term prognosis on the basis

of multiple coarse snapshots of residual brain health.

Indeed, Bareham et al.24 reported that the most accurate

prognoses in prolonged disorders of consciousness were

derived from the rate of change between a set of EEG

metrics acquired 3 months apart. A similar approach in

the acute period may be just as beneficial.

A more fine-grained assessment of the level of recovery

achieved by each patient in our study may also have

revealed further prognostic relationships, or helped in

interpreting the relative value of our approach at longer

outcome time-points (i.e. 6 versus 3 months). While we

quantified outcome using a standardized telephone inter-

view assessment tool (GOSE), in-person tools for differen-

tial diagnosis of disorders of consciousness, such as the

Coma Recovery Scale—Revised,45 may have increased the

sensitivity of our outcome measures and allowed for

more detailed characterizations of each patient. Indeed,

future research could also use the Coma Recovery

Scale—Revised to quantify each patient’s abilities at the

acute stage, thus allowing direct investigation of longitu-

dinal behavioural changes within the same scale, as has

shown value in prior work.24

A further consideration for the clinical application of

EEG for prognosis is the relative sensitivity of active and

passive approaches. As noted above, an active motor im-

agery approach is of benefit to those patients who return

a positive result—�15% of patients3,8—while a passive

approach can provide a continuous measure of relative

cortical function in the vast majority of patients. Indeed,

in our study, only one patient’s EEG recording was too

noisy to be analysed. Consequently, one could foresee a

hierarchical approach to EEG-based prognostication after

severe brain injury, with active paradigms targeted to

those patients who exhibit relative alpha functional pres-

ervation in an initial resting-state recording. Indeed, as

motor imagery is primarily reflected in modulations of

alpha (or mu) rhythms,46 a patient with a residual resting

alpha rhythm may be more likely to have top-down con-

trol over that rhythm to complete active motor imagery

tasks and demonstrate their cognitive-motor dissociation.

Our CCA approach revealed a relationship between the

first EEG canonical variate and patients’ clinical picture

at the time of EEG. Specifically, the EEG canonical vari-

ate correlated negatively with patients’ age at the time of

injury and positively with their total GCS score at the

time of EEG, their CT grade and the time passed

between injury and EEG. This result validates the view

that a snapshot EEG provides information relating to the

current clinical picture of the patient. Conversely, the

clinical canonical variate negatively correlated with only

the standard deviation of alpha participation coefficient.

The participation coefficient is a measure of network cen-

trality that highlights hub nodes that link modules within

the network, with large standard deviations across nodes

(i.e. electrodes) indicative of more integrated networks.23

The standard deviation of participation coefficients in the

alpha network has previously been shown to increase

with increasing behavioural signs of awareness,23 to dif-

ferentiate those unresponsive patients with evidence of

covert awareness from those without22 and to differenti-

ate between patients with and without relatively pre-

served PET-detected frontoparietal metabolism.10,23 Our

observation of a link between this measure of alpha band

network complexity and patients’ acute clinical picture

after severe brain injury is therefore consistent with these

previous links between alpha band network complexity

and the relative preservation of behavioural responsive-

ness and the neural foundations of awareness in chronic

disorders after severe brain injury. Indeed, integrated brain

networks are considered to be a necessary condition for

consciousness according to several key theories.47,48 Despite

this, alpha power, rather than participation coefficient, was

most strongly linked to patient outcome, perhaps due to

the low statistical power of graph metrics in low-density

montages.

In conclusion, a growing body of evidence links the

EEG alpha rhythm with both levels and contents of con-

sciousness in the clinic. While we did not find evidence

that more complex measures of alpha network features

provide prognostic information in standard low-density

clinical EEG recordings, our evidence for a link between
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mean relative alpha power and outcome at 3 months sug-

gests the potential for a simple and standard EEG meas-

ure to augment prognostication in post-traumatic states

of unresponsiveness. This approach may provide a coarse

snapshot of brain health for stratification of patients for

rehabilitation, therapy and subsequent fine-grained assess-

ments of both covert and overt cognition.

Acknowledgements
We thank all patients, their families and carers for participa-

tion in this study. The study was coordinated by the

National Institute for Health Research Surgical

Reconstruction and Microbiology Research Centre

(SRMRC). The views expressed are those of the authors and

not necessarily those of the National Institute for Health

Research or the Department of Health and Social Care.

Funding
This study was funded by a New Investigator Research

Grant from the UK’s Medical Research Council to Damian

Cruse (reference: MR/P013228/1).

Competing interests
All authors report no competing interests.

References
1. Rosenfeld JV, Maas AI, Bragge P, Morganti-Kossmann MC,

Manley GT, Gruen RL. Early management of severe traumatic

brain injury. Lancet. 2012;380(9847):1088–1098.
2. Royal College of Physicians. Prolonged disorders of consciousness

following sudden onset brain injury: national clinical guidelines.

RCP London. Published March 6, 2020. https://www.rcplondon.

ac.uk/guidelines-policy/prolonged-disorders-consciousness-following-

sudden-onset-brain-injury-national-clinical-guidelines. Accessed 15

September 2020.

3. Claassen J, Doyle K, Matory A, et al. Detection of brain activation

in unresponsive patients with acute brain injury. N Engl J Med.

2019;380(26):2497–2505.
4. Wilson JTL, Pettigrew LEL, Teasdale GM. Structured interviews

for the Glasgow outcome scale and the extended Glasgow outcome

scale: guidelines for their use. J Neurotrauma. 1998;15(8):

573–585.
5. Cruse D, Chennu S, Chatelle C, et al. Bedside detection of aware-

ness in the vegetative state: a cohort study. Lancet. 2011;

378(9809):2088–2094.
6. Goldfine AM, Victor JD, Conte MM, Bardin JC, Schiff ND.

Determination of awareness in patients with severe brain injury

using EEG power spectral analysis. Clin Neurophysiol. 2011;

122(11):2157–2168.

7. Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G.

How many people are able to operate an EEG-based brain-com-

puter interface (BCI)? IEEE Trans Neural Syst Rehabil Eng. 2003;

11(2):145–147.

8. Kondziella D, Friberg CK, Frokjaer VG, Fabricius M, Møller K.

Preserved consciousness in vegetative and minimal conscious

states: systematic review and meta-analysis. J Neurol Neurosurg

Psychiatry. 2016;87(5):485–492.
9. Engemann D, Raimondo F, King J-R, et al. Robust EEG-based

cross-site and cross-protocol classification of states of conscious-

ness. Brain. 2018;141:3179–3192.
10. Stender J, Gosseries O, Bruno M-A, et al. Diagnostic precision of

PET imaging and functional MRI in disorders of consciousness: a

clinical validation study. Lancet. 2014;384(9942):514–522.
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