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Abstract: The fate of fetal germ cells (FGCs) in primordial follicles is largely determined by how
they interact with the surrounding granulosa cells. However, the molecular mechanisms underlying
this interactive process remain poorly understood. Here, we develop a computational model to
characterize how individual genes program and rewire cellular crosstalk across FGCs and somas,
how gene regulatory networks mediate signaling pathways that functionally link these two cell
types, and how different FGCs diversify and evolve through cooperation and competition during
embryo development. We analyze single-cell RNA-seq data of human female embryos using the
new model, identifying previously uncharacterized mechanisms behind follicle development. The
majority of genes (70%) promote FGC–soma synergism, only with a small portion (4%) that incur
antagonism; hub genes function reciprocally between the FGC network and soma network; and germ
cells tend to cooperate between different stages of development but compete in the same stage within
a developmental embryo. Our network model could serve as a powerful tool to unravel the genomic
signatures that mediate folliculogenesis from single-cell omics data.

Keywords: primordial follicle; evolutionary game theory; fetal germ cell-soma interaction; gene
regulatory network modeling; niche index

1. Introduction

Primordial follicles of a female embryo, as women’s life-long fertility reserve, have
been a longstanding focus of research in reproductive medicine [1–3]. The pattern of how
primordial follicles develop and function is thought to be species-specific, providing a clue
for studying the origin of life [4,5]. A primordial follicle consists of germ cells, surrounded
by a single layer of flattened pregranulosa that supports germ cell growth. According to
standard reproductive terminologies, germ cells from human female embryos before and
after 11 weeks post-fertilization are called primordial germ cells and oogonia, respectively.
Following Li et al. [3], we call all of these germ cells fetal germ cells (FGCs) for an easy
description. Similarly, gonadal cells that surround FGCs are collectively referred to as
somas. Mounting evidence shows that proper FGC development, a key step for organisms
to transmit genetic information to the next generation, critically relies on their coordinated
interactions with somas [6–10]. The past decade has witnessed the tremendous power of
single-cell transcriptional and epigenetic data to monitor the developmental trajectories
of FGCs and somas at unprecedented resolution [3,10,11]. Despite the accumulation of
single-cell data at an astonishing pace, there is little methodology that can extract and
excavate new biological rules underlying FGC–soma interactions from these data. One
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major reason is that it is difficult to map those complex omics data onto the spatiotemporal
heterogeneity of follicle development.

We overcome this challenge by integrating elements of multiple disciplines from
ecology, evolution, and game theory. Being a functional complex composed of FGCs
and somas [3], a primordial follicle can be viewed as an ecosystem in which these two
compartments interact with each other following the principles of community ecology.
Allometric scaling of each cell type with the follicle represents a part–whole relationship that
can be described by a power equation according to the metabolic theory of ecology [12,13].
We hypothesize that the pattern of FGC–soma interactions can be interpreted through the
lens of game theory [14]; i.e., each cell type optimizes its gene expression based on its
own strategy and the strategy of its counterpart. One important concept of game theory
is the Nash equilibrium [15] where a rational player receives no incremental payoff from
changing actions, assuming that other players remain constant in their strategies. To modify
the rationality assumption of the Nash equilibrium, Smith and Price [16] proposed the
concept of evolutionarily stable strategy. This concept provides a static tool for studying
strategy stability in a population in which the frequency of strategies does not change [17].

To characterize how the strategy a player chooses evolves in time, evolutionary game
theory uses its own dynamic representation, in which there is no need to define a notion
of evolutionary stability; instead, all of the standard stability concepts from dynamic
modeling are used [18]. Many explicit time-based models for evolutionary game theory
have been developed [17,19,20], some of which have found their remarkable applications
to the quantitative genetics of complex traits [21], quantitative epigenetics of maternal-to-
zygotic transition [22], and community ecology of interspecific interactions [23]. However,
the application of dynamic evolutionary game theory relies on temporal omics data which
are extremely difficult to collect for primordial follicles. Single-cell analysis also shows that
the transcriptome of FGCs is relatively stable during 4 to 11 weeks post-fertilization due to
global epigenomic reprogramming [24], thus providing limited information for dynamic
modeling. For these reasons, there is a pressing need to convert steady-state data into an
alternate dynamic space for evolutionary game theory to be fully beneficially used.

In this article, we integrate allometric scaling theory and evolutionary game theory
into a system of quasi-dynamic ordinary differential equations (qdODEs) for modeling the
dynamic change of evolutionarily stable strategies [25]. These qdODEs, whose derivatives
are not time-based, capitalize on the pervasive existence of cell heterogeneity within and
between embryos [3,24] and can quantitatively model follicle- and embryo-dependent
changes in game strategies by FGCs and somas, without need of temporal data. The
mathematical and statistical solution of the qdODEs provides a means of investigating
how cells communicate through genes across FGCs and somas. The role of genes in
regulating cell–cell crosstalk has been increasingly identified by using single-cell RNA
sequencing (scRNA-seq) data. For example, Kumar et al. [26] identified important scRNA-
seq genes that affect cell–cell communication associated with tumor characteristics. We
apply the qdODE game model to analyze the scRNA-seq expression data of a thousand
single cells from different female embryos that develop in different phases [3]. Interestingly,
our gene-driven game model characterizes the previously unknown mechanisms that
guide how cells communicate across FGCs and somas during the normal development of
primordial follicles.

2. Methods
2.1. Niche Index

Suppose we sample a set of n human female embryos that develop at the primordial
follicle-formation stage of post-fertilization. We monitor the transcriptional profiles of m
genes that are each expressed in multiple subpopulations of FGCs and multiple subpopula-
tions of somas from the same embryo. The expression level of a specific gene in a cell type
is described by the mean of its expression levels over all subpopulations from this cell type.
We use gikj to denote the expression level of gene j in a cell type k (k = 1 for FGC, 2 for somas)
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from embryo i. We view a developing embryo as an ecosystem in which FGCs and somas
interact with each other just as two species interact in a shared environment. We define
the total of conditions that allow the expression of a gene in an embryo as the niche of the
gene. The total expression amount of gene j in embryo i, calculated as Nij = ∑2

k=1 gikj, and
defined as the niche index (NI), reflecting the capacity of this embryo to maintain various
resources essential for gene expression. This capacity is similar to that of an ecological
habitat that provides a mix of environmental factors for a given species’ survival and
growth. According to the magnitude of NI, we serialize n embryos in an ascending order
and express gikj as a function of Nij, i.e., gkj

(
Nij
)
.

2.2. Integration of Allometric Scaling Theory and Evolutionary Game Theory

As defined above, gkj
(

Nij
)

describes the individual expression of FGCs or somas,
whereas Nij describes the summed expression of these two cell types, which, thus, establish
an allometric part–whole relationship. Allometric scaling of the part with the whole can be
described by the power equation, expressed as

gkj
(

Nij
)
= αkjN

βkj
ij (1)

where αkj and βkj are the proportionality coefficient and allometric exponent of the power
equation for gene j expressed in cell type k. It is expected that gene expression in different
cell types follows distinct power forms determined by these two parameters. Such a
distinction is a function of NI, which is used to infer the pattern of interaction between fetal
germlines and somas. For example, if g2j

(
Nij
)

> g2j

(
N(i+1)j

)
in somas is causally related

with g1j
(

Nij
)

> g1j

(
N(i+1)j

)
in FGCs, then we can infer that somatic cells promote FGCs

through gene j. In contrast, if g2j
(

Nij
)

> g2j

(
N(i+1)j

)
in somas is causally correlated with

g1j
(

Nij
)

< g1j

(
N(i+1)j

)
in FGCs then somatic cells inhibits fetal germlines through gene

j. These causal relationships can be characterized by modeling the allometric change of
gkj
(

Nij
)

with Nij across embryos through an evolutionary game model.
If FGCs and somas derived from the same embryo are viewed as two interactive

players of a game, we use evolutionary game theory to model the strategies by which they
interact with each other. Assuming a game with a cooperative/competitive framework
(e.g., Hawk-Dove or Prisoner’s Dilemma), game theoretic reasoning suggests that any one
player chooses to cooperate or compete with the other player based on their own strategy
and the strategy of their interacting partner [14,15]. Taking advantage of the allometric
relationship of Equation (1), we extend Smith and Price’s [16] static evolutionary game
theory to its (quasi) dynamic representation in order to model how strategies change in
populations as a function of the niche index. Dynamic evolutionary game theory can be
mathematically formulated as

g′
(

Nij
)
=


dg1j(Nij)

dNij

dg2j(Nij)
dNij

 =

[
Q1j
(

g1j
(

Nij
)

: θ1j
)
+ Q1←2j

(
g2j
(

Nij
)

: θ1←2j
)

Q2j
(

g2j
(

Nij
)

: θ2j
)
+ Q2←1j

(
g1j
(

Nij
)

: θ2←1j
) ] (2)

where the derivative of gkj
(

Nij
)
, the expression level of gene j on cell type k from embryo

i (i = 1, . . . , n), is partitioned into two components, Qkj

(
gkj
(

Nij
)

: θkj

)
and

Qk←k′ j

(
gk′ j
(

Nij
)

: θk←k′ j

)
(k′ 6= k, k′ = 1, 2). The first is called the independent compo-

nent that occurs when cell type k is assumed to be independent from cell type k′, whereas
the second is the dependent component that results from the directional interaction of cell
type k′ with k. From a game theoretic perspective, the relative amount of the independent
component of a cell type reflects the “payoff” of its self-induced strategy. Relative to the
independent component, the dependent component is the “payoff” of a cell type through
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its reaction to the other cell type. The NI-varying patterns of independent and dependent
components are determined by parameters θkj and θk←k′ j, respectively. Unlike classic ODEs
with respect to time, ODEs in Equation (2) are specified by the NI derivative, which are
thus called quasi-dynamic ODEs or qdODEs [25].

2.3. Qualitative and Quantitative Classification of FGC–Soma Interactions

In the Section 2, we describe the statistical procedure for solving qdODEs to obtain
the maximum likelihood estimates of θkj and θk←k′ j. Based on these estimates, we can

calculate the (first) integrals of Qkj

(
gkj
(

Nij
)

: θkj

)
and Qk←k′ j

(
gk′ j
(

Nij
)

: θk←k′ j

)
, denoted

as Pkj
(

Nij
)

and Pk←k′ j(Nij), respectively. These two integral values provide a way to assess
the magnitude of gene expression on FGCs or somas and the pattern of how these two cell
types interact with each other during embryo development. If Pk←k′ j

(
Nij
)

is positive or
negative, then this suggests that cell type k′ activates or inhibits cell type k, respectively. If it
is zero, this indicates that cell type k′ is neutral to cell type k. Thus, by estimating Pk←k′ j(Nij)
and Pk′←kj(Nij), we can illustrate the interactive relationship of the two cell types, and more
precisely define each pattern of cell–cell interactions (Table 1). If the two cell types activate
each other by producing factors that will promote both interacting parties, then synergism
occurs. Their relationship would be antagonistic if the two cell types inhibit each other.
Directional synergism results if one cell type activates its partner whereas the latter does
not affect the former (neutral), while directional antagonism occurs if one cell type inhibits
the other and the other is neutral. If one cell type activates the other but the latter inhibits
the former, then altruism or exploitation forms. The two cell types may peacefully coexist
when they do not regulate each other.

Table 1. Qualitative class of FGC–soma interaction and its quantitative characterization by the qdODE
game model.

No. Quantitative Description
Qualitative Definition

P
k←k

′
j
(Nij) P

k
′←kj

(Nij)

1 Symmetric synergism + = +
2 Asymmetric synergism + 6= +
3 Directional synergism toward k + 0
4 Directional synergism toward k′ 0 +
5 Altruism toward k or exploitation by k + −
6 Altruism toward k′ or exploitation by k′ − +
7 Symmetric antagonism − = −
8 Asymmetric antagonism − 6= −
9 Directional antagonism toward k − 0

10 Directional antagonism toward k′ 0 −
11 Coexistence 0 0

Note: Pk←k′ j
(

Nij
)

and Pk′←kj
(

Nij
)

are the dependent expression levels of cell type k by cell type k’ and cell type k’
by cell type k, respectively.

Table 1 summarizes the important features of our computational model in cell–cell
interaction detection. The implementation of qdODEs can quantify the strength of each
pattern of interaction. The estimation of these interactions is obtained under the maximum
likelihood setting. Thus, the maximum payoff to the embryo as a whole can be achieved
through the various strategies each cell type uses to interact with the others. Taken together,
the definition and interpretation of various patterns of cell–cell interactions can facilitate
the exploration of the mass, energetic, or signal basis for each interaction. In addition, as
a function of NI, Pk←k′ j(Nij) gives the embryo-specific characterization of the FGC–soma
interaction and, therefore, establishes an individualized characterization of cell rewiring
and communication during biological processes.
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2.4. Inferring Context-Specific Gene Regulatory Networks from Static Expression Data

We view an FGC or soma as a sample and define the total expression amount of all
genes on a sample as the expression index (EI) of the sample. Let Eik denote the EI of
sample i from cell type k and gj(Eik) denote the expression level of gene j on sample i from
cell type k. We extend the dynamic evolutionary game theory of Equation (2) to include an
m-dimensional system of qdODEs, which is expressed as

g′(Eik) =


dg1(Eik)

dEik
...

dgm(Eik)
dEik

 =


W1(g1(Eik) : ψ1) +

m
∑

j=2
W1←j

(
gj(Eik) : ψ1←j

)
...

Wm(gm(Eik) : ψm) +
m−1
∑

j=1
Wm←j

(
gj(Eik) : ψm←j

)

 (3)

where the overall expression level of gene j on sample i from cell type k is specified by its
independent expression component Wj(×) (determined by the strategic capacity of the
gene) and aggregate-dependent expression component ∑ Wj←j′(×) (determined by the
interactive strategies implemented by other genes) (j = 1, . . . , m; j′ = 1, . . . , j − 1, j + 1, . . . ,
m), and ψj and ψj←j′ are the ODE parameters that model these components, respectively.

Equation (3) presents a general framework for capturing gene–gene interactions within
a network. Since it is rarely possible that each gene interacts with every other gene in a
cell, we need to choose a subset of the most significant genes that interact with each gene.
We implement two approaches to infer a sparse gene network. Since the expression level
of individual genes is an exponential function of EI (assuming allometric scaling), power
equation-based functional clustering [27] is used to classify all genes into different modules
based on their functional similarity. Functional modularity theory, widely supported
by biological studies [28], is consistent with network community theory [29] in which
nodes (i.e., genes) are linked more tightly within than between modules. By regressing the
expression value of a focal gene on those of all other genes, we implement LASSO-based
variable selection to choose the most significant genes that interact with the focal gene.
Through variable selection, the number of genes that are involved in interacting with a
focal gene j reduces to dj (dj � m), which is gene-dependent. The statistical procedure for
solving the reduced qdODEs is given in the Section 2.

2.5. Cell–Cell Rewiring by Genes

A single female embryo contains thousands of FGCs in its early stage, only a very
small portion of which will successfully develop into oocytes. This process involves the
natural selection of FGCs under their mutual cooperation and competition. The detailed
network of cell–cell interactions can help to understand the general principle that drives
natural selection. Consider n FGCs from the same embryo in each of which m genes are
monitored. Let gcj denote the expression level of gene j in FGC c (c = 1, . . . , n) from an
embryo, and define Ej = ∑n

c=1 gcj as the EI of the gene over all FGCs. Thus, as a function of
Ej, we express gcj by gc(Ej). A system of qdODEs that characterize the network of cell–cell
interactions is formulated as

g′
(
Ej
)
=


dg1(Ej)

dEj
...

dgn(Ej)
dEj

 =


R1
(

g1
(
Ej
)

: φ1
)
+

n
∑

c=2
R1←j

(
gc
(
Ej
)

: φ1←c
)

...

Rn
(

gn
(
Ej
)

: φn
)
+

n−1
∑

c=1
Rn←c

(
gc
(
Ej
)

: φn←c
)

 (4)

where the overall gene-specific expression level of FGC c is specified by its indepen-
dent expression component Rc(×) (assuming that this FGC is in isolation) and aggregate-
dependent expression component ∑ Rc←c′(×) (determined by interactions with other cells)
(c = 1, . . . , n; c′ = 1, . . . , c − 1, c + 1, . . . , n), and φc and φc←c′ are the ODE parameters that
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model these components, respectively. The statistical procedure described in the Section 2
is modified to solve the qdODEs of Equation (4). By estimating integrals of Rc(×) and
∑ Rc←c′(×), we will draw an n-node sparse cell–cell network and identify the emergent
properties of the network.

2.6. Regression Model

Let yj
(

Nij
)

=
(
y1j
(

Nij
)
, y2j

(
Nij
))T denote the observed expression level of gene j in

FGCs (1) and somas (2) of embryo i (i = 1, . . . , n), where Nij is the NI of embryo i for
gene j, defined as the sum of gene expression over the two cell types from the embryo; i.e.,
Nij = y1j

(
Nij
)
+ y2j

(
Nij
)
. A regression model of one cell type on the other driven by gene

j, implemented with the qdODEs from Equation (2), can be formulated as

yj
(

Nij
)
= Pj

(
Nij
)
+ P←j

(
Nij
)
+ ej

(
Nij
)
, i = 1, . . . , n , (5)

where Pj
(

Nij
)

=
(

P1j
(

Nij
)
, P2j

(
Nij
))T is the independent expression component vector of

two cell types as a function of Nij for gene j, P←j
(

Nij
)

=
(

P1←2j
(

Nij
)
, P2←1j

(
Nij
))T is the

dependent expression component vector of one cell type affected by the second cell type
as a function of Nij for gene j, and ej

(
Nij
)

=
(
e1j
(

Nij
)
, e2j

(
Nij
))T is the residual expression

error for gene j, obeying a bivariate n-dimensional normal distribution with mean vector 0
and sample-dependent covariance matrix ∑j for gene j, expressed as

∑
j
=

(
∑1j ∑21j
∑12j ∑2j

)
, (6)

consisting of ∑1j and ∑2j, the NI-varying “longitudinal” residual covariance matrices of
the FGCs and somas, respectively, and ∑12j = ∑21j, the NI-varying “longitudinal” residual
covariance matrix between FGCs and somas.

2.7. Likelihood and Test

Let yj = (yj
(

N1j
)
, . . . , yj

(
Nnj
)
). The likelihood of expression data on two cell types

across n embryos is formulated as

L
(

yj

)
= f j((yj

(
N1j
)
, . . . , yj

(
Nnj
)
): µj, ∑

j
) (7)

where f j(·) is the multivariate normal probability density function with mean vector:

µj = (µj
(

N1j
)
, . . . , µj

(
Nnj
)
)

=
(
(µ1j(N) , µ2j

(
N1j
)
), . . . ,

(
µ1j
(

Nnj
)
, µ2j

(
Nnj
)
)
)

=
((

P1j
(

N1j
)
+P1←2j

(
N1j
)
, P2j

(
N1j
)
+P2←1j

(
N1j
))

, . . . ,(
P1j
(

Nnj
)
+P1←2j

(
Nnj
)
, P2j

(
Nnj
)
+P2←1j

(
Nnj
))
) .

(8)

We implement qdODEs from Equation (2) to model the NI-varying means of gene
expression on two cell types in Equation (8) and a bi-variate AR (1) model to fit the structure
of matrix ∑j. We use a power equation to model the independent expression component
and we use a Legendre orthogonal polynomials (LOP)-based nonparametric approach to
model the dependent expression component. The fourth-order Runge–Kutta algorithm is
used to estimate ODE parameters by maximizing the likelihood (7).

We develop a statistical procedure for testing whether FGC–soma interaction is sig-
nificant, driven by gene j. Under the assumption of no interaction, we formulate a similar
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likelihood for Equation (7), but under which the NI-varying means of gene expression are
modelled as

µj = (µj
(

N1j
)
, . . . , µj

(
Nnj
)
)

=
(
(µ1j

(
N1j
)

, µ2j
(

N1j
)
), . . . ,

(
µ1j
(

Nnj
)
, µ2j

(
Nnj
)
)
)

=
((

P1j
(

N1j
)

, P2j
(

N1j
)
), . . . ,

(
P1j
(

Nnj
)

, P2j
(

Nnj
))
)

(9)

where no interaction terms exist. Under this constraint, we obtain the maximum likelihood
estimates (MLEs) of ODE parameters and AR(1) parameters.

By plugging in the MLEs of model parameters into the likelihood, we obtain the
likelihood values L̂1 (assuming that there are interactions) and L̂0 (assuming that there are
no interactions), respectively. We further estimate the log-likelihood ratio,

LR = −2 log
(

L̂0 /L̂1
)

(10)

as a statistic used to test if interactions exist. By reshuffling the expression data between
FGCs and somas across n embryos randomly, we calculate the LR value. If this permutation
procedure is repeated 1000 times, we obtain the 95th percentile from 1000 LR values and
use it as a critical threshold.

2.8. Regression Model of Gene Networks

We view an embryo as a sample composed of FGCs and somas. Let yj(Eik) denote the
expression level of gene j on sample i from cell type k, expressed as a function of expression
index (EI), defined as the sum of the expression values of all genes on sample i from cell

type k; i.e., Eik =
m
∑

j=1
yj(Eik). As a part–whole relationship, yj(Eik) scales allometrically

with Eik across samples, which can be described by a power equation. A regression model
of gene j on other genes as predictors, implemented with qdODEs of Equation (3), can be
formulated as

yj(Eik) = Pj(Eik) +
m

∑
j′=1, j′ 6=j

Pjj′(Eik) + ej(Eik) (11)

where Pj(Eik) is the independent expression component of gene j on sample i from cell type
k; Pjj′(Eik) is the dependent expression component of gene j affected by gene j′; and ej(Eik) is
the residual error of gene j. We use a power equation to model the independent expression
component and a non-parametric approach to model the dependent expression component.

If the number of genes is very large, we implement two steps for dimension reduction.
The first is to use power equation-based functional clustering to classify all genes into
different modules based on which genes are expressed similarly across all samples from
both FGCs and somas. The second is to implement group LASSO and adaptive group
LASSO to select the most significant links for each gene. After variable selection, the number
of genes that are involved in the dependent component of gene j will reduce largely to Djk,
making the full qdODEs of Equation (3) become sparse. We impose a constraint on the
number of regulated genes by a regulator but no constraint on the number of regulators. By
reconstructing high-dimensional but sparse networks using the sparse qdODEs, we have
the capacity to identify all possible regulators.

2.9. Network Recovery

Under the likelihood of the EI-varying expression of all genes, we implement the
sparse qdODEs to model the mean vector of the distribution and AR(1) to model the
covariance matrix. By implementing the fourth-order Runge–Kutta algorithm and (Nelder–
Meade) simplex algorithm, we obtain the MLEs for all model parameters. We code Pj(Eik)
as nodes and Pjj′(Eik) (j = 1, . . . , m; j′ = 1, . . . , j − 1, j + 1, . . . , Djk) as edges into a graph
as gene networks Gk(Eik), separately for FGCs and somas. These networks can capture all
three possible features of gene interactions—bidirectional, weighted, and signed—because
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Pjj′(Eik) can characterize the strength and sign (promotion vs. inhibition) with which gene
j′ affects j and also because Pjj′(Eik) and Pj′j(Eik) can describe and compare how genes j
and j′ are reciprocally affected. When compared to most existing networks that do not meet
these three features simultaneously, Gk(Eik) is regarded as being fully informative.

Since Gk(Eik) is a function of Eik, this suggests that we can reconstruct a network for
each sample, i.e., embryo. To this end, we can compare how the networks vary structurally
and functionally from one embryo to another embryo and from one stage to the next.
Increasing evidence shows that a complex trait is controlled by a full set of genome-wide
genes, indicating the necessity of reconstructing an omnigenic network.

2.10. The Coefficient of Hubness

In a network, a node with a strikingly larger number of links in comparison with other
nodes is called a hub, and is believed to have a significant impact on network topology.
Although hubs represent the mainstay structure of a network, nodes residing at the network
periphery may play a collective role in maintaining the overall organization of the network.
We propose the concept of hubness by assuming that all nodes (genes) can potentially serve
as hubs, but to different extents. Links adjacent to a gene in a network include outgoing
links by which the gene regulates (i.e., activate or inhibit) other genes and incoming links
by which the gene is regulated by other genes. Because of its leadership role, we will only
estimate the outgoing hubness of each gene. We derive a formula to calculate the strength
of outgoing hubness for gene j, expressed as

Hj =
L

∑
j′=1

∫ ∣∣∣Wj′←j(×)
∣∣∣∫

Wj′(×)
(12)

where L is the number of genes that are regulated by gene j, Wj′(×) is the independent
expression component of gene j′, and Wj′←j(×) is the dependent expression component of
gene j′ affected by gene j. A high Hj value is positively associated with a stronger hubness
of gene j.

3. Results
3.1. FGC–Soma Interactions Driven by Individual Genes

Li et al.’s data [3] comprised 17 female embryos sampled at a range of developmental
stages from 4 to 26 weeks post-fertilization, which formed an early stage of primordial fol-
liculogenesis. In each embryo, multiple subpopulations of cells were isolated to profile the
transcriptomes of FGCs and somas by single-cell RNA-seq, obtaining a total of 1220 genes
that are expressed jointly between the two interactive cell types. We took the expression
mean of each gene over all cell subpopulations from each cell type, from which to calculate
the NI of the gene on each embryo. By plotting the expression of each gene on each cell
type against the NI across embryos, we found that this relationship can be reasonably fitted
by a power equation (p < 0.05; Figure S1), although the form of curve fitting varied among
genes and between cell type for the same gene (Figure 1). Thus, the power equation was
used to model the independent expression component of Equation (2)’s qdODEs, but with
the dependent expression component modelled by an LOP-based nonparametric approach.
By estimating the independent and dependent expression component integrals of the same
gene expressed on FGCs and somas, we characterized how the two cell types interact with
each other, driven by individual genes.
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Figure 1. Allometric scaling of the expression level of a cell type, FGCs (blue) and somas (red),
from an embryo against the NI of embryos for four randomly chosen genes, A2M (A), ADAP2 (B),
AKR1B10 (C), and ANXA1 (D). Each dot denotes the value of gene expression on a cell type from an
embryo, and lines present the fitting of a power equation to the data.

Based on the pattern of how they impact FGC–soma interactions, we classified all
participating genes into five different types: synergistic regulators, including 785 genes,
such as A2M and AGFG1, through which FGCs and somas activate each other (Figure 2A);
directional synergistic regulators, including 82 genes, such as ALDH1A2, by which the somas
activate FGCs but the FGCs are neutral to the somas, and APOC1, by which FGCs activate
the somas but the somas are neutral to FGCs (Figure 2B); antagonistic regulators, including
52 genes, such as CALD1 and CCDC8, by which FGCs and the somas inhibit each other
(Figure 2C); directional antagonistic regulators, including 87 genes, such as ACP5, by which
somas inhibit FGCs but FGCs are neutral to the somas, and AK1, by which FGCs inhibit
the somas but the somas are neutral to FGCs (Figure 2D); and altruistic regulators, including
214 genes, such as ALAS1, by which FGCs activate the somas but the somas inhibit FGCs,
and AMHR2, by which the somas activate FGCs but FGCs inhibit somas (Figure 2E).
Altruistic genes regulate the altruism of cell type 1 toward cell type 2, which can also be
explained as exploitation regulators since they regulate the predation of cell type 2 to cell
type 1. Gene enrichment analysis shows that these five types of genes display distinct
biological functions (right panel, Figure 2); for example, synergistic regulators mostly
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regulate intracellular space and vesicle, meiotic chromosome segregation, and embryo
development; antagonistic regulators are associated with cell division, cell cycle, cell mitotic
process and response to stress; and altruistic regulators regulate gene and epigenetic
expression, RNA biosynthetic process, RNA metabolic process, signal transduction, and
cell communication.
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Figure 2. Five different types of FGC–soma interactions driven by genes. Left panel: The NI-varying
change of each interaction type, illustrated by two representative genes. (A) Synergism—FGCs and
the somas activate each other, driven by 785 genes. (B) Directional synergism—one cell type activates
the other whereas the second has no impact on the first, driven by 82 genes. (C) Antagonism—both
cell types inhibit each other, driven by 52 genes. (D) Directional antagonism—one cell type inhibits the
other whereas the second has no impact on the first, driven by 87 genes. (E) Altruism/exploitation—
one cell type activates (or inhibits) the other but the second reversely inhibits (or activates) the first,
driven by 214 genes. For each interaction type, solid, slashed, and dotted lines denote the overall
expression profile, independent expression component profile, and dependent expression component
profile of each cell type, FGCs (blue) and somas (red). Right panel: GO analysis of genes that drive
various types of interactions (A–E).
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3.2. Gene Regulatory Networks Mediating the Coordinated Development of FGCs and Somas

Multiple genes are organized into a network to mediate FGC–soma interactions and
development. To reconstruct gene regulatory networks that guide how FGCs communicate
with somas, we assume functional modularity. That is, genes function differently, but seem
to be organized into common functional groups (modules), thus causing the gene network
to exhibit modularity. Genes from the same module display a more similar function than
those from different modules. The power equation was found to well fit the dynamic
trajectories of how genes are expressed differently with EI across samples (Figure S2). We
implemented power equation-based functional clustering to classify all genes into different
modules. Using AIC values, we identified 11 as the optimal number of modules (Figure 3A).
Gene enrichment analysis suggested that genes in each module displayed distinct patterns
of biological function (Figure 3B).
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Figure 3. Functional clustering of genes into 11 distinct modules based on the allometric scaling
pattern of the expression of individual genes with EI across FGC and soma samples. (A) The heat
map of differentiated gene expression by functional clustering. (B) GO analysis of genes from
modules 1–11.

We drew the EI-varying expression profiles of genes from each module, separately
for FGCs and somas (Figure 4). As the total amount of gene expression, EI reflects the
carrying capacity of a sample to undertake its function. Somas span a wide spectrum of
EI across samples, at a lower part of which FGCs reside, suggesting that somas tend to
reserve richer resources used to maintain FGCs’ function (Figure 4A). Expression of genes
in almost all modules consistently increased as EI increased in the case of FGCs, but more
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often decreased in the case of somas. All modules, except for module 5, displayed different
amounts and patterns of EI-varying expression profiles between FGCs and somas. Overall,
modules 1, 6, 9, and 11 had a much larger amount of expression on somas than FGCs and
were expressed decreasingly with EI on somas but increasingly with EI on FGCs (Figure 4B).
Taken together, the spectrum of EI and the EI-varying expression pattern of modules can
be used to distinguish between fetal germlines and somas.
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Figure 4. Distinct EI-varying pattern of 11 modules separately for FGCs (blue) and somas (red).
(A) The change of expression of all genes within a module across EI. Thin lines denote the expression
profiles of individual genes and thick lines are the average expression profiles of all genes from each
module. (B) The fitness of averaged expression values of all genes from each module across EI. Each
dot denotes the averaged expression value of genes on each sample.

Embryo development spans several distinct stages during which gene regulation may
vary. By roughly classifying Li et al.’s time-varying samples [3] into early (5–10 weeks
post-fertilization), middle (11–14 weeks post-fertilization), and late stages (18–26 weeks
post-fertilization), we reconstructed stage-specific gene regulatory networks at the module
level for FGCs and somas, respectively (Figure 5). From these networks, we characterized
how the structure and organization of module interaction changed over developmental
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time and differed between the two cell types. Both FGC and soma networks were quite
sparse, containing links indicative of only directional synergism and directional antagonism,
suggesting the role of asymmetric interactions observed in macroscopic organisms [30]
is also present in mediating gene communities. However, these two types of networks
differ remarkably in topological structure. The most striking difference lay in hub modules,
thought to play a central role in network structure. Despite its low expression on FGCs,
module 7 served as the primary hub that exhibited outgoing links with all other modules
(Figure 5A). The secondary hubs in the FGC network were modules 1 and 10, with the latter
being heavily expressed. Module 7 participated in cell apoptosis by regulating JAK-STAT
cascades, module 1 regulated the Wnt signaling pathway implicated in stem cell control,
and module 10 controlled mitotic behavior and methylation. These three hubs played an
essential role in coordinating the development of fetal germlines by culling out inferior
FGCs (module 7) and proliferating superior FGCs (modules 1 and 10).
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Figure 5. Stage-specific (early, middle, and late) gene networks among 11 modules, labeled M1–M11,
for FGCs (blue) (A) and soma (red) (B). The size of circles is proportional to the mean expression level
of all genes from a module. Arrowed lines and T-shaped lines denote the activation and inhibition of
one module on the second, respectively. Hub modules in FGC and soma networks are highlighted in
dark blue and dark red, respectively.

Both modules 6 and 11 in the FGC network received incoming links, thus were re-
garded as target modules. These two modules participated in a wide range of activities;
i.e., module 6 regulated mitotic cell cycle, reproductive structure development, adherens
junction organization, and the extrinsic apoptotic signaling pathway, and module 11 regu-
lated cell apoptosis, cell junction assembly, cell-matrix adhesion, MAPK cascade, and the
transmembrane receptor protein tyrosine kinase signaling pathway. All these activities
are crucial for the formation of primordial follicles. It was interesting to see that module
6 became the primary hub in the soma network that outgoing links to almost all other



Cells 2022, 11, 332 14 of 25

modules mostly through inhibition (Figure 5B). The position change of versatile module 6
from a target of FGCs to a regulator of somas may not only bridge a functional link between
these two cell types, but also imply that FGCs play a leadership role in follicle development
by regulating somas. Unlike module 6, module 11 still served as a target in the soma
network. Module 11 did not only help FGCs select superior cells, but also regulated the
cell–matrix adhesion and transmembrane of somas, facilitating follicle formation.

Gene networks underlying each cell type changed quantitatively rather than qualita-
tively during different stages of embryo development; i.e., gene–gene interactions displayed
a stage-dependent change in their strength rather than their causality and sign (Figure 5).
For example, in the FGC network, the structural role of modules 7, 1, and 11 did not change
from stage 1 to 3, but the strength at which module 1 inhibited 6 and 11 and the strength at
which module 10 activated 6 and 10 increased slightly from stage 1 to 2 but dramatically
from stage 2 to 3. A small network constituted by modules 1, 6, 10, and 11 was a key driver
of stage-specific change of the FGC network, in which modules 6 and 11 merely received
incoming links. Time-dependent change in the soma network was found in the strength
at which module 9 activated module 11, the strength at which module 5 inhibited 10 and
11, and the strength at which module 6 activated 10. Unlike the FGC network, where the
independent expression level of each module (except for 4) was quite stable over time, the
independent expression of many modules in the soma network changed dramatically from
stage to stage; e.g., module 7 increased gradually but module 11 decreased gradually. Both
modules 4 and 10 increased their independent expression level in both networks, especially
from stage 2 to 3. Gene enrichment analysis showed that these two modules contained
genes that participate in oocyte differentiation (Figure 3), suggesting that both FGC and
soma networks have been well organized for primordial follicles to develop after FGCs
enter the oogenesis stage. In addition, module 10 was found to be functionally related
to mitotic cycles and cell proliferation, from which we postulate that the development of
oogonia requires nutritional support from an increasingly growing number of somas.

We characterized how genes of different modules were expressed differently over
EI (Figure 6). We decomposed the overall gene expression profile of each module into
its independent expression component and dependent component. The pattern of gene
expression differed dramatically between FGCs and somas. In the FGC network, all
modules were regulated by hub module 7, whereas in the soma network, all modules,
except for 8, were regulated by hub module 6. The overall expression level of module 1
slightly increased with EI in the FGC but decreased in somas, yet genes in this module
virtually increased their expression dramatically in both cell types if these genes were not
inhibited by modules 7 and 6, respectively. The expression profiles of most modules were
strikingly affected by these two hub modules (Figure 6). As a hub in the soma network,
module 6 in the FGC network became a target, largely activated by module 10 and slightly
by module 7 but largely inhibited by module 1, leading the overall expression level of
module 6 to be similar to its independent expression level. Module 6 in the soma network
only affected other modules, thus leading its observed expression level to be equal to its
independent expression level. Although the independent expression curve of module 6 and
its observed expression curve overlapped in both FGC and soma networks, the underlying
reasons that cause such consistency are cell-type dependent.
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3.3. Genes Mediating Signaling Pathways across Different Cell Types and from Mitosis to Meiosis

Previous studies identified the role of several signaling pathways, including bone
morphogenic protein (BMP) and NOTCH, in mediating FGC development at various
stages [3,31–33]. The proper development of FGCs is determined directly by their coding
genes, whose expression is activated by ligand-receptor binding affinities that transduce
signals. We reconstructed ligand-receptor-target regulatory networks to investigate how
signaling pathways affect FGC–soma interactions across embryos (Figures 7–9). We found
that FGCs and somatic cells were transcriptionally linked by the reciprocal transduction of
signals. Types and strengths of FGC–soma interactions mediated by signaling pathways
vary dynamically over embryo development. For the BMP pathway on FGCs, targets ID2
and ID3 were activated by ligand BMP2 and receptor BMPR1B, making the overall expres-
sion level of the former largely beyond their independent level (Figure 7A). Downstream
ID3 was strikingly promoted not only by BMP2 and BMPR1B but also by ID2, although ID2
received a small feedback from ID3. Ligand BMP2 received a strong feedback from receptor
BMPR1B, but surprisingly, BMPR1B was only slightly regulated by BMP2, rather affected
strongly by ID2 (inhibition) and ID3 (promotion). Both BMP2 and BMPR1B on somatic cells
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were remarkably affected by targets, and it is interesting to see that all ligands, receptors,
and targets promoted the mutual synergism between FGC and somatic cells (Figure 7B).
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Figure 7. FGC–soma interactions driven by genes involved in the bone morphogenic protein (BMP)
signaling pathway, where BMP2 is the ligand highly expressed in somas, BMPR1B is the receptor
expressed in both somas and FGCs, and ID2 and ID3 are the targets specifically upregulated in
RA-responsive, meiotic prophase, and oogenesis FGCs. (A) BMP2, BMPR1B, ID2, and ID3 worked
together in a network to mediate FGC and soma development as a function of expression index,
respectively. Left and right sides of the figure denote the expression levels of genes in FGCs (blue)
and somas (red), respectively. (B) The niche index-varying pattern of interactions between FGCs
(blue) and somas (red) driven by individual genes. Solid thick lines, slashed lines, and dotted
lines denote the overall expression level, independent expression level, and dependent expression
level, respectively.
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Figure 8. Mitotic–meiotic interactions driven by genes involved in the NODAL signaling pathway,
where NODAL is the ligand expressed in mitotic FGCs, ACVR1C, ACVR1A, and ACVR1B are the
receptors and PITX2 is the target, with both receptors and target being specifically expressed in
meiotic FGCs. (A) The niche index-varying pattern of interactions between mitotic FGCs (green)
and meiotic FGCs (light blue) driven by individual genes. Solid thick lines, slash lines, and dots
lines denote the overall expression level, independent expression level, and dependent expression
level, respectively. (B) NODAL, ACVR1A, ACVR1B, ACVR1C, and PITX2 worked together in a
network to mediate mitotic and meiotic phases of FGC development as a function of expression
index, respectively. Left and right sides of the figure denote the expression levels of genes in mitotic
FGCs (green) and meiotic FGCs (light blue).
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Figure 9. Networks of cell–cell interactions, guided by genes, at three different stages of embryo 
development (5, 14, and 23 weeks post-fertilization). (A) Topologies of time series of networks 
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Figure 9. Networks of cell–cell interactions, guided by genes, at three different stages of embryo
development (5, 14, and 23 weeks post-fertilization). (A) Topologies of time series of networks among
randomly sampled cells. Cells in different FGC phases (determined by biomarkers) denoted with
colored circles or squares (standing for hubs): green for mitosis, dark red for RA-responsive phase,
light blue for meiosis, and purple for oogenesis. Gray color indicates cells whose phase cannot be
determined. Yellow-orange arrowed lines and blue-green T-shaped lines denote promotion and
inhibition, respectively. (B) The distribution of the number of all interactions, outgoing directional
synergism, and outgoing directional antagonism and outgoing hubness across FGCs within the
5-week, 14-week and 23-week networks.
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The FGC–soma interaction is also mediated by the NOTCH signaling pathway, but in
different ways. In the gene networks reconstructed for the NOTCH pathway (Figure S3),
we found that FGCs were inhibited by somas whereas somas were promoted by FGCs at
receptor NOTCH2. Both DLL3 and JAG1 are ligands on FGCs, but through them FGCs were
affected by somas differently. FGCs were inhibited by somas at DLL3 but promoted at JAG1
(Figure S3). We postulate that these differences may lead to the augmented expression of
target HES1 on somas over FGCs. In the end, the role of genes in the NOTCH signaling
pathway was modulated by their regulatory networks (Figure S3).

We analyzed the NODAL signaling pathway that transduces signals from the mitotic
phase of FGCs to their meiotic phase [3]. The embryos after 14 w post-fertilization started
to develop meiotic FGCs, thus we took the expression means of each gene (involved in the
NODAL pathway) over all FGCs in mitotic and meiotic phases, respectively, for all embryos
older than this age. The qdODE game model was used to characterize how mitotic cells
interact with meiotic cells through these genes, providing a clue to map the developmental
trajectories of FGCs from early to late phases.

In the NODAL pathway, ligand NODAL functions in mitotic FGCs, whereas receptors
ACVR1C, ACVR1A, and ACVR1B and target PITX2 function in meiotic FGCs, suggesting that
late-phase FGCs receive NODAL signals secreted from those in early phases [3]. However,
a detailed insight into the regulatory mechanisms underlying this process has not been
established. Results from the qdODE game model show that NODAL expressed in mitotic
FGCs had no impact on NODAL expressed in meiotic FGCs, while meiotically expressed
NODAL exerted a strong negative regulation on mitotically expressed NODAL (Figure 8A).
Three receptor genes helped early- and late-phase FGCs establish a synergistic relationship,
showing their direct role in mediating the proper development of FGCs. We found that the
expression of the target gene in meiotic FGCs was not affected by the expression of mitotic
FGCs. Figure 8B illustrates how the receptors and target interacted with each other to affect
mitotic and meiotic FGCs, respectively. In mitotic FGCs, the expression of NODAL was
promoted by both ACVR1A and ACVR1B, whereas ACVR1A inhibiting ACVR1B was heavily
inhibited by NODAL. In meiotic FGCs, NODAL was also promoted by receptors, but the receptors
generally received promotion from each other and from the target.

3.4. Modeling Cell Heterogeneity and Interactions within Embryos

Each FGC can potentially develop toward an oogonia, but this process is subject to
strict natural selection through competition and cooperation. We reconstructed three cell–
cell rewiring networks, respectively, at 5 weeks, 14 weeks, and 23 weeks post-fertilization
(Figure 9) in order to reveal how cells cooperate or compete against each other under the
overall guidance of all genes. We randomly chose an embryo from each of three distinct
stages, 5 weeks, 14 weeks, and 23 weeks post-fertilization, and obtained 45, 68, and 51 FGCs
from these three embryos, respectively. The phase of an FGC was determined by a set of
phase-specific biomarkers [3]. Using these FGCs, we reconstructed cell–cell game networks
for early, middle, and late embryos with FGCs in different phases, which helped us to
omnidirectionally explore the general pattern of FGC–FGC heterogeneity and interactions.

By plotting the gene expression of individual cells against the EI of genes, we found the
existence of allometric relationships by the power equation (Figure S4). We found that all
three networks were composed of directional synergism and directional antagonism; these
asymmetric interactions are similar to those observed in macroscopic organisms [30]. The
networks at different stages of embryo development displayed different features. At 5 w
post-fertilization, the 45-node network inferred was mainly composed of the interactions
among FGCs which were in the mitotic phase (Figure 9A). This network was found to be
quite sparse, with structure determined by two (4%) primary hubs that regulated other
cells through both activation and inhibition, 15 (33%) secondary hubs that regulated and
also are regulated by other cells, and the remaining 28 (63%) nodes that are only regulated
by other cells. The 68-node network at 14 w post-fertilization captured interactions among
7 (10%) FGCs in the mitotic phase, 45 (66%) FGCs in the RA signaling-responsive phase,



Cells 2022, 11, 332 20 of 25

and 16 (24%) FGCs in the meiotic phases (Figure 9B). As compared to the 5-w network, this
network showed increasing topological complexity, but only approximately six (8%) cells
served as hubs that either activated or inhibited other cells, with a majority of cells (92%)
being subordinates (Figure 9B). Three directional synergism hubs, 31, 35, and 57, were all
in the RA signaling-responsive phase, on average regulating 2, 14, and 6 FGCs in mitotic,
RA signaling-responsive, and meiotic phases, respectively. Of three directional antagonism
hubs, FGCs 13 and 34 in the RA signaling-responsive phase, on average, regulated 6, 40, and
14 FGCs in the mitotic, RA signaling-responsive, and meiotic phases, respectively, and FGC
28 in the meiotic phase regulated 6, 42, and 14 FGCs in the mitotic, RA signaling-responsive,
and meiotic phases, respectively.

The 51-node network at 23 w post-fertilization included interactions among 7 (14%)
FGCs in the mitotic phase, 17 (33%) in the RA signaling-responsive phase, 12 (24%) in
the meiotic phases, and 15 (29%) in the oogenesis phase (Figure 9A). Relative to the 14-w
network, this network was dominated by three hub cells (5%), one primary hub cell 18 in
the meiotic phase and two secondary hub cells 3 and 9 in RA signaling-responsive and
meiotic phases. The primary hub rarely regulated FGCs that underwent the mitotic phase,
but exerted an increasing influence on FGCs in the RA signaling-responsive phase. It
triggered a tremendous impact on FGCs that were experiencing the same meiotic phase
and the subsequent oogenetic phase.

Taken together, cell networks follow a similar topological structure dominated by
directional synergism and directional antagonism. Network structure and organization
changed dramatically in response to embryo development. The network at an early stage
of embryo development was sparse, in which about 37% of mitotic FGCs served as hubs to
maintain network stability. As embryos developed, FGCs at different stages co-occurred
to form more complex networks, but these networks were often mediated by a much
smaller set of leaders (5–8%). The number of hubs with a strong leadership (quantified by
the coefficient of outgoing hubness) proportionally decreased with embryo development
(Figure 9B). We speculate that the development-dependent decrease of hub proportion was
the consequence of natural selection by which a small portion of germ cells grew vitally at
the cost of a majority of subordinate and gradually culled cells.

3.5. Computer Simulation

To investigate the statistical properties of our qdODE game model, we performed
computer simulation by mimicking Li et al.’s [3] sampling strategy. For each type of
interaction, we simulated expression values of a gene under two different sample sizes
(15 and 50 embryos), respectively, using qdODE parameters and residual variances es-
timated from Li et al.’s data. In general, the qdODE game model reasonably estimated
the general trends of NI-varying gene expression including independent expression and
dependent expression components when sample size was 15 (Figure S5A). The estimation
accuracy of gene expression profiles increased dramatically when sample size increased to
50 (Figure S5B). We also simulated the expression data by reducing the residual variance,
which, as expected, increased estimation precision. In practice, if measurement errors
cannot be well controlled due to technical issues, we could still reach the expected precision
of parameter estimation by increasing sample size.

We performed an additional simulation study to justify the need of the qdODE game
model. Our game model characterizes NI-varying gene expression changes composed of
independent and dependent components, whereas a traditional model only includes the
independent component, which we call the non-game model. We used game and non-game
models to simulate the expression data of genes under a sample size of 15 and then used
both models to reciprocally analyze these two datasets. As expected, the game model well
estimated NI-varying expression curves for the data simulated under the game model, but
the non-game model provided a biased estimate of expression curves for the same data
(Figure S6). This suggests that for data that contains interaction components, the traditional
non-game model does not perform well. To analyze this type of data, the game model
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should be used. On the other hand, we found that both models can provide reasonable
estimates of expression curves from the data that were simulated by either the game model
or non-game model (Figure S6). Taken together, as the generalization of the non-game
model, the game model can be used to analyze any type of data.

4. Discussion

For this article, we developed and applied the so-called qdODE game model to infer
the gene regulatory networks of primordial follicle development. The model can chart a
comprehensive atlas for the genomic signatures of cell interactions and crosstalk across
fetal germlines and their microenvironment, which not only supports the known signaling
pathways that link FGCs and their gonadal niche cells [34–36], but also characterizes several
previously unknown mechanisms behind cell heterogeneity, development, and evolution.
To our knowledge, the qdODE game model presents the very first theory of its kind that
can systematically reconstruct the genomic landscapes that guide, orchestrate, and impact
FGC–soma interactions. We classified all participating genes into five categories according
to their patterns of impact; i.e., synergistic genes that favor the mutualism of the two cell
types, antagonistic genes that damage their mutual cooperation, directionally synergistic
genes that support the unidirectional payout of one cell type with the other, directionally
antagonistic genes that condition the unidirectional predation of one cell type with the
other, and altruistic or exploitative genes that allow one cell type to benefit at the cost of
the counterpart. Our qdODE game model not only qualitatively discerned each of these
patterns, but also quantitatively estimated their strengths.

By analyzing the scRNA-seq data of human primordial follicles [3], we found that
two-thirds of genes promoted the synergism of FGCs and somas. From an evolutionary
viewpoint, cell–cell cooperation as a process in which two parties work or act together for
mutual benefits helps to increase the “fitness” of the whole system constituted by the two
parties [37]. The establishment of a comprehensive encyclopedia recording the role of each
gene will shed light on the precise mechanisms underlying FGC and gonadal somatic cell
development, facilitating the identification of FGC-like cell differentiation in vitro.

The qdODE game model can reconstruct detailed gene regulatory networks for the
developmental trajectories of FGCs and somas. These networks that are dynamic, but
inferred from static data, can track and visualize how the topological structure of gene–gene
interactions change dynamically during fetal development. These cell-type specific gene
networks allow the question of how the networks differently impact FGCs and somatic
cell growth to be addressed. The FGC networks are qualitatively different from the soma
networks in terms of the type of hubs and their links with other genes or modules, but
both networks change quantitatively in interaction strength with different stages of embryo
development. These qualitative and quantitative discrepancies may provide unique clues
that can help interpret the genomic mechanisms that drive cell type-specific growth and
cell–cell interactions across fetal germs and somas.

In analyzing primordial follicle data provided by Li et al. [3], we identified key genes or
modules that determine the predominant role of FGCs over somas required for the normal
development of primordial follicles. As a target gene of the FGC network that mediates
biological processes directly related to FGC growth, module 6 becomes an important hub
in the soma network to regulate many other genes (Figure 5). Thus, we postulate that
genes in module 6 determine different roles of FGCs and somas in follicle development.
As seen by GO enrichment analysis, this module contains genes that determine apoptosis,
cell proliferation, and cell–cell communication, showing its critical roles in mediating the
selection of superior FGCs and the proliferation of somas.

Human embryos are characterized by high cellular heterogeneity thought to be evolu-
tionarily advantageous [38]. Heterogeneity and diversity are a widespread phenomenon
by which organisms can better adapt to a perturbed environment and, thereby, evolve into
a better form and function. Female fetal germs involve four cell subpopulations, mitotic,
RA signaling-responsive, meiotic, and oogenesis, that exist at different developmental
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stages, whereas their niche cells contain four subpopulations, endothelial, early granulosa,
mural granulosa, and late granulosa [3]. In embryos at an early stage of development
(e.g., 5 weeks post-fertilization), only mitotic cells may exist, and the other cell subpopula-
tions emerge gradually with embryo development. Using single-cell analysis, Li et al. [3]
found the heterogeneity of gene expression profiles among individual FGCs within and
between subpopulations.

The qdODE game model can characterize how functionally and developmentally
different cells communicate with each other in a network and understand gene-driven
cell-to-cell communications within and between phase-specific subpopulations from the
same embryo (Figure 9). Through network analysis, we found that the degree of cellular
heterogeneity increased with embryo development, leading superior FGCs to be more
superior and inferior ones to be more inferior. In the end, only a small portion of FGCs can
successfully become the hubs of cell networks and finally develop into oocytes. Coordinated
cell interactions and rewiring are essential for proper organ development [39]. By inferring
the cellular networks, we can evaluate and identify which cells play a readership role in
regulating cell–cell interactions as hubs at each stage of embryo development.

Understanding genomic machineries behind the developmental variation and interac-
tions of primordial follicles is one of the major tasks in reproductive biology and medicine.
Not relying on temporal data, the qdODE game model derived from the integration of
allometric scaling theory and evolutionary game theory, whose mathematical properties
have been extensively studied [40], can infer and recover developmental trajectories of
FGC–soma interactions and gene networks from steady-state expression data. Given that
FGC development is regulated by epigenetic reprogramming [41] and involves an assembly
of large RNA-protein granules [42], it is crucial to modify our qdODE game model as a tool
to reconstruct epigenetic regulatory networks. With this modification, we will be in an excel-
lent position to understand primordial follicle development at unprecedented resolution.

5. Conclusions

The proper development of primordial follicles towards maturing and eventually
releasing the oocyte for potential fertilization critically depends on the coordinated inter-
actions between cells from these two components. Using advanced single-cell analysis
techniques, many studies have demonstrated the fundamental importance of gene regulator
networks in mediating germline–soma interactions. However, existing approaches for net-
work reconstruction do not consider the asynchronous and heterogeneous nature of follicle
development, limiting our precise understanding of the genomic mechanisms by which
germlines and somas establish communication and crosstalk. More powerful approaches
are sorely needed to identify gene networks that are biologically more meaningful for
germ cell development. In particular, these approaches can take advantage of increasingly
available single-cell data collected from primordial follicles at unprecedented resolution.

Our model can reveal the genomic machineries of primordial follicles by charting a
complete atlas of the role of each gene in modulating germline–soma interactions, their pat-
tern, strength, and dynamics. The unique capacity of our model results from the seamless
integration of allometric scaling theory, widely used to explain biological diversity in eco-
logical research, and evolutionary game theory, a theory that studies the dynamic change of
interaction strategies by individual players. By applying our model to single-cell RNA-seq
data collected from more than a thousand cells in the formation of primordial follicles, we
obtained several previously uncharacterized discoveries regarding follicle development:

• We created a comprehensive encyclopedia of distinct roles played by each gene in
germline–soma communications. We found that about 70% of genes mediate the
synergistic relationship between fetal germ cells and somas.

• We reconstructed fully informative, cell type-specific gene regulatory networks from
which key hub genes or modules are detected to distinguish germline development
from soma development.
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• We identified specific genes that guide the response of late-phase germ cells to signal-
ing pathways secreted from early-phase germ cells.

• We recovered cellular interaction networks of germlines from the same embryo, pro-
viding new insight into how cell heterogeneity operates as an evolutionary force to
select superior oocytes for female fertility.

As compared to widely used network approaches, such as Cytoscape [43], the tech-
nical elegance of our model includes its capacity to reconstruct informative, dynamic,
omnidirectional, and context-specific networks from static data. Traditionally, the inference
of such meaningful networks critically depends on high-density temporal data. Given the
unavailability of such expensive data in embryology and other biological fields, our model
may readily find valuable use in a wide range of biological and biomedical disciplines. In
summary, our model presents a conceptual and methodological advance that facilitates
the effective and efficient analysis of single-cell data in a quest to unravel the genomic
mechanisms of follicle development. It provides a powerful means for reproductive biol-
ogists and medical professionals to extract and excavate general principles that underlie
female fertility.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells11030332/s1, Figure S1: Plots of residuals from the fitting of the power equation vs.
predicted expression values for four randomly chosen genes, A2M (A), ADAP2 (B), AKR1B10 (C),
and ANXA1 (D), for FGCs (red) and somas (blue). The ticks at the x-axis indicate the nicheindices
of embryos; Figure S2: (A) Fitting of power equation to the expression of individual genes against
expression indicesfor FGCs (blue) and somas (red) across embryos. (B) Plots of residuals from the
fitting of the power equation vs. predicted expression values. As an example, we randomly chose
genes, A2M (a), ADAP2 (b), AKR1B10 (c), and ANXA (d).The ticks at the x-axis indicate the expression
indices of FGCs or somas: Figure S3: FGC-soma interactions driven by genes involved in the NOTCH
signaling pathway, where DLL3 is the ligand highly expressed in all phases of FGCs and JAG1 is
the ligand specifically expressed in oogenesis phase FGCs, NOTCH2 is the receptor and HES1 is the
target, both of which are highly expressed in nearly all FGCs. (A) DLL3, JAG1, NOTCH2, and HES1
work together in a network to mediate FGCand soma development as a function of expression index,
respectively. Left and right sides of the figure denote the expression levels of genes in FGCs (blue) and
the somas (red), respectively. (B) The niche index-varying pattern of interactions between FGCs (blue)
and somas (red) driven by individual genes. Solid thick lines, slash lines, and dots lines denote the
overall expression level, independent expression level, and dependent expression level, respectively.
Ligand DLL3 is expressed both in FGCs and somatic cells, suggesting that it provides a foundation
for NOTCH signaling interaction between these two different types of cells. Our qdODE model can
dissect how DDL3 determine FGC-soma interactions. In the top figure of B, we found that the somas
trigger a directional antagonism relationship with FGCs through DDL3, by which the somas inhibit
FGCs whereas FGCs are neutral to the somas; Figure S4: (A) Fitting of power equation to the gene
expression of four randomly chosen FGCs (a–d) against the expression indices of 1276 genes for early,
middle, and late developmental stages of embryos 5 weeks, 14 weeks, and 23 weeks post-fertilization.
(B) Plots of residuals from the fitting of the power equation vs. predicted expression values. The ticks
at the x-axis indicate the expression indices of genes: Figure S5: Estimated expression profiles (slashed
line) of a gene that mediates synergism (A), directional synergism (B), antagonism (C), directional
antagonism (D), and altruism/exploitation (E), respectively, in a comparison to true profiles (solid
line), under a sample size of 15 (left panel) and 50 (right panel). Red, green, and blue lines denote
the overall, independent, and dependent expression profiles, respectively; Figure S6: Game and
non-game models reciprocally analyze the expression data simulated by each model. Solid and
slashed lines denote the true and estimated expression profiles, respectively. Red, green, and blue
lines denote the overall, independent, and dependent expression profiles, respectively.
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