

Received 6 September 2017 Accepted 12 October 2017

Edited by G. S. Nichol, University of Edinburgh, Scotland

Keywords: crystal structure; dipyridyl-type ligand; cobalt(II); zigzag chain; metal-organic framework.

CCDC reference: 1579473

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a Co^{II} coordination polymer with a dipyridyl ligand: *catena*-poly[[bis(nitrato- $\kappa^2 O, O'$)cobalt(II)]- μ -N-(pyridin-2-ylmethyl)pyridine-3-amine- $\kappa^3 N, N': N''$]

Suk-Hee Moon,^a Youngjin Kang^{b*} and Ki-Min Park^{c*}

^aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, ^bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, and ^cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea. *Correspondence e-mail: kangy@kangwon.ac.kr, kmpark@gnu.ac.kr

The asymmetric unit of the title compound, $[Co(NO_3)_2L]_n$, L = N-(pyridine-2ylmethyl)pyridine-3-amine (C₁₁H₁₁N₃), contains one Co^{II} centre, two nitrate anions and one L ligand in which the $C_{py}-C-N-C_{py}$ moiety adopts a trans conformation with a torsion angle of -173.1 (3) Å. The coordination geometry of the Co^{II} atom is a distorted pentagonal bipyramid. One amine N atom from the L ligand and four O atoms from two η^2 -nitrato ligands form the basal plane and two pyridyl N atoms from two symmetry-related L ligands occupy the apical positions $[N-Co-N = 171.86 (11)^{\circ}]$. The displacement of the central Co^{II} atom from the basal plane (r.m.s. deviation = 0.085 Å) is 0.1491 (12) Å. Each bidentate nitrate group is bonded asymmetrically to the cobalt atom in an chelating fashion. The Co^{II} ions are linked by the L ligands to form a zigzag chain propagating along the *c*-axis direction. Within the zigzag chain, $C-H \cdots O$ hydrogen bonds between the ligands and the nitrate anions are observed. Adjacent zigzag chains are connected via intermolecular π - π stacking interactions [centroid-to-centroid distance = 3.844 (2) Å] between the pyridine rings together with N/C-H···O hydrogen bonds.

1. Chemical context

Over the past few decades, the continuous efforts have been devoted to the design and development of metal-organic frameworks (MOFs) obtained by linking transition metal centers with several organic bridging ligands. In particular, rigid or flexible dipyridyl-type ligands have been widely used to construct MOFs with attractive structures and potential applications in materials chemistry (Silva et al., 2015; Furukawa et al., 2014; Wang et al., 2012; Leong & Vittal, 2011). Our group has also tried to develop diverse dipyridyl-type MOFs with intriguing topologies including a cyclic dimer (Moon et al., 2011), zigzag chain (Moon et al., 2016), double helical chain (Lee et al., 2015), helical looped-chain (Ju et al., 2014) and twodimensional pseudo-polyrotaxane network (Im et al., 2017), and reported their crystal structures. As a part of our ongoing efforts to develop dipyridyl-type MOFs with different structural motifs, we prepared the title compound obtained by the reaction of cobalt(II) nitrate with a dipyridyl ligand, namely N-(pyridine-2-ylmethyl)pyridine-3-amine. Herein, we report its crystal structure, which is the first example of a Co^{II} complex with an N-(pyridine-2-ylmethyl)pyridine-3-amine ligand.

2. Structural commentary

The asymmetric unit of the title compound comprises one Co^{II} atom, one L ligand and two nitrate anions, which coordinate the cobalt ion in a bidentate chelating fashion. The coordination geometry of the Co^{II} atom is distorted pentagonal bipyramidal with the five basal sites being occupied by one amine N atom from the L ligand and four O atoms from two η^2 -nitrato ligands and the two apical positions occupied by two pyridyl N atoms from two symmetry-related L ligands [N1–

Figure 1

A view of the molecular structure of the title compound, showing the atom-numbering scheme [symmetry codes: (i) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$]. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Table 1			
Selected geometri	c parameters (Å,	°).	
Co1-N1	2.120 (3)	Co1-N2	2.191 (3)
Co1-N3 ⁱ	2.125 (3)	Co1-O3	2.327 (3)
Co1-O2	2.139 (3)	Co1-O5	2.365 (2)
Co1-O6	2.167 (2)		
N1-Co1-N3 ⁱ	171.86 (11)	N3 ⁱ -Co1-O3	92.35 (10)
N1-Co1-O2	90.67 (11)	O2-Co1-O3	55.81 (11)
$N3^i$ -Co1-O2	97.46 (11)	O6-Co1-O3	135.30 (10)
N1-Co1-O6	90.57 (10)	N2-Co1-O3	84.11 (10)
$N3^i$ -Co1-O6	90.67 (10)	N1-Co1-O5	81.99 (10)
O2-Co1-O6	79.58 (11)	N3 ⁱ -Co1-O5	92.07 (10)
N1-Co1-N2	77.43 (10)	O2-Co1-O5	134.56 (10)
$N3^i$ -Co1-N2	96.52 (10)	O6-Co1-O5	55.89 (9)
O2-Co1-N2	137.86 (11)	N2-Co1-O5	84.19 (9)
O6-Co1-N2	139.71 (10)	O3-Co1-O5	167.89 (10)
N1-Co1-O3	92.42 (10)		

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Co1-N3ⁱ = 171.86 (11)°; symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$] (Fig. 1). The central Co^{II} atom is displaced by 0.1491 (12) Å from the basal plane (r.m.s. deviation = 0.085 Å). The Co-N distances in apical positions [Co1-N1 = 2.120 (3), Co1-N3ⁱ = 2.125 (3) Å] are slightly shorter than that of the basal [Co1-N2 = 2.191 (3) Å]. The largest deviations from the NO₄ basal plane around the cobalt center involve the angles O2-Co1-O3 [55.81 (11)°] and N2-Co1-O5 [84.19 (9)°]. This distortion may reflect the narrow bite angles of the bidentate nitrate ions.

The *L* ligand adopts a stretched *trans* conformation with the C5–C6–N2–C7 torsion angle being –173.1 (3) Å. The terminal pyridine rings of the *L* ligand are nearly perpendicular to each other, with the dihedral angle between their mean planes being 76.74 (12)°. Each bidentate nitrate group is bonded asymmetrically to the cobalt atom [Co1–O2 = 2.139 (3), Co1–O3 = 2.327 (3), Co1–O5 = 2.365 (2) and Co1–O6 = 2.167 (2) Å]. Each *L* ligand is bridged by the Co^{II} ions, forming –(Co-*L*)_n– zigzag chains propagating along the *c*-axis direction (Figs. 2 and 3). The zigzag chain is reinforced by several C–H···O hydrogen bonds (Table 2; green dashed lines in Fig. 2) between the *L* ligands and the nitrate O atoms.

The zigzag chain formed through $C-H\cdots O$ hydrogen bonds (green dashed lines). H atoms not involved in intermolecular interactions have been omitted for clarity.

research communications

Hydrogen-bond geometry (Å, °).	e 2
	ogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N2-H2 N ···O5 ⁱⁱ	0.96	2.11	2.987 (4)	151
$C1-H1\cdots O2^{iii}$	0.93	2.57	3.186 (5)	124
$C6-H6A\cdots O6^{iv}$	0.97	2.54	3.413 (4)	149
$C8-H8\cdots O3^{v}$	0.93	2.53	3.163 (4)	126
$C9-H9\cdots O5^{v}$	0.93	2.49	3.164 (4)	130

Symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (iv) x, y, z + 1; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

3. Supramolecular features

In the crystal of the title compound, adjacent zigzag chains are linked by intermolecular $\pi - \pi$ stacking interactions [black dashed lines in Fig. 3; $Cg1\cdots Cg1^{ii} = 3.844$ (2) Å; Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: (ii) -x, -y + 1, -z + 1] between the pyridine rings and C–H···O hydrogen bonds between pyridyl H atoms and nitrate O atoms (Table 1; green dashed lines in Fig. 3), forming layers extending parallel to the (100) plane. The layers are further connected by intermolecular N–H···O hydrogen bonds (Table 2; green dashed lines in Fig. 3) between amine H atoms and nitrate O atoms.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom *et al.*, 2016) for the compounds obtained by the reaction of transition metal ions and the *L* ligand gave 11 hits. Three (AQEGAG, AQEGEK, AQEGIO) are Hg^{II} complexes and seven (CEZPAA, DURFON,

Crystal data	
Chemical formula	$[C_0(NO_3)_2(C_{11}H_{11}N_3)]$
Mr	368.18
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	298
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.4550 (13), 17.662 (2), 7.9653 (10)
β (°)	108.160 (3)
$V(Å^3)$	1397.6 (3)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.27
Crystal size (mm)	$0.32 \times 0.27 \times 0.23$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.644, 0.725
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7841, 2737, 1695
R _{int}	0.070
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.087, 0.96
No. of reflections	2737
No. of parameters	208
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.26, -0.31

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *DIAMOND* (Brandenburg, 2010), *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

POFKUS, PONTUJ, VIPTOF, WIHWUH, WIHXOC) of them are Ag^I complexes. The remaining one is a Zn^{II} complex (DUVPER). There are no metal complexes that are similar to

Figure 3

The three-dimensional structure formed through intermolecular π - π stacking interactions (black dashed lines) and N/C-H···O hydrogen bonds (green dashed lines). H atoms not involved in intermolecular interactions have been omitted for clarity.

the structure of the Co^{II} complex described above. Therefore, the title compound is the first example of a Co^{II} complex with an *L* ligand.

5. Synthesis and crystallization

The *L* ligand was synthesized according to a literature method (Lee *et al.*, 2013). X-ray-quality single crystals of the title compound were obtained by slow evaporation of an acetonitrile solution of the *L* ligand with $Co(NO_3)_2 \cdot 6H_2O$ in the molar ratio 1:1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The amine H atom was located from a difference-Fourier map and refined with riding constraints [d(N-H) = 0.96 Å]. All other H atoms were positioned geometrically and refined as riding, with d(C-H) =0.93 Å for Csp^2 -H and 0.97 Å for methylene C-H. For all H atoms, $U_{iso}(H) = 1.2U_{eq}$ of the parent atom.

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410 and NRF-2016R1D1A1B01012630).

References

- Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). *Chem. Soc. Rev.* 43, 5700–5734.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Im, H., Lee, E., Moon, S.-H., Lee, S. S., Kim, T. H. & Park, K.-M. (2017). Bull. Korean Chem. Soc. 38, 127–129.
- Ju, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658–3660.
- Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535.
- Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480.
- Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.
- Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513– 1516.
- Moon, S.-H., Kim, T. H. & Park, K.-M. (2011). Acta Cryst. E67, m1769-m1770.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). *Chem. Soc. Rev.* 44, 6774–6803.
- Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2017). E73, 1696-1699 [https://doi.org/10.1107/S205698901701475X]

Crystal structure of a Co^{II} coordination polymer with a dipyridyl ligand: *catena*-poly[[bis(nitrato- $\kappa^2 O, O'$)cobalt(II)]- μ -N-(pyridin-2-ylmethyl)pyridine-3-amine- $\kappa^3 N, N': N''$]

Suk-Hee Moon, Youngjin Kang and Ki-Min Park

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

catena-Poly[[bis(nitrato- $\kappa^2 O, O'$) cobalt(II)]- μ -N-(pyridin-2-ylmethyl)pyridine-3-amine- $\kappa^3 N, N': N''$]

Crystal data

 $\begin{bmatrix} \text{Co(NO_3)}_2(\text{C}_{11}\text{H}_{11}\text{N}_3) \end{bmatrix} \\ M_r = 368.18 \\ \text{Monoclinic, } P2_1/c \\ a = 10.4550 (13) \text{ Å} \\ b = 17.662 (2) \text{ Å} \\ c = 7.9653 (10) \text{ Å} \\ \beta = 108.160 (3)^\circ \\ V = 1397.6 (3) \text{ Å}^3 \\ Z = 4 \\ \end{bmatrix}$

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.644, T_{\max} = 0.725$ 7841 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.087$ S = 0.962737 reflections 208 parameters 0 restraints F(000) = 748 $D_x = 1.750 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2739 reflections $\theta = 2.1-26.0^{\circ}$ $\mu = 1.27 \text{ mm}^{-1}$ T = 298 KBlock, violet $0.32 \times 0.27 \times 0.23 \text{ mm}$

2737 independent reflections 1695 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.4^\circ$ $h = -8 \rightarrow 12$ $k = -21 \rightarrow 18$ $l = -9 \rightarrow 9$

Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0331P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26$ e Å⁻³ $\Delta\rho_{min} = -0.31$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.27153 (4)	0.39860 (2)	0.26458 (6)	0.03391 (16)	
N1	0.1788 (3)	0.48757 (15)	0.3629 (3)	0.0358 (7)	
N2	0.3601 (3)	0.38625 (14)	0.5512 (3)	0.0326 (7)	
H2N	0.4398	0.4164	0.5764	0.039*	
N3	0.3901 (3)	0.18597 (14)	0.6941 (3)	0.0343 (7)	
C1	0.1212 (4)	0.54840 (19)	0.2707 (5)	0.0431 (9)	
H1	0.1017	0.5474	0.1486	0.052*	
C2	0.0893 (4)	0.6122 (2)	0.3468 (5)	0.0471 (10)	
H2	0.0516	0.6541	0.2786	0.057*	
C3	0.1144 (4)	0.6125 (2)	0.5272 (5)	0.0471 (10)	
H3	0.0940	0.6550	0.5829	0.056*	
C4	0.1700 (3)	0.5495 (2)	0.6242 (5)	0.0398 (9)	
H4	0.1869	0.5488	0.7459	0.048*	
C5	0.2005 (3)	0.48701 (18)	0.5379 (4)	0.0330 (8)	
C6	0.2606 (4)	0.41626 (18)	0.6310 (4)	0.0383 (9)	
H6A	0.3042	0.4268	0.7552	0.046*	
H6B	0.1905	0.3790	0.6213	0.046*	
C7	0.4171 (3)	0.31400 (18)	0.6103 (4)	0.0303 (8)	
C8	0.3417 (3)	0.25586 (18)	0.6498 (4)	0.0345 (8)	
H8	0.2533	0.2660	0.6453	0.041*	
C9	0.5162 (4)	0.1726 (2)	0.6967 (5)	0.0453 (9)	
H9	0.5501	0.1238	0.7224	0.054*	
C10	0.5989 (4)	0.2273 (2)	0.6632 (5)	0.0489 (10)	
H10	0.6870	0.2160	0.6689	0.059*	
C11	0.5489 (4)	0.2985 (2)	0.6216 (5)	0.0427 (9)	
H11	0.6035	0.3366	0.6008	0.051*	
N4	0.0418 (3)	0.32781 (17)	0.1539 (4)	0.0423 (8)	
01	-0.0745 (3)	0.30287 (19)	0.0943 (4)	0.0832 (10)	
O2	0.0852 (3)	0.37335 (16)	0.0660 (4)	0.0661 (8)	
03	0.1166 (3)	0.30993 (15)	0.2978 (4)	0.0628 (8)	
N5	0.3877 (3)	0.50903 (17)	0.1413 (4)	0.0412 (8)	
04	0.4248 (3)	0.56412 (17)	0.0738 (4)	0.0752 (9)	
05	0.4407 (3)	0.49125 (14)	0.2962 (3)	0.0500 (7)	
06	0.2877 (3)	0.47059 (14)	0.0518 (3)	0.0517 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Col	0.0436 (3)	0.0265 (2)	0.0319 (3)	0.0006 (2)	0.0121 (2)	-0.0005 (2)

supporting information

N1	0.0423 (18)	0.0294 (16)	0.0357 (18)	0.0051 (13)	0.0120 (14)	-0.0007 (14)
N2	0.0346 (16)	0.0276 (16)	0.0370 (16)	0.0011 (12)	0.0132 (13)	0.0031 (13)
N3	0.044 (2)	0.0293 (16)	0.0318 (17)	0.0018 (13)	0.0147 (14)	0.0016 (13)
C1	0.052 (2)	0.039 (2)	0.040 (2)	0.0139 (17)	0.0157 (18)	0.0057 (18)
C2	0.054 (2)	0.033 (2)	0.053 (3)	0.0097 (17)	0.015 (2)	0.0066 (18)
C3	0.049 (2)	0.037 (2)	0.056 (3)	0.0076 (17)	0.019 (2)	-0.0097 (19)
C4	0.042 (2)	0.042 (2)	0.037 (2)	0.0042 (16)	0.0146 (18)	-0.0065 (17)
C5	0.034 (2)	0.0311 (19)	0.036 (2)	0.0020 (14)	0.0133 (16)	0.0005 (16)
C6	0.047 (2)	0.035 (2)	0.035 (2)	0.0059 (16)	0.0164 (17)	0.0011 (16)
C7	0.034 (2)	0.0294 (19)	0.0264 (18)	-0.0007 (15)	0.0080 (15)	-0.0005 (15)
C8	0.034 (2)	0.032 (2)	0.040 (2)	0.0017 (15)	0.0142 (17)	0.0049 (16)
C9	0.058 (3)	0.031 (2)	0.049 (2)	0.0120 (18)	0.020 (2)	0.0066 (17)
C10	0.041 (2)	0.043 (2)	0.070 (3)	0.0103 (18)	0.028 (2)	0.013 (2)
C11	0.044 (3)	0.036 (2)	0.053 (2)	-0.0016 (17)	0.0217 (19)	0.0038 (18)
N4	0.047 (2)	0.0347 (19)	0.047 (2)	-0.0007 (15)	0.0167 (18)	-0.0056 (16)
01	0.057 (2)	0.088 (3)	0.096 (3)	-0.0211 (18)	0.0120 (18)	-0.014 (2)
O2	0.065 (2)	0.067 (2)	0.0587 (19)	-0.0084 (15)	0.0074 (15)	0.0029 (16)
03	0.064 (2)	0.061 (2)	0.061 (2)	0.0070 (15)	0.0166 (17)	-0.0011 (16)
N5	0.057 (2)	0.0290 (18)	0.043 (2)	-0.0088 (15)	0.0227 (17)	-0.0023 (15)
O4	0.102 (3)	0.059 (2)	0.066 (2)	-0.0244 (17)	0.0285 (18)	0.0130 (16)
O5	0.0670 (19)	0.0443 (16)	0.0382 (16)	-0.0091 (12)	0.0155 (14)	0.0042 (13)
O6	0.0631 (19)	0.0502 (17)	0.0423 (16)	-0.0101 (14)	0.0173 (14)	-0.0049 (13)

Geometric parameters (Å, °)

Co1—N1	2.120 (3)	С3—Н3	0.9300
Co1—N3 ⁱ	2.125 (3)	C4—C5	1.389 (4)
Co1—O2	2.139 (3)	C4—H4	0.9300
Co1—O6	2.167 (2)	C5—C6	1.488 (4)
Co1—N2	2.191 (3)	C6—H6A	0.9700
Co1—O3	2.327 (3)	C6—H6B	0.9700
Co1—O5	2.365 (2)	C7—C11	1.381 (4)
N1-C1	1.334 (4)	С7—С8	1.389 (4)
N1C5	1.341 (4)	C8—H8	0.9300
N2—C7	1.425 (4)	C9—C10	1.378 (5)
N2—C6	1.475 (4)	С9—Н9	0.9300
N2—H2N	0.9565	C10—C11	1.362 (5)
N3—C9	1.334 (4)	C10—H10	0.9300
N3—C8	1.339 (4)	C11—H11	0.9300
N3—Co1 ⁱⁱ	2.125 (3)	N4—O3	1.211 (4)
C1—C2	1.368 (4)	N4—O1	1.240 (4)
C1—H1	0.9300	N4—O2	1.241 (4)
С2—С3	1.378 (5)	N5—O5	1.226 (3)
С2—Н2	0.9300	N5—O4	1.232 (3)
C3—C4	1.376 (5)	N5—O6	1.263 (4)
N1—Co1—N3 ⁱ	171 86 (11)	С4—С3—Н3	120.2
N1-Co1-O2	90.67 (11)	C2—C3—H3	120.2

N3 ⁱ —Co1—O2	97.46 (11)	C3—C4—C5	119.1 (3)
N1—Co1—O6	90.57 (10)	C3—C4—H4	120.4
N3 ⁱ —Co1—O6	90.67 (10)	C5—C4—H4	120.4
O2—Co1—O6	79.58 (11)	N1—C5—C4	121.2 (3)
N1—Co1—N2	77.43 (10)	N1—C5—C6	115.6 (3)
$N3^{i}$ —Co1—N2	96.52 (10)	C4—C5—C6	123.2 (3)
02—Co1—N2	137.86 (11)	N2—C6—C5	109.4 (3)
06-Co1-N2	139.71 (10)	N2—C6—H6A	109.8
N1-Co1-O3	92.42 (10)	C5—C6—H6A	109.8
$N3^{i}$ —Co1—O3	92 35 (10)	N2—C6—H6B	109.8
$02-C_01-03$	55 81 (11)	C5-C6-H6B	109.8
06-C01-03	13530(10)	H6A - C6 - H6B	108.2
N_{2} Col $-O_{3}$	84 11 (10)	$C_{11} - C_{7} - C_{8}$	117.7(3)
N1 - Co1 - O5	81.99 (10)	$C_{11} = C_{7} = N_{2}$	1204(3)
$N3^{i}$ Co1 05	92.07(10)	C8 - C7 - N2	120.4(3) 121.9(3)
$0^{2}-C_{0}1-0^{5}$	13456(10)	N3-C8-C7	121.9(3) 123.1(3)
$06-C_{01}-05$	55 89 (9)	N3_C8_H8	118.4
N_2 Col O_5	<i>55.67 (7)</i> 84 10 (0)	C7 C8 H8	118.4
12 - 01 - 05	167.89(10)	$N_{3} = C_{9} = C_{10}$	110.4 123.3(3)
C1 N1 C5	107.89(10) 118.6(3)	N3 C0 H0	123.3 (3)
C1 = N1 = C3	110.0(3) 125.0(2)	$N_{3} = C_{3} = 11_{3}$	118.3
$C_1 = N_1 = C_0 I$	125.0(2) 115.4(2)	$C_{10} = C_{20} = C_{10}$	110.3 118.6(3)
C_{7} N2 C_{6}	113.4(2) 117.2(2)	$C_{11} = C_{10} = C_{3}$	118.0 (3)
C7 N2 Co1	117.2(2) 115.52(10)	$C_{11} = C_{10} = H_{10}$	120.7
C = N2 = Col	115.52(19) 10(71(10)	$C_{10} = C_{10} = H_{10}$	120.7
C_{0} N2 U2N	100.71 (19)	C10 - C11 - C/	119.9 (3)
C = H2N	100.5	C10—C11—H11	120.0
Co-N2-H2N	113.2	C = C = H = H = H = H = H = H = H = H =	120.0
$Col_N2 - H2N$	102.7	03 - N4 - 01	122.4(3)
C9 N3 C8	117.3 (3)	03 - N4 - 02	117.5 (3)
$C9 - N3 - C01^{\circ}$	121.8 (2)	01—N4—02	120.1 (4)
$C8 - N3 - C01^{\circ}$	120.9(2)	N4-02-Col	97.3 (2)
NI—CI—C2	123.4 (3)	N4-O3-Col	89.1 (2)
NI—CI—HI	118.3	05—N5—04	122.4 (3)
C2—C1—H1	118.3	O5—N5—O6	117.7 (3)
C1—C2—C3	118.1 (3)	04—N5—06	119.7 (3)
C1—C2—H2	120.9	N5—O5—Col	88.92 (19)
С3—С2—Н2	120.9	N5—O6—Co1	97.3 (2)
C4—C3—C2	119.5 (3)		
C5—N1—C1—C2	3.5 (5)	C9—N3—C8—C7	-1.1 (5)
Co1—N1—C1—C2	-165.0 (3)	Co1 ⁱⁱ —N3—C8—C7	177.1 (2)
N1—C1—C2—C3	-2.0 (5)	C11—C7—C8—N3	-1.4 (5)
C1—C2—C3—C4	-0.1 (5)	N2-C7-C8-N3	175.4 (3)
C2—C3—C4—C5	0.5 (5)	C8—N3—C9—C10	2.6 (5)
C1—N1—C5—C4	-3.0 (5)	Co1 ⁱⁱ —N3—C9—C10	-175.6 (3)
Co1—N1—C5—C4	166.5 (2)	N3-C9-C10-C11	-1.5 (6)
C1—N1—C5—C6	177.9 (3)	C9—C10—C11—C7	-1.3 (5)
Co1—N1—C5—C6	-12.5 (4)	C8—C7—C11—C10	2.6 (5)

supporting information

C3—C4—C5—N1	1.1 (5)	N2-C7-C11-C10	-174.2 (3)
C3—C4—C5—C6	-179.9 (3)	O3—N4—O2—Co1	-6.4 (3)
C7—N2—C6—C5	-173.1 (3)	O1—N4—O2—Co1	173.0 (3)
Co1—N2—C6—C5	-41.8 (3)	O1—N4—O3—Co1	-173.5 (3)
N1C5	37.5 (4)	O2—N4—O3—Co1	5.8 (3)
C4—C5—C6—N2	-141.5 (3)	O4—N5—O5—Co1	173.0 (3)
C6—N2—C7—C11	-145.9 (3)	O6—N5—O5—Co1	-4.0 (3)
Co1—N2—C7—C11	87.0 (3)	O5—N5—O6—Co1	4.4 (3)
C6—N2—C7—C8	37.4 (4)	O4—N5—O6—Co1	-172.7 (3)
Co1—N2—C7—C8	-89.8 (3)		

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x, -y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
N2—H2 <i>N</i> ···O5 ⁱⁱⁱ	0.96	2.11	2.987 (4)	151
C1—H1···O2 ^{iv}	0.93	2.57	3.186 (5)	124
C6—H6A···O6 ^v	0.97	2.54	3.413 (4)	149
C8—H8····O3 ⁱⁱ	0.93	2.53	3.163 (4)	126
С9—Н9…О5 ^{іі}	0.93	2.49	3.164 (4)	130

Symmetry codes: (ii) *x*, -*y*+1/2, *z*+1/2; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*+1, -*z*; (v) *x*, *y*, *z*+1.