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Global alignment of complex pseudotime trajectories between different
single-cell RNA-seq datasets is challenging, as existing tools mainly focus on
linear alignment of single-cell trajectories. Here we present CAPITAL (com-

parative analysis of pseudotime trajectory inference with tree alignment), a
method for comparing single-cell trajectories with tree alignment whereby
branching trajectories can be automatically compared. Computational tests
on synthetic datasets and authentic bone marrow cells datasets indicate that
CAPITAL has achieved accurate and robust alignments of trajectory trees,
revealing various gene expression dynamics including gene-gene correlation
conservation between different species.

Single-cell RNA sequencing (scRNA-seq) has enabled us to scrutinize
the gene expression of dynamic cellular processes such as differ-
entiation, reprogramming, and cell death. Since tracing a gene
expression level of the same cell over some period of time is infeasible,
pseudotime analysis with scRNA-seq snapshot data on a cell population
from a tissue or an organ is of great value to obtain an approximate
landscape of gene expression dynamics in those biological systems.

To model dynamic developmental processes for a given scRNA-
seq dataset, various computational tools were developed to predict a
cell-state transition trajectory or a pseudotime trajectory'>. The pre-
dictable topology of trajectories depends on the method of choice,
ranging from a simple linear structure to a tree with branches, and
even a complex cycle®. A comprehensive comparison among existing
trajectory inference tools was also provided to make an exhaustive
investigation into their performance’.

Comparison of pseudotime trajectories will provide a key to
unveiling regulators that determine cell fates. For instance, trajectory
comparison is used to investigate differences in gene expression
dynamics between species (e.g. human vs. mouse), which will unravel
evolutionary conservation and difference in the determination of cell
fates such as regulation timing for an orthologous gene.

Recently, computational methods for aligning pseudotime tra-
jectories across different datasets have been proposed®’. They aim to
align two single lineages across datasets with dynamic time warping'®,
which is an analogy to a classical problem of pairwise sequence

alignment, but differs in that multiple cells in one dataset may be
matched with one cell in the counterpart at a time point. It remains,
however, an unsettled question how one should select a pair of single
lineages to be compared if the pseudotime trajectories include bran-
ches in each dataset, as the above methods based on dynamic time
warping can deal only with linear trajectories for comparison. Fur-
thermore, selecting a pair of trajectories to be compared requires
accurate downstream analysis of a single-cell dataset and prior
knowledge of a developmental pathway. Although one can consider
inferring a common trajectory after integrating different scRNA-seq
datasets" ", trajectory inference in this case could yield unexpected
results since there is a possibility of merging cells that are not closely
related.

In this work, we present a computational method for comparative
analysis of pseudotime trajectory inference with tree alignment
(CAPITAL). The aim of this work is to provide a method for aligning
different scRNA-seq datasets even if their pseudotime trajectories
include branches, so that one does not need to select linear paths in
the trajectories to be compared beforehand. In the proposed algo-
rithm, when a pair of different but related scRNA-seq datasets is given,
CAPITAL seeks to infer a pseudotime trajectory that can include mul-
tiple branches for each dataset, and then to compute an optimal
alignment between the two trajectories. Thorough computational
tests on CAPITAL with synthetic scRNA-seq datasets in comparison
with several state-of-the-art methods for data integration indicate that
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CAPITAL has achieved accurate and robust alignments of trajectory
trees. Next, a test with public scRNA-seq datasets of human bone
marrow cells shows that CAPITAL was able to detect correct linear
trajectories to be compared without manual selection. A further test
with human and mouse bone marrow cells datasets tells us that
CAPITAL was able to reveal not only similar expression patterns that
seemed to be conserved but different molecular patterns between
human and mouse, which would provide a key to unraveling novel
regulators that determine cell fates.

Results
Overview of CAPITAL
The CAPITAL algorithm consists of the following two consecutive
steps (cluster-based tree alignment and cell-based linear alignment):
1. Taking a pair of expression count matrices from two different
scRNA-seq datasets as input, these matrices are preprocessed to
construct their respective nearest neighbor graphs by using
principal components derived from highly variable genes (Fig. 1a).
The neighbor graphs are then used to identify communities
(clusters) with the Leiden algorithm', and the representative cell
in each cluster is defined as a virtual cell with the median
measured in the reduced dimensional space, which is called a
centroid. Respective trajectories are computed by finding the
minimum spanning trees in the centroid-based graphs. Tree
alignment of the centroids across different datasets is performed
by a dynamic programming algorithm (“Methods”).
Choosing a pair of aligned single lineages comprising the cen-
troids according to the resulting tree alignment, the centroids in
each dataset are decomposed into their original single cells. Next,
each of the starting single cells in the aligned root cluster (e.g. A
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Fig. 1| Overview of CAPITAL algorithm. a From an expression matrix of each
dataset, a nearest neighbor graph is constructed where cells and their expression-
based similarities are represented as vertices and weighted edges, respectively, and
then clustered with community detection. Next, a centroid in each cluster is cal-
culated to infer a trajectory of clusters by computing the minimum spanning tree.
Finally, a tree alignment of trajectories of clusters is obtained by aligning one
minimum spanning tree with the other across different datasets on the basis of a

Pseudotime ordering

and A’ in Fig. 1b) is determined in a way that it has the longest
distance to a cell among all other cells in the corresponding
dataset. Computing an accumulated transition matrix for the cells
along each path with the starting cell specified generates a
pseudotime order’. Linear alignment of these single cells is then
performed by a dynamic time warping algorithm for a set of genes
of interest.

CAPITAL has an assumption that it can deal with a pair of single-
cell trajectories with any number of branches (i.e. trees), but not cycles
and disconnected graphs. Note that any pair of input trajectory trees
can be accepted regardless of how similar they are in theory, but the
comparison of datasets from completely different cell populations
that are expected to have trajectories with different shapes is not
relevant in practice.

Benchmarking trajectory alignments with synthetic datasets

We first investigated how the clustering affects the ability of CAPITAL
to align our synthetic datasets in terms of (i) the topology of the tra-
jectories to be compared; (ii) the difference in the number of clusters
across two datasets; and (iii) the total number of clusters in two
datasets. The synthetic datasets used in these tests were generated by
dyngen® with the backbone as a binary tree with three branches, which
consist of 68 datasets of single-cell expression counts to be extended
to more datasets for benchmarking alignments (“Methods”). In the first
test to show the effect of global topological similarity between two
datasets, the algorithm worked from the viewpoint of the normalized
alignment distance (“Methods”) even when minor changes were made
to one of the trajectory trees to be aligned (e.g. removing a leaf,
internal node, etc) (Fig. 2a). In contrast, a breaking example of
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dynamic programming algorithm (“Methods”). b When a pair of aligned paths from
the trajectory cluster alignment is chosen, all single cells are recovered with each
labeled by the corresponding cluster, and ordered by diffusion pseudotime in each
dataset. Linear alignment with dynamic time warping is then performed for a set of
genes to investigate the dynamic relationship among single cells for those genes
along the pseudotime.
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Fig. 2 | Assessment of CAPITAL’s feasibility in clustering quality on the syn-
thetic datasets. a A test in global topological similarity on 53,987 pairs of trajec-
tories. Reference shows the results of trajectory alignments with no nodes in one
trajectory tree removed. The other cases where a node was removed in one tra-
jectory tree are classified into seven types. A number shown in parentheses on the
horizontal axis shows the number of children of the node to be removed. 10 nearest
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neighbors were considered to build the nearest neighbor graphs. b A test in clus-
tering similarity on 6800 pairs of trajectories. The number of nearest neighbors
used is five. ¢ A test in clustering resolution on 40,800 pairs of trajectories. The box
plots show the median with bounds for the first and the third quartiles, and the
whiskers indicate the minimum and the maximum that exclude outliers repre-
sented by points. Source data are provided in the Source Data file.
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Fig. 3 | A performance indicator of CAPITAL as a function of the noise level on
the synthetic datasets. The horizontal axis indicates the standard deviation of
Gaussian noise that was independently added 100 times to each of the expression
counts obtained by splitting a single-cell count matrix in the 68 synthetic datasets,
which results in 95,200 pairs of trajectories. a Performance evaluation in
cluster-cluster alignment. b Performance evaluation in cell-cell alignment. 10
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nearest neighbors were considered to build the nearest neighbor graphs in all the
tests. The box plots show the median with bounds for the first and the third
quartiles, and the whiskers indicate the minimum and the maximum that exclude
outliers represented by points. Source data are provided in the Source Data file.
ATC average trajectory conservation.

removing the root with two or three children, which destroys a global
topological similarity between two trajectories, shows that the nor-
malized alignment distance clearly increased (the alignment perfor-
mance declined). Next, the normalized alignment distance tended to
increase gradually as the clustering dissimilarity increased, indicating
that the clustering similarity affected the performance of the sub-
sequent trajectory alignment (Fig. 2b). The third test in clustering
resolution tells us that the number of nearest neighbors used to con-
struct a trajectory has to be carefully chosen (Fig. 2c). Note that con-
sidering the larger number of nearest neighbors was likely to yield the
smaller number of clusters (i.e. lower resolution), namely the align-
ment of trajectories with the larger number of clusters was more dif-
ficult than the opposite case. Taken together, suitable clustering for
building a trajectory per dataset including choice of the number of
nearest neighbors is necessary to enhance alignment performance of
CAPITAL.

Second, we tested the robustness of CAPITAL measured by
alignment accuracy on the synthetic datasets with increasing data
noise (“Methods”). More precisely, we evaluated the alignment accu-
racy from two measures: (i) the normalized alignment distance for
assessing the performance of cluster-cluster alignment; and (ii) the
average trajectory conservation (ATC) score at the single-cell level

(“Methods”). The rate of change in the normalized alignment distance
was higher for the noise level of at least 2.0 than at most 1.5 (Fig. 3a),
and that in the ATC score was higher for the noise level of at least 1.5
than at most 1.0 (Fig. 3b). Asymptotically, the two metrics deteriorated
for the noise level of 3.0 or higher, as the corresponding cell space
began to be shattered (Supplementary Fig. 1). Note that the ATC score
of around 0.5 means that a true simulation time and a predicted
pseudotime are most likely to have no correlation. Given that the noise
of standard deviation of around 3.0 is unlikely to emanate from a
typical dataset (e.g. standard deviation 3.0 was much larger than
average 0.53 of the non-zero elements in the noise-free count matrices
in our simulation), these results suggest that CAPITAL was robust to
data noise to a certain degree at both the cluster-matching level and
the single-cell alignment level.

Finally, to compare CAPITAL with three state-of-the-art methods
of data integration in alignment performance, we ran Scanorama',
scVIY, and Seurat” on the combinations of the synthetic datasets to
merge two respective datasets and perform common trajectory infer-
ence on that merged dataset. Note that pseudotime was computed for
a trajectory tree of aligned and integrated datasets in CAPITAL and the
other tools, respectively. We will show the superiority of one method
over its competitors from two viewpoints: biological variance
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Fig. 4 | Comparison of alignment accuracy between CAPITAL and data inte-
gration methods on a pair of synthetic datasets. a Performance evaluation in
trajectory conservation at the single-cell level on 2278 pairs of the synthetic data-
sets. A one-sided Wilcoxon singed-rank test was performed for each pair of the
methods. ***indicates a p-value <1.00 x 107 (3.18 x 1072, 7.32 x 102*, and

7.76 x107% for CAPTAL vs. Scanorama, CAPITAL vs. scVI, and CAPITAL vs. Seurat,
respectively), meaning that the ATC score of CAPITAL was significantly higher than
those of the other tools. The box plots show the median with bounds for the first
and the third quartiles, and the whiskers indicate the minimum and the maximum
that exclude outliers represented by points. b ATC scores of all tools on datasets 1
and 2. ¢ UMAP plots of datasets 1 and 2 with Leiden clustering, whose cell types

UMAP1

UMAP1

were annotated by considering simulation time and expression patterns of tran-
scription factors (Supplementary Fig. 2). The solid lines indicate the trajectories.
The rightmost column shows an aligned trajectory tree of those datasets predicted
by CAPITAL. d UMAP plots of integration of datasets 1 and 2 computed by three
data integration methods. The first and second columns indicate true simulation
times in datasets 1 and 2, respectively, on the merged dataset, and the rightmost
column shows UMAP plots of batch mixing. 10 nearest neighbors were considered
to build the nearest neighbor graphs in all the tests. Source data are provided in the
Source Data file. ATC average trajectory conservation, UMAP uniform manifold
approximation and projection, IS intermediate state, TS terminal state.

conservation and batch removal before and after alignment/
integration'. First, the results measured by the ATC score as a metric of
biological variance conservation indicate that CAPITAL was statistically
significantly better than the data integration approaches (Fig. 4a). In
particular, CAPITAL was more robust to the variation of the datasets
that contained multiple branches than the other algorithms. Second,
we demonstrate two examples of datasets on which CAPITAL achieved

the most successful alignment, whereas the other algorithms failed to
some degree or another (Fig. 4b-d and Supplementary Figs. 2, 3).
Specifically, CAPITAL was able to match all initial and terminal states,
while Scanorama and scVI were unsuccessful in aligning some initial
and terminal states, and Seurat partly failed to match initial states. In
the end, CAPITAL achieved major advances over current integration
methods in trajectory conservation for complex trajectory trees.
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Mono monocyte, Neutro neutrophil.

Alignment of differentiation trajectories in human bone mar-
row cells

To test how CAPITAL can compare two pseudotime trajectories with
multiple branches generated from authentic scRNA-seq datasets, we
used two public datasets of human bone marrow cells"'®. We ran
CAPITAL to perform clustering of these scRNA-seq datasets on the
basis of community detection in their nearest neighbor graphs, and
illustrated the clustering results along with their trajectories in the two-
dimensional space via uniform manifold approximation and projec-
tion (UMAP) (Fig. 5a, b and “Methods”). The two trajectory trees were
then aligned, indicating that the algorithm was able to compute as
many matching clusters as possible at leaves between different
experiments while keeping their pseudotime structures (Fig. 5¢). For
validity of the matching clusters in the aligned trajectory tree with
marker gene expression, see Supplementary Figs. 4-7. For instance,
erythrocytes, megakaryocytes, pre-B-cells and dendritic cells were
matched with each other between the two datasets.

Taking several paths that start from root (4/HSC, 0/HSC) and end
with respective leaves with cell-type annotations from the aligned
trajectory tree (Fig. 5c), we reconstructed pseudotime orderings of
single cells contained in those paths by calculating diffusion
pseudotime?, and computed the matchings between cells along the
orderings with dynamic time warping (Fig. 5d). Of note, dynamic time
warping was performed with the intersection of highly variable genes
in both datasets. On the basis of the results of dynamic time warping,
we investigated pseudotime kinetics for marker genes (Fig. 5e and
Supplementary Fig. 8), which indicates a similar tendency with respect
to expression dynamics. These results tell us that CAPITAL was able to
detect correct linear trajectories to be compared without manually

selecting them, suggesting that global comparison was successfully
performed.

Alignment of differentiation trajectories between human

and mouse

We finally tested CAPITAL on scRNA-seq datasets across species.
Specifically, we used again Velten et al.’s data of human bone marrow
cells, while using scRNA-seq data of mouse bone marrow cells pro-
vided in an early study'®. We selected this pair of the datasets because
the number of cells compared with the counterpart was more balanced
than the pair with Setty et al.’s human data (Supplementary Fig. 9).
Figure 6a shows the results of clustering with a trajectory computed by
CAPITAL for the mouse scRNA-seq data. Aligning the trajectory of the
human data with that of the mouse data yielded an aligned tree shown
in Fig. 6b, which were validated in part with marker genes in Supple-
mentary Figs. 6, 7,10 and 11. The matching clusters across species were
found on the paths toward erythrocyte, monocyte and neutrophil,
although the overall number of matching clusters was fewer than
within the same species (Fig. 5c).

On the basis of the linear trajectory alignments that were obtained
from the aligned tree (Fig. 6b), we investigated various molecular pat-
terns in those three cell types along pseudotime via dynamic time
warping (“Methods”). The results show that subclasses of marker genes
for erythrocyte, monocyte, and neutrophil were likely to be conserved
(Fig. 6¢ and Supplementary Fig. 12). In contrast, different molecular
patterns were also observed, among which known marker genes of
those cell types were included (Fig. 6d and Supplementary Fig. 13). More
specifically, IRF7 and CSF1, which are known markers for monocyte and
erythrocyte, respectively, were more highly expressed in human than in
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G0:00015083: ossification Y
Neutro Ery Mono

Fig. 6 | Application of CAPITAL to cross-species scCRNA-seq datasets of bone
marrow cells. a A UMAP plot of clustering results along with a trajectory inferred
by CAPITAL for Paul et al.'s data. An estimated trajectory is shown by a thick black
line, where the solid lines indicate the linear trajectories that are compared in (c-e),
whereas the dashed lines represent the others. b An alignment of the trajectory
trees, where each pair of numbers in a node denotes the clusters shown in Fig. 5b
and this figure (a). # denotes a space. ¢ Heatmaps of known cell-type markers for
erythrocyte, monocyte, and neutrophil with similar expression patterns in the
datasets. These are ordered by pseudotime from left to right in each heatmap. Note
that the markers in mouse are orthologous to the ones in human, and for clarity,
these names in mouse are exactly the same as those in the human dataset. A gene

name with an asterisk shows a marker that was not overlapped with the results of
the computational screen (“Methods”). d Examples of different molecular patterns
along pseudotime between human and mouse. e Heatmaps of enriched ontology
terms across genes with different kinetics between human and mouse. They are
colored by p-values computed by Metascape?, where the one-sided statistical tests
based on the hypergeometric distribution were performed. The left panel indicates
the terms derived from genes that showed an increasing tendency of expression in
the human dataset and an decreasing tendency in the mouse dataset, and the right
panel vice versa. UMAP uniform manifold approximation and projection, HSC
hematopoietic stem cell, Eo/Baso eosinophil/basophil, Ery erythrocyte, Mega
megakaryocyte, Mono monocyte, Neutro neutrophil.
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mouse as pseudotime went on, whereas ELANE, a marker for neutrophil,
was more highly expressed in mouse than in human.

We further performed gene set enrichment analysis using
Metascape™. For a set of genes that showed an increasing tendency of
expression both in the human and the mouse datasets, a certain
number of ontology terms specific to the respective mature cell types
were found (Supplementary Fig. 14). This indicates that the genes
computed by CAPITAL's framework were a valid set to investigate their
kinetics. In comparison, the number of genes that showed the opposite
kinetics between human and mouse was smaller than the similar
kinetics, but a difference of ontology terms between human and
mouse was observed to a large degree (Fig. 6e). Note that the differ-
ence shown here will result from technical issues such as cell cycle
effects. Although more accumulated datasets across species are
required to highlight differences in evolution, the use of CAPITAL
would be one of the choices to detect a meaningful signal.

Discussion

CAPITAL is a computational tool for comparing cell-state transition
trajectory trees of different but related scRNA-seq datasets, aligning
them globally without prior knowledge of linear paths to be selected.
We implemented CAPITAL in Python, which can also be used in the
interactive development environment JupyterLab, and evaluated its
performance with exhaustive tests as compared with three data inte-
gration approaches. We also addressed the tasks of investigating var-
ious molecular patterns between different experiments on the same/
different species through aligned pseudotime kinetics.

The problem of which clusters in two trajectory trees are being
aligned is similar to the problem of selecting single lineages of single
cells to be compared between the two trajectories, but they differ in
computational complexity. The former first focuses on how to match
clusters in the aligned tree followed by aligning single lineages of single
cells that are uniquely determined, while the latter deals with single cells
from scratch. If one would like to obtain the same/similar result using
the above two approaches when no prior knowledge of the selection of
single lineages is available, the latter requires all-against-all comparison
of the single lineages in the trajectories. In contrast, CAPITAL can solve
it de novo in a global fashion and run faster than the all-against-all
alignment of the single lineages®’ (Supplementary Note 1).

Existing integration methods for matching cell clusters require
the computation of anchors that link across different datasets to be
compared, but such anchor-based data transformation still has a few
limitations”. For example, there can be the wrong matching of cell
subpopulations such as an integrated cluster with the imbalanced
number of cells produced by data integration methods as demon-
strated in our test. On the other hand, for the same pair of the datasets,
CAPITAL was able to compute as many matching clusters as possible.
This will be attributed to the difference of dimensionality when
aligning datasets. For example, Scanorama and Seurat calculate
mutual nearest neighbors in a low-dimensional space, whereas CAPI-
TAL computes Spearman’s correlation in high-dimensional expression
space. Namely, the loss of information that is necessary for successful
alignment might occur in the anchor-based integration in some cases.

In the tests with the three scRNA-seq datasets of bone marrow
cells, we identified more than 20 clusters in each dataset, which were
more than in the early studies'” ™. These differences can be attributed
to different preprocessing; in fact, we adopted a different way of
processing data in our own framework. We confirmed that denoising
and imputing expression counts of single cells were likely to generate
more number of predicted clusters than previously reported. Most of
the newly increased clusters could be considered as “intermediate
states,” which are intriguing per se since they are associated with the
discovery of potential cell subtypes. Our results would suggest that
CAPITAL showed the power to align trajectories composed of clusters
beyond classical classification.

The results of cross-species analysis presented in this study might
provide a promising methodology for identifying regulators of human
disease. For instance, single-cell transcriptomes of normal and disease
mouse models are experimentally sequenced, and their scRNA-seq
datasets are compared to investigate aligned kinetics of candidate
markers so that regulators for that disease can be revealed. These
regulators in mouse are then computationally compared with the
human scRNA-seq datasets of interest available in public databases,
among which a subclass of regulators conserved between human and
mouse might be found. Another application of cross-species analysis
of scRNA-seq datasets is to elucidate the cellular diversity among
multiple species. Similarly to multiple sequence alignment, which can
be computed by the combination of pairwise alignments, sets of
aligned trajectories of more than two species calculated by CAPITAL
could be combined into one tree alignment that may include a com-
mon trajectory for multiple species.

We acknowledge that there are a few limitations in our study. First,
part of the CAPITAL algorithm for computing a trajectory as a mini-
mum spanning tree may not be the best method. However, we remind
that the core part of CAPITAL is to align cell-state transition trajectory
trees. In this sense, trajectory trees predicted by any method can
readily be incorporated into CAPITAL, meaning that it can employ a
state-of-the-art or even a future tool with higher predictive perfor-
mance. Second, alignment accuracy of CAPITAL for datasets with dif-
ferent global topological structure degraded in our benchmarking
test. To resolve this issue, designing an algorithm based on local tree
alignment or tree inclusion? might be a promising approach. Third,
CAPITAL in its present form can deal only with trajectory trees
(including single lineages) that are computed from input datasets.
Indeed, complex trajectories beyond tree such as cycle and dis-
connected graph will appear in transdifferentiation. Hence, a pre-
dictive model that can deal with a graph beyond tree** along with
graph alignment* will be required to further develop techniques for
complex comparative pseudotime analysis.

CAPITAL’s framework can be applied to not only pseudotemporal
data but also spatial and epigenetic data. Given that scRNA-seq tech-
niques have prevailed in current research in cell biology, and increas-
ing attention has been paid to the comparative analysis of cellular
processes with different conditions or species, we envision that
CAPITAL will contribute to the advancement of comparative single-
cell omics.

Methods

CAPITAL algorithm

Clustering cells via graph structure. Let X =(x;,...,x,)’ € R"*" be
an expression count matrix of m genes across n cells, where
X=Xy, . .. ,xmj)T € R™(1<j<n)isthe logarithm of a normalized count
vector of cell j with respect to genes 1, ..., m. Note that log transform is
performed with one pseudocount, and the genes are often assumed to
be highly variable in expression over all cells. To reduce the dimen-
sionality of the data, principal component analysis (PCA) is performed
onX,resultinginZ=(zy,..., z,)" € R"*?, where p(<« m) is the number
of principal components that contribute to the total variance in the
data. A weighted graph is constructed in a way that each vertex
represents a cell, and each edge connecting two cells i and j has a
weight calculated by the Euclidian distance ||z; - zj|| between the two
cells. From this graph, a k-nearest neighbor (k-NN) graph can be built
on the basis of the distance assigned to each edge, as it can better
capture phenotypic relatedness®. Clustering vertices in the k-NN
graph is then performed by a community detection method such as
the Leiden algorithm™.

Inferring a pseudotime trajectory. To make the k-NN graph structure
simple, a cluster centroid is defined as the virtual cell with the medians
of p principal components derived from those of the cells belonging to
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that cluster. A minimum spanning tree in this centroid graph is then
computed with Kruskal’s algorithm. If one chooses one of the cen-
troids as the root of the tree, the resulting rooted minimum spanning
tree can be regarded as a pseudotime trajectory of the clusters. Of
note, actual pseudotime of each single cell along a path in the tree will
be estimated later.

Preliminaries to handling trees. Let 7= (V, E) be an unordered labeled
rooted tree, where V and E (also denoted by W(T) and E(7)) are a set of
nodes (vertices) and that of edges of the tree, respectively, and the
children of each node are regarded as a set. The number of nodes in
tree T is represented as |7]. Let 6 be the empty tree, and let 7(i) be the
subtree of T induced by node i and all of its descendants. If node i has
children i, ..., i, i.e. the degree of node i is u, we define F(i) = F(iy, ..., iy)
as the forest comprising subtrees T(iy), ..., T(i,,).

Inserting node w as a child of node v € V(T) makes w be the parent
of a consecutive subset of the children of node v. An alignment of
unordered labeled trees Ty and T, is obtained by inserting nodes
labeled with spaces# into T; and/or T, so that the two trees are iso-
morphic if the labels are ignored, and then by overlaying the resulting
trees. This means that # is regarded as the empty node. Let y:
X, Zo) \ ({(#1L,{#) —> R denote a metric cost function on pairs of
labels, where X is a finite alphabet and =X U {#}. We often extend this
notation to nodes so that y(i, /) means y(label(i),label()) for i,j € W(T).
For scRNA-seq data analysis, we define the cost function as

. . [1—corr(x; x;) (label(i)and label( ) correspond tocellsiand,, respectively),
veh= { 5 (label(i) = # or label(j) = #),

@

where corr(x; x;) returns Spearman’s rank correlation coefficient
between expression levels x; and x; of cells i and j, respectively, and § is
some constant. In all computational tests in this study, we set 6=1.

The cost of the alignment is defined as the sum of the costs of all
paired labels in the alignment. An optimal alignment of T; and T, is an
alignment with the minimum cost, which is called the optimal align-
ment distance between Ty and T, denoted by D(Tj, T5). This notion can
be extended to two forests F; and F,, denoted by D(F;, F»).

Tree alignment algorithm. The problem of computing an optimal
alignment distance between general unordered trees is MAX SNP-
hard”. However, aligning unordered trees with “bounded” degrees can
be solved in polynomial time. In what follows, we will summarize the
dynamic programming (DP) algorithm for calculating the optimal
alignment distance between unordered trees with bounded degrees
presented in the literature®.

The initial settings for handling the empty tree during the DP
calculation are defined as follows:

D(6,6)=0, 2)
D(T(i),6) = D(Fy(i),0) + y(i,#), 3)

u
D(Fy(),6) = ZD Ty(i).0), “)

=1
D(6,T,())) =D(6,F,()) +V(#,J), 5)
D(6,F,()) = ZD (6.T,01)), ©6)

where g and v are degrees of nodes i € V(Ty) andj € W(T5), respectively.

We next look at the computation of an optimal alignment distance
between the trees.

D(Fy(D),F5())) + V(. J),
D(Ty(i),0) + lrgllign”{D(Tl(i,),Tz(/'))

D(6,T,() + lgigl/{D(Tl(Drrz(ir))

~D(T@0)}, (7
=D(6,T20)}-

min

D(Ty(0).T,()) =

This recursion means that there are three cases to be considered for
the DP calculation: (i) paired nodes (i, ) is in the alignment; (ii) (i, #) and
(i,,j) for some child of node i are in the alignment; and (iii) (#,j) and
(i,j) for some child of node j are in the alignment (Supplemen-
tary Fig. 15).

Finally, we focus on how to compute an optimal alignment dis-
tance D(F,(i),F,(j)) between the forests that appeared in Equation (7).
Since all combinations of forest pairs derived from unordered trees
T1(i) and T,(j) need to be considered, we define subsets of the forests
denoted by A C {T4(iy),...,T1(i,)} and B C{Ty(}),...,T5(,)}. The
alignment distance between the forest sets .4 and B can then be
computed by

i s IPA =T B = To() + DTG T20) )

D(A,B)= min Tl(iprglr'lggg {D(F\(iy), B) +D(A— Ty(iy), B—B) +y(i,#H},
i ADWAFalig) +D(A = A5 = Toljy) + Yk, .

®

where 1< p <pand1<q<v (Supplementary Fig. 16). Note that D(A,B)
such that A={T,(iy), ..., T;(i,)} and B={T,(j,), ..., T,(,)} is equivalent
to D(Fy(i),F,(j)). Since degrees p and v are bounded and regarded as
constants in this case, time and space complexities of the tree alignment
algorithm are evaluated as O(|Ty||T2|). The pseudocode for running the
tree alignment algorithm is described in Supplementary Note 2.

Pseudotime ordering. Having been obtained from a trajectory align-
ment between two datasets, a pair of aligned paths is arbitrarily cho-
sen, and all single cells in the clusters are to be processed in each
dataset. Note that the starting cell in the first cluster on the aligned
path has to be determined for the subsequent pseudotime ordering in
a way that it has the longest distance to a cell among all other cells in
the corresponding dataset in the expression space. A diffusion pseu-
dotime in each dataset is then calculated by taking into consideration
an accumulated transition matrix for all cells with respect to the path
based on a random walk on the nearest neighbor graph?”.

Dynamic time warping. Dynamic time warping is an algorithm for
measuring similarity between temporal sequences. Briefly, given two
time series, the algorithm aims to find the best matching between the
two sequences by stretching or compressing elements of the
sequences. For optimization, the distance between two elements
across the sequences measured on the basis of time warping functions
is summed over all elements, which is then to be minimized by
dynamic programming. Details of the algorithm can be found in the
literature™.

A metric for matching clusters

Let M and U be the number of matched cluster pairs and that of
unmatched cluster pairs, respectively, in an aligned trajectory tree. The
optimal alignment distance D(Ty, T,) for trajectory trees 7; and T, can
be decomposed into the sum of the distances for the matched cluster
pairs and that for the unmatched cluster pairs, i.e. D(Ty, T,) = dpy + dy.
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The normalized alignment distance is then defined by

d
dnorm:aﬁ +(1_ lX)

dy
U1’ ©)
where a(0 <a <1) is a balancing parameter between the contribution
of the matched clusters and that of the unmatched ones. Note that
weight a for the per-node distance of the matched cluster pairs should
be higher than 1-a for that of the unmatched cluster pairs because
0<dy/M+1) < dy/(U+1)<dy/U=U/U=1 holds asymptotically when
cost y is determined by comparing matching cost 1- corr() with gap
penalty §=1 as defined above. Namely, the latter penalty term in the
normalized alignment distance needs to be smaller than the former
essential term of the alignment distance for the matched clusters. We
set & = 0.9 in the tests in feasibility and robustness of CAPITAL (Figs. 2
and 3a). A short normalized alignment distance is regarded as an
accurate alignment in cluster matching.

A metric for aligning trajectory trees

We define a parameter-free metric on an aligned trajectory tree of two
scRNA-seq datasets to evaluate biological variation conservation
before and after alignment, which is called an average trajectory con-
servation (ATC) score. Trajectory conservation was originally defined
in the literature', and in this work we adapt the definition to our case
where the tree structure should be explicitly considered to compute
pseudotime. Precisely, for each single lineage that forms the aligned
trajectory tree, a series of simulation times of the cells generated by
dyngen® along that lineage is regarded as a reference, while a series of
pseudotimes of alined/integrated datasets as a prediction, between
which Spearman’s rank correlation coefficient is calculated. Note that a
starting cell of alined/integrated datasets for all tools, which is neces-
sary to compute diffusion pseudotime, is defined in a way that its
simulation time in dyngen is O and it has the longest distance to a cell
among all other cells in the expression space. In the case of CAPITAL,
single-cell alignment is performed by dynamic time warping with two
series of pseudotimes (e.g. for datasets 1 and 2), and thus the mean of
the two respective correlation coefficients between the series of
simulation times and either series of pseudotimes should be taken.
Each Spearman’s rank correlation coefficient p computed above is
scaled to the range [0, 1] by (p +1)/2, which we call a trajectory con-
servation score of a single lineage. Finally, the ATC score of the aligned
trajectory tree is defined as the mean of the trajectory conservation
scores of all single lineages. A high ATC score is considered to be an
accurate alignment in trajectory conservation.

Creating synthetic datasets

First, a gene regulatory network with the backbone as a binary tree
with three branches for 1000 cells was generated by dyngen 1.0.3". In
this step, 36 transcription factors were generated, and 250 target
genes and 250 housekeeping genes were sampled. Second, simulating
kinetics, a gold standard, and cells 120 times resulted in 120 different
datasets of single-cell expression count matrices. Finally, these 120
datasets were filtered in such a way that the number of leaves in a
minimum spanning tree based on the clustering results is exactly four,
as expected in the simulation, which leads to 68 synthetic datasets of
expression count matrices. For benchmarking CAPITAL’s perfor-
mance, each dataset was randomly split into two disjoint count
matrices 100 times, resulting in 68 x 100 = 6800 pairs of count matri-
ces to be tested.

Adding noise

Gaussian noise was independently added 100 times to each of the
6800 pairs of the log transformed count matrices obtained above,
where the parameters of the distribution were set to zero mean and
increasing standard deviation from O to 5.0 by step size 0.5, followed

by adding a larger step size to reach 50.0 standard deviation. Note that
the alignments of the 6800 pairs without noise (i.e. zero mean and
zero standard deviation) can be regarded as the true alignments, and
thus comparison between the true alignment and the predicted
alignment on the data with noise makes sense. To summarize,
6800 x 14 =95,200 pairs were used in the test for robustness (Fig. 3).

Comparison with data integration methods

To compare the performance of other methods for integrating scRNA-
seq datasets, we used Scanorama 1.7.0" and scVI 0.16.0" as wrapper
functions of single-cell integration benchmark (scib 1.0.3)'¢, and Seurat
4.1.1° to infer a common trajectory of each of all 2278 pairs of the
68 synthetic datasets described above. Of note, we used synthetic
datasets for the comparison, as real datasets do not have shared
ground truth to validate trajectory alignments. All pairs of the datasets
in the form of either raw counts or preprocessed counts were inte-
grated by the respective algorithms. A common trajectory was then
estimated by finding a minimum spanning tree whose nodes were
centroids as defined in the CAPITAL algorithm, which was considered
as an aligned trajectory tree. Note that the same methods and the
parameters as in CAPITAL were used to compute neighborhood
graphs, Leiden clustering, and diffusion pseudotime.

Preprocessing data

Before aligning different scRNA-seq datasets, each may need to be
preprocessed due to noise such as outlier cells included in the original
data. All real datasets used in this work were filtered in advance by
keeping cells with at least 200 genes expressed and genes that were
expressed in at least three cells, which were performed with Scanpy
1.9.17. In what follows, we will describe how to adapt all datasets to the
subsequent trajectory comparison.

Synthetic datasets. In each synthetic dataset, the top 200 highly
variable genes were used to obtain 50 principal components, from
which a 10-NN graph was built for cell clustering and trajectory infer-
ence. Note that these settings were common to the tests on all tools.

Setty et al.’s data. A single-cell expression count dataset of human
bone marrow cells was downloaded at https://github.com/dpeerlab/
Palantir. More precisely, the Scanpy AnnData object” of replicate 1
with 5780 cells, which was generated in the existing study”, was used
to preprocess in our downstream analysis. MAGIC* for denoising and
imputation was applied to the logarithmic normalized counts. From
the resulting count matrix, 50 principal components derived from the
top 2000 highly variable genes were used to construct a 40-NN graph,
leading to clusters and a trajectory tree (Fig. 5a and Supplementary
Fig. 5b). In particular, clusters were annotated by investigating the
expression of marker genes for each cell type (Supplementary Figs. 4
and 5a). The root of the tree was set to cluster 4 (HSC) as marker CD34
was highly expressed in the cluster.

Velten et al.’s data. A normalized filtered single-cell count dataset of
1034 human bone marrow cells (individual 1) was downloaded from
Gene Expression Omnibus (GSE75478 [https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE75478]). Note that these data were nor-
malized with posterior odds ratio™ and included negative values due to
its definition. After the common filtering of outlier cells and genes
described above, cells were further removed as they still had too many
genes or too many total counts. Specifically, cells with m genes and ¢
total normalized counts were retained such that 4600 <m <5750 and
-2000 < ¢ <1500, leading to 915 cells. MAGIC was applied to the
resulting count matrix, min-max scaling was performed so that each
element in the matrix was non-negative, and the elements were log
transformed with one pseudocount. The top 250 highly variable genes
were used to derive 50 principal components, which was used to build
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a 6-NN graph. Community detection and trajectory inference on this
graph yielded the results shown in Fig. 5b and Supplementary Fig. 7b.
With cluster annotations using marker genes for each cell type (Sup-
plementary Figs. 6 and 7a), cluster O (HSC) was set to the root of the
trajectory tree as marker HOXA3 was highly expressed.

Paul et al.’s data. A single-cell dataset of mouse bone marrow cells®”
was obtained from one of the datasets accessible when running
Scanpy”. This dataset was first preprocessed according to Scanpy’s
tutorial with Zheng et al.’s preprocessing recipe”. It is to be noted that
this preprocessing contained dimensionality reduction with diffusion
map. A coarse-grained PAGA graph® derived from the Louvain clus-
tering of the preprocessed data had two disconnected outlier clusters,
which were removed to have 2671 cells in our demonstration so that
CAPITAL can deal with them. To perform further denoising, MAGIC
was used on the above count matrix with each element normalized and
log transformed. 50 principal components computed from the top
500 highly variable genes were used to construct a 10-NN graph, on
which clustering with annotation and trajectory inference were carried
out (Fig. 6a and Supplementary Fig. 11b). Some of the clusters were
annotated as specific cell types as was done in the human bone marrow
cells described above (Supplementary Figs. 10 and 11a). Cluster 7 (HSC)
was estimated as one of the candidate roots of the trajectory tree by
taking into account the expression of Meis1 and Itga2b, which was also
discussed in the early work®.

Analysis of molecular patterns

First, in the aligned tree for Velten et al.’s data and Paul et al.’s data
(Fig. 6b), highly variable genes in either dataset for each aligned path
were selected in a way that they had a larger normalized dispersion than
a predefined cutoff”’, which was set to 1.0 in this study. It should be
noted that those genes were independently selected per branch in the
aligned tree. Second, similarity scores for the kinetics of the respective
genes in the linear alignments were computed via dynamic time warp-
ing. The genes were then split into three groups by considering their
inclination of linear regression lines so that both kinetics curves sloped
up, one curve sloped up but the other down, and vice versa. Finally, the
genes in each group were filtered by set difference to identify potential
cell type-specific genes (Supplementary Figs. 12 and 13). Note that the
likely conserved gene sets shown in Fig. 6¢ were selected among known
markers to validate the results as compared with prior knowledge, but
we confirmed that most of them overlapped with the genes that were
computed by the above method.

Statistics and reproducibility

No statistical method was used to predetermine sample size. Some
outlier cells in isolated clusters in the original public data were
excluded according to pre-established criteria. The experiments were
not randomized. The Investigators were not blinded to allocation
during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The original single-cell expression count dataset of human bone
marrow cells provided by Setty et al. is available at https://github.com/
dpeerlab/Palantir. The other human bone marrow cells dataset com-
piled by Velten et al. is available from Gene Expression Omnibus
(GSE75478 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE75478]). The mouse dataset provided by Paul et al. is accessible
when running the datasets.paull5() function in Scanpy (1.9.1). The
synthetic datasets, and human and mouse cell datasets preprocessed
in this study are accessible through a GitHub repository®® [https://

github.com/ykatO/capital]. They are also available in a Code Ocean
compute capsule [https://codeocean.com/capsule/5673663/tree/v1].
All other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request. Source data
are provided with this paper.

Code availability

CAPITAL is implemented with Python, making good use of a single-cell
analysis toolkit Scanpy”. In particular, CAPITAL can be used in an
interactive development environment such as JupyterLab. CAPITAL
codes and documentation with tutorials are available through the
GitHub repository*® [https://github.com/ykatO/capital] as well as the
Code Ocean compute capsule [https://codeocean.com/capsule/
5673663/tree/vl].
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