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Abstract

Background: TGF-b has been known to play an important role in various liver diseases including fibrosis and alcohol-
induced fatty liver. Smad7 is an intracellular negative regulator of TGF-b signaling. It is currently unclear whether
endogenous Smad7 has an effect on liver function and alcoholic liver damage.

Methodology/Principal Findings: We used Cre/loxP system by crossing Alb-Cre mice with Smad7loxP/loxP mice to generate
liver-specific deletion of Smad7 with loss of the indispensable MH2 domain. Alcoholic liver injury was achieved by feeding
mice with a liquid diet containing 5% ethanol for 6 weeks, followed by a single dose of ethanol gavage. Deletion of Smad7
in the liver was associated with increased Smad2/3 phosphorylation in the liver or upon TGF-b treatment in primary
hepatocytes. The majority of mice with liver specific deletion of Smad7 (Smad7liver-KO) were viable and phenotypically
normal, accompanied by only slight or no reduction of Smad7 expression in the liver. However, about 30% of Smad7liver-KO

mice with high efficiency of Smad7 deletion had spontaneous liver dysfunction, demonstrated as low body weight, overall
deterioration, and increased serum levels of AST and ALT. Degeneration and elevated apoptosis of liver cells were observed
with these mice. TGF-b-induced epithelial to mesenchymal transition (EMT) was accelerated in Smad7-deleted primary
hepatocytes. In addition, alcohol-induced liver injury and steatosis were profoundly aggravated in Smad7 deficient mice,
associated with upregulation of critical genes involved in lipogenesis and inflammation. Furthermore, alcohol-induced
ADH1 expression was significantly abrogated by Smad7 deletion in hepatocytes.

Conclusion/Significance: In this study, we provided in vivo evidence revealing that endogenous Smad7 plays an important
role in liver function and alcohol-induced liver injury.
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Introduction

Liver dysfunction is a life-threatening medical scenario that

demands clinical care. Severe liver dysfunction leads to liver failure

that occurs when the majority of liver tissue is damaged beyond

repair and the liver is no longer able to perform normal functions

[1]. In most cases, liver dysfunction occurs gradually over many

years. However, a rare condition known as acute liver failure such

as fulminant hepatitis can occur rapidly. Transforming growth

factor-b ( (TGF-b) plays an important role in liver diseases [2].

TGF-bs belong to a large family of growth and differentiation

factors that utilize complex signaling networks to regulate

numerous cellular activities including differentiation, proliferation,

motility, adhesion, and apoptosis [3]. The TGF-b family members

regulate gene expression via serine/threonine kinase receptors at

the cell surface and a group of intracellular transducers called

Smad proteins including R-Smads (receptor-specific Smad,

including Smad1, 2, 3, 5 and 8), Co-Smad or Smad4 (a

common-Smad), and I-Smads (inhibitory Smads, including Smad6

and Smad7) [3,4,5,6]. The signaling starts by binding of the ligand

to the cognate transmembrane receptor kinase, followed by

phosphorylation of R-Smad and complex formation between R-

Smad with Co-Smad. The Smad complex transduces the signal

from the plasma membrane into the nucleus in which Smad

proteins and their transcriptional partners directly regulate gene

expression [3,6]. Smad7 is a member of the I-Smad subfamily that

is able to directly interact with the TGF-b type I receptor [7],

whereas blocking the phosphorylation of R-Smads Smad2 and

Smad3 and inhibiting TGF-b signaling.

Alterations in the production of TGF-b or mutations within the

genes involved in TGF-b signaling pathway are associated with the

pathogenesis of many diseases including fibrotic disease of the
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kidney, liver and lung. The in vivo functions of the Smad proteins

as well as their association with diseases are revealed by targeted

deletion of the corresponding genes in mice [8]. Deletions of

Smad1, Smad2 and Smad4 lead to embryonic lethality of the

mouse, indicating the importance of these genes in early

development [9,10,11]. Deletion of Smad3 gives rise to abnor-

malities in mucosal immune system, related to development of

colorectal cancers [12,13]. Mouse deletion studies also indicate

that Smad5 is involved in angiogenesis during embryogenesis [14].

A recent in vivo study indicates that Smad8 is involved in

pulmonary vascular remodeling [15]. Interestingly, deletion

studies of inhibitory Smads suggest that both Smad6 and Smad7

are involved in cardiovascular development in the mouse. Deletion

of the indispensable MH2 domain of Smad6 results in multiple

cardiovascular defects during early development [16]. On the

other hand, deletion of the MH2 domain of Smad7 leads to defects

in the development of atrioventricular cushion [17], while

hypomorphic Smad7 deficiency with deletion of the MH1 domain

of Smad7 is associated with altered B-cell response [18].

A few studies have emerged to reveal the role of Smad7 in liver

diseases. Overexpression of Smad7 in mouse liver could attenuate

TGF-b signaling and improve carbon tetrachloride (CCl4)-

provoked liver fibrosis [19]. On the other hand, hypomorphic

Smad7 deficiency enhances CCl4-induced liver damage and

fibrosis [20]. In this study, we established a mouse model with

liver-specific deletion of the MH2 domain of Smad7. Interestingly,

we found that deletion of Smad7 is associated with development of

spontaneous liver dysfunction in the mouse.

The most common causes of chronic liver injury include virus

infection, long term alcohol consumption, cirrhosis, inherited

disorders, and malnutrition. Among these major factors that cause

chronic liver injury, alcohol drinking is a major etiologic one in

chronic liver disease worldwide, causing fatty liver, alcoholic

hepatitis, cirrhosis, and eventually hepatocellular carcinoma. In

the past few decades, major progress has been made in our

understanding about the molecular mechanisms underlying

alcoholic liver injury, such as the functional roles of STAT3

[21]. We also found that Smad7 deficiency is able to enhance

formation of alcohol-induced fatty liver. These results, combining

with the studies from other laboratories, pinpoint an important

role of Smad7 in liver functionalities and liver diseases.

Results

Generation and characterization of liver-specific Smad7
deletion mouse

To investigate the potential function of Smad7 in the liver, we

crossed Albumin-Cre transgenic mice with Smad7loxP/loxP mice that

contain two loxP fragments flanking the 59 half of exon 4 of Smad7

gene [17]. The Albumin-Cre transgenic mice specifically express Cre

recombinase in hepatocytes under control of a rat albumin

promoter/enhancer. Specific deletion of the MH2 domain (encoded

by the 59 half of exon 4) of Smad7 in the mouse liver was confirmed

by RT-PCR (Figure 1A). As expected, we found that the mRNA

region corresponding to exon 1–3 was not deleted in the liver-specific

Smad7-deleted mouse (Smad7liver-KO mouse). However, only the

mRNA region corresponding to exon 3–4 was lost in the liver of

Smad7liver-KO mouse, but not changed in the other tissues such as

brain, lung, heart, and kidney, indicating liver-specific deletion of

Smad7 MH2 domain. To verify Smad7 deletion, the protein level of

Smad7 was also examined by immunohistochemistry staining in the

liver sections. The result revealed that the protein level of Smad7 was

markedly decreased in the liver of Smad7liver-KO mouse in

comparison with wide type animals (Figure 1B).

As the major cellular function of Smad7 is to inhibit TGF-b
signaling, we analyzed whether deletion of Smad7 is associated

with an enhancement of Smad2/3 phosphorylation in the mouse

liver. By immunohistochemistry using liver sections from either

wild type or Smad7liver-KO mice, we found that Smad2

phosphorylation was significantly increased in the liver from the

Smad7liver-KO mice in comparison with the wild type animals

(Figure 1C). Furthermore, we analyzed the phosphorylation levels

of Smad2 and Smad3 using cultured primary hepatocytes isolated

from the mice. TGF-b1-induced Smad2 and Smad3 phosphory-

lation appeared to be enhanced by Smad7 deletion by an

immunoblotting assay (Figure 1D). Collectively, these results

indicate that Smad7 deficiency is associated with enhancement

of TGF-b signaling in the liver, consistent with the notion that

Smad7 is an intracellular inhibitory protein to negatively modulate

TGF-b signaling pathway [7].

Deletion of Smad7 causes spontaneous liver dysfunction
in the mouse

Interestingly, the phenotype of Smad7liver-KO mice varied from

mouse to mouse. While the majority of Smad7liver-KO mice had no

apparent phenotypical change, a small portion of the mice had

obvious growth retardation and the overall condition started to

deteriorate at 2–3 months of age (Figure 2A). We monitored the

changes of liver enzymes together with the mRNA level of Smad7

corresponding to the region encoded by exon 4 in the liver

(Figure 2B). In comparison with the wild type controls, ,30% of

Smad7liver-KO mice had over 50% of reduction of the mRNA level

of Smad7 exon 4, while ,70% Smad7liver-KO mice had only slight

or no reduction of Smad7 exon 4 mRNA. The variation of Smad7

deficiency observed in the study is likely caused by incomplete

expression of Cre recombinase driven by the albumin promoter

(Figure S1). Interestingly, only those Smad7liver-KO mice with

significant deletion of Smad7 had severely decreased body weight

(Figure 2C, left panel), accompanied by robustly elevated blood

levels of aspartate aminotransferase (AST) and alanine amino-

transferase (ALT) (Figure 2B and 2C). The blood levels of both

AST and ALT were inversely correlated with the mRNA level of

Smad7 exon 4 (Figure 2C, middle and right panels). Together,

these data indicate that marked deletion of Smad7 expression is

associated with spontaneous liver dysfunction in the mouse.

Deletion of Smad7 increases apoptosis in hepatocytes
The observed spontaneous liver damage in Smad7liver-KO mice

was further investigated by histological and immunohistochemical

analyses. In comparison with the wild type littermate, the liver

sections from the Smad7liver-KO mouse with significant reduction of

Smad7 expression had features of cell degeneration (Figure 3A),

accompanied by elevation of apoptosis (Figure 3B and 3C, marked by

arrows). Furthermore, we analyzed TGF-b-induced apoptosis in

primary hepatocytes isolated from the wild type and Smad7liver-KO

mice. TGF-b1 treatment itself could increase the number of apoptotic

hepatocytes (Figure 3D, left panel). However, the TGF-b1-induced

hepatocyte apoptosis was significantly enhanced by Smad7 deletion

(Figure 3D, right panel). Collectively, these results indicate that

deletion of Smad7 in the liver is able to induce apoptosis of

hepatocytes, leading to spontaneous liver failure in the mouse.

Smad7 deficiency enhances TGF-b-induced EMT in
hepatocytes

We next analyzed the cellular function of Smad7 on epithelial to

mesenchymal transition (EMT) in hepatocytes as TGF-b plays a

pivotal role in EMT [22]. We isolated primary hepatocytes from

In Vivo Function of Smad7 in the Liver
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wild type and Smad7liver-KO mice. The cultured hepatocytes

isolated from Smad7liver-KO mice did have significant reduction of

the mRNA encoded by Smad7 exon 4 (Figure 4A), confirming that

Smad7 was successfully deleted in these cells. When the cultured

primary hepatocytes were treated with TGF-b1, the cells

underwent morphological changes characteristic of EMT

(Figure 4B). Untreated hepatocytes exhibited a cuboidal pheno-

type, while TGF-b1 treatment induced a fibroblastic transition

resulting in elongated and spindle-like cell morphology. Interest-

ingly, the TGF-b1-induced EMT morphology was robustly

enhanced by Smad7 deletion (Figure 4B, right panel). We also

analyzed the cell motility using standard scratch-wound assays as

previously described [23]. At 48 h after wounding, the untreated

cells from both wild type and Smad7-deleted mice were unable to

migrate into the wound area (Figure 4C). TGF-b1 treatment was

able to induce migration of the cells and such effect was

Figure 1. Characterization of Smad7liver-KO mice. (A) Liver-specific deletion of Smad7. RT-PCR analysis was performed with total RNA isolated
from multiple tissues in Alb-Cre heterozygous or wild type mice (all mice having Smad7loxP/loxP) with specific primers that amplify mRNA regions
corresponding to exons 1–3 or exons 3–4 of Smad7 respectively. (B) Analysis of the Smad7 by immunohistochemistry staining. Representative liver
sections (400 X) from wild type and Smad7liver-KO mice were used in immunohistochemistry staining with an anti-Smad7 antibody. The nuclei were
stained with haematoxylin. (C) Smad2 phosphorylation is elevated in the liver of Smad7liver-KO mice. Smad2 phosphorylation was analyzed by
immunohistochemistry using liver sections from either wild type or Smad7liver-KO mice. The nuclei were stained with hematoxylin. Note that nuclear
phospho-Smad2 staining is increased in the liver of Smad7liver-KO mice. (D) TGF-b-induced Smad2 and Smad3 phosphorylation is enhanced by Smad7
deletion in primary hepatocytes. Immunoblotting was performed using total protein lysate extracted from primary hepatocytes using antibodies as
indicated. The cells were treated with or without 5 ng/ml of TGF-b1 for 24 hours as indicated after overnight serum starvation.
doi:10.1371/journal.pone.0017415.g001
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significantly accelerated when Smad7 was deleted (Figure 4C).

TGF-b-induced EMT was further analyzed by immunoblotting to

detect expression of E-cadherin and vimentin, two well-recognized

markers for EMT [22]. We found that TGF-b1-induced reduction

of E-cadherin and increase of vimentin was profoundly enhanced

by Smad7 deletion (Figure 4D). These data, therefore, reveal that

Smad7 deficiency is able to enhance TGF-b-induced EMT in

hepatocytes.

Smad7liver-KO mice are more susceptible to alcohol-
induced liver injury and steatosis than wild type mice

We further investigated the potential function of Smad7

deletion on alcohol-induced liver damage. Both the wild type

and Smad7liver-KO mice at 10 to 12 weeks old were fed with a

liquid diet containing 5% ethanol or a control diet for up to 6

weeks. On the day of animal sacrifice, a single dose of gavage with

10% ethanol or isocaloric maltose dextrin was administered. We

first analyzed the expression level of mRNA encoded by exon 4 of

Smad7 gene to confirm that Smad7 expression was indeed

significantly reduced in the Smad7liver-KO mice (Figure 5A). We

tracked the alteration of food intake and body weight for the entire

6-week period and found that there were no significant differences

among the four groups in food intake (data not shown), except for

a slightly reduced body weight gain in Smad7liver-KO mice

(Table 1). Alcohol exposure significantly increased the liver/body

weight ratio in both wild type and Smad7liver-KO mice (Table 1).

Alcohol exposure decreased the levels of serum triglyceride and

cholesterol in wild type mice, while Smad7-deleted mice only had

a significant reduction of serum triglyceride but not cholesterol

after alcohol administration (Table 1). As expected, alcohol

exposure could increase serum ALT and AST activities in the

mice (Figure 5B and 5C). However, the alcohol-induced raise of

these enzymes was more significant in Smad7liver-KO mice than the

wild type animals (Figure 5B and 5C).

We also analyzed the histological changes of the liver. As shown

in Figure 5D and 5E, H&E staining and Oil-Red-O staining

revealed that hepatic steatosis was induced by chronic alcohol

exposure. Furthermore, the alcohol-induced liver steatosis was

profoundly enhanced by Smad7 deletion. Consistently, Smad7

deletion led to a significant increase in the content of triglyceride

level in the liver upon alcohol exposure (Figure 5F). Together,

these data suggest that the liver injury and steatosis induced by

chronic alcohol administration were enhanced by Smad7 deletion,

further indicating that Smad7 deletion has a deteriorating effect on

liver functions.

Smad7 deficiency reduces alcohol-induced ADH1
expression in hepatocytes

Recently, it was reported that over-activation of TGF-b
signaling may enhance alcohol-mediated liver damage by reducing

expression of alcohol dehydrogenase 1 (ADH1) [24]. In wild type

mice, alcohol administration significantly increased the mRNA

level of ADH1 in the liver (Figure 6A). Interestingly, alcohol-

induced ADH1 upregulation in the liver was slightly reduced in

Smad7-deleted mice (Figure 6A). To further confirm the effect of

Smad7 deletion on ADH1 expression, we isolated primary

Figure 2. Deletion of Smad7 causes spontaneous liver failure. (A) Representative images of 12-week-old wild type and Smad7liver-KO mice. (B)
Relative mRNA level of Smad7 exon4 (green) as comparison with the serum AST (blue) and ALT (red) values. The arrows indicate the mice that were
used in histological and immunohistochemical analyses performed in Figure 3. (C) Correlation analyses of body weight, AST and ALT levels with the
mRNA level of Smad7 exon4. The values of body weight, AST and ALT values were plotted against the relative mRNA level of Smad7 exon4 for each
mouse (red for Smad7liver-KO mice and blue for wild type mice) and subjected to linear regression analysis. n = 11 for Smad7liver-KO and n = 10 for wild
type mice.
doi:10.1371/journal.pone.0017415.g002
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hepatocytes from the wild type and Smad7liver-KO mice. The level

of mRNA region corresponding to exon 4 of Smad7 gene was

significantly reduced in Smad7-deleted hepatocytes, confirming

that Smad7 was deleted in these cells (Figure 6C). Alcohol

treatment could significantly elevate Smad7 expression (Figure 6B).

Furthermore, alcohol administration could stimulate the expres-

sion of ADH1 in hepatocytes (Figure 6C). However, the expression

level of ADH1 was significantly reduced in Smad7-deleted

hepatocytes under both basal and alcohol-treated conditions

(Figure 6C), further indicating that Smad7 deletion can reduce

AHD1 expression in the liver. As Smad7 deletion is associated

with activation of TGF-b signaling (Figure 1), our observation is

also constant with the hypothesis that hyperactivity of TGF-b
signaling aggravates alcohol-mediated liver injury through down-

regulation of ADH1 [24].

Upregulation of lipogenesis- and inflammation-related
genes in Smad7liver-KO mice

It was previously reported that SREBP1c, a key regulator of fatty

acid synthesis, is implicated in the development of fatty liver [25,26].

Intriguingly, we found that the expression levels of SREBP1c as well

as the critical lipogenic genes controlled by SREBP1c (including

fatty acid synthase, stearoyl-CoA desaturase 1, and acetyl-CoA

carboxylase-1) were all upregulated by ethanol treatment and by

Smad7 deletion (Figure 7A). These results not only indicate that

SREBP1c pathway is involved in ethanol-induced hepatic steatosis,

but also suggest that Smad7 deletion may aggravate fatty liver

formation through upregulation of SREBP1c.

We also analyzed hepatic expression of a series of pro-

inflammatory cytokines and chemokines (Figure 7B). We found

that chemokines (including CCR2 and F4/80) and a number of

proinflammatory cytokines (including TNF-a, IFN-c, IL-1b, IL-6,

MCP-1, MIP1a, and MIP1b) were significantly increased by

ethanol feeding in wild type mice, confirming that ethanol is able

to successfully induced inflammatory response in the liver. We also

found that Smad7 deletion led to significant increase of

chemokines (including CCR2 and F4/80) and proinflammatory

cytokines (including TNF-a, IFN-c, IL-1b, IL-6, MCP-1, MIP1a,

and MIP1b. These data indicate that deletion of Smad7 is

associated with an elevation of inflammatory response in the liver,

likely contributing to the observed hepatic dysfunction in Smad7-

deleted mice in this study. Furthermore, the ethanol-induced

expression of F4/80, IFN-c and IL-6 was further elevated by

Smad7 deletion, indicating that changes of these factors may

underlie the aggravated liver dysfunction in Smad7-deleted mice

upon ethanol administration.

Discussion

In this study, we established a mouse model with liver-specific

deletion of Smad7. We found that functional loss of Smad7 in the

liver is associated with hyperactivity of TGF-b signaling, as TGF-

b1-induced Smad2/3 phosphorylation and EMT was significantly

enhanced by Smad7 deletion (Figure 1 and Figure 4). The

Smad7liver-KO mice with high efficiency of Smad7 deletion had

spontaneous liver dysfunction, demonstrated as general deteriora-

tion of the body condition and increased serum levels of AST and

ALT (Figure 2), accompanied by liver degeneration and an

increase in hepatocyte apoptosis (Figure 3). Furthermore, hepatic

injury and steatosis induced by chronic alcohol exposure were

accelerated by Smad7 deletion (Figure 5). These data, therefore,

reveal for the first time that loss of endogenous Smad7 in the liver

can result in spontaneous liver dysfunction and enhance ethanol-

induced liver injury.

Our results are consistent with a few recent studies pinpointing the

functional role of Smad7 in liver diseases. Overexpression of Smad7

in mouse liver could attenuate TGF-b signaling and TGF-b-induced

EMT, while improve CCl4-provoked liver fibrosis [19]. On the other

hand, hypomorphic Smad7 deficiency could enhance CCl4-induced

liver damage and fibrosis [20]. The liver damage imposed by Smad7

deletion as observed in this study and by Hamzavi, et al is likely

mediated by hyperactivity of TGF-b signaling, as overexpression of

TGF-b1 specifically in mouse liver leads to increases in hepatic

fibrosis and hepatocyte apoptosis [27]. However, unlike this study,

spontaneous liver dysfunction was not observed with hypomorphic

Smad7 deficiency [20]. We speculate that the difference is dependent

on the magnitude of Smad7 deletion. Deletion of the MH1 domain of

Smad7 gene only leads to partial loss of Smad7 function [18]. In our

study, we found that spontaneous liver dysfunction only occur in

Smad7liver-KO mice with high degree of Smad7 deletion (Figure 2). It

is speculated that the function of Smad7 needs to be lost to certain

degree to initiate spontaneous liver damage in the mouse.

TGF-b is considered one of the most important growth factors

that induce EMT process [22,28,29]. Activated Smad proteins

upon binding of TGF-b to its receptors act as transcription factors

to induce expression of EMT-inducing transcription factors within

the Snail, ZEB and bHLH families [29]. It has been reported that

EMT plays a critical role in the repair of liver tissues after damage

and the pathogenesis of liver fibrosis [30]. In this study, we found

that loss of Smad7 is associated with enhancement of TGF-b-

induced EMT in hepatocytes, consistent with the idea that Smad7

deletion is associated with hyperactivity of TGF-b signaling. Our

results are also consistent with the report demonstrating that

partial loss of Smad7 function can increase EMT in the liver and

accelerates CCl4-induced liver fibrosis [20]. It is also in agreement

with the finding that overexpression of Smad7 in the liver can

inhibit EMT and attenuate TGF-b-mediated fibrogenesis [19].

However, it is noteworthy that whether hepatocytes can directly

convert into mesenchymal cells is still controversial. Recently, it

was reported that neither hepatocytes nor cholangiocytes could

undergo EMT and contribute to liver fibrosis in vivo [31,32].

It is well known that liver is the major organ for detoxification of

many chemicals including alcohol. It was recently found that there

exist a functional interplay between alcohol-induced liver damage and

TGF-b signaling [24]. TGF-b is induced in the mouse liver upon

chronic alcohol administration. Interestingly, TGF-b is able to

downregulate a key alcohol metabolizing enzyme ADH1 and it is

proposed that TGF-b imposes its pro-steatotic action by decreasing

the expression of ADH1 in the liver [24]. In our study, we also found

that loss of Smad7 function is accompanied by enhancement of

Figure 3. Deletion of Smad7 leads to liver degeneration and apoptosis. (A) Representative images of H&E staining of liver sections are
shown with the magnification at X 400. (B) TUNEL assay of liver sections with methyl green as a counter-stain. Representative apoptotic cells are
marked by arrows. Note that the Smad7liver-KO mouse (with liver failure) displayed an increase of apoptosis-positive cells. (C) Immunohistochemistry
with an antibody against cleaved caspase-3 to identify apoptotic cells in the liver sections. The arrows indicate apoptotic cells in the liver of
Smad7liver-KO mouse. (D) TGF-b-induced apoptosis is enhanced by Smad7 deletion in hepatocytes. Primary hepatocytes were treated without or with
TGF-b1 (5 ng/ml) for 48 h as indicated, followed by immunofluorescence staining with Annexin V for apoptosis (Red) and Hoechst 33342 for nuclei
(blue). Quantitation of the percentage of apoptotic cells in each group is shown in the bottom panel as mean 6 SD. * indicate p,0.05 and ** for
p,0.01 as comparison between the groups as indicated by Student’s t-test.
doi:10.1371/journal.pone.0017415.g003
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alcoholic hepatic steatosis (Figure 5), further indicating the impor-

tance of TGF-b signaling in the development of alcohol-induced liver

damage. Furthermore, we found that Smad7 deletion is associated

with significant reduction of alcohol-induced ADH1 expression in the

liver (Figure 6), underscoring the importance of ADH1 in mediating

liver injury imposed by hyperactivity of TGF-b signaling.

In addition to the regulation of ADH1 by Smad7 in the liver, we

also found that ethanol treatment and Smad7 deletion had evident

effects on the expression of a series of genes involved in lipogenesis

and inflammatory response (Figure 7). On the one hand, ethanol

administration was able to significantly elevate the expression of

SREBP1c and its target genes involved in fatty acid synthesis

(Figure 7A). This finding is consistent with the notion that

SREBP1c is a key regulator of fatty acid synthesis and implicated

in the development of fatty liver [25,26]. Interestingly, the

expression of SREBP1c and its target genes involved in fatty acid

synthesis was also elevated by Smad7 deletion, indicating that

Smad7 deletion may aggravate fatty liver development through

upregulation of SREBP1c. On the other hand, we observed that

the expression of a series of inflammation-related genes was altered

by ethanol treatment and Smad7 deletion (Figure 7B). Chemo-

kines (including CCR2 and F4/80) and a number of proin-

flammatory cytokines (including TNF-a, IFN-c, IL-1b, IL-6,

MCP-1, MIP1a, and MIP1b) were all elevated by either ethanol

treatment or Smad7 deletion. Furthermore, ethanol treatment and

Smad7 deletion had a synergistic effect to induce expression of F4/

80, IFN-c and IL-6, indicating that these factors may underlie the

aggravated liver dysfunction in Smad7-deleted mice upon ethanol

Figure 4. Deletion of Smad7 enhances TGF-b-induced EMT. (A) Confirmation of Smad7 deletion in primary hepatocytes isolated from
Smad7liver-KO mouse. Real time RT-PCR was performed with total RNA isolated from wild type or Smad7liver-KO mice with primers to detect the mRNA
region corresponding to exon4 of Smad7 gene. The data are shown as mean 6 SD and ** indicates p,0.01 as comparison between the groups as
indicated by Student’s t-test. (B) TGF-b-induced EMT-like morphology changes. Immunofluorescence labeling were performed with wild type or
Smad7liver-KO hepatocytes treated with or without TGF-b1 (5 ng/ml) for 48 h. F-actin was stained with fluorescein isothiocyanate-labeled phalloidin
(Red) and the nuclei were labeled by Hoechst 33342 (Blue). (C) Analysis of cell motility by a wound-healing assay. Cultured primary hepatocytes were
analyzed by phase contrast microscopy. The cells were treated with or without TGF-b1 (5 ng/ml) for 48 h. Quantitation of the cell motility is shown in
lower right panel as mean 6 SD and ** indicates p,0.01 by Student’s t-test. (D) Analysis of EMT markers E-cadherin and vimentin. Primary
hepatocytes were treated with or without TGF-b1 (5 ng/ml) for 48 h and the cell lysate was used in immunoblotting with the antibodies as indicated.
doi:10.1371/journal.pone.0017415.g004

Figure 5. Alcohol-induced liver injury and steatosis were aggravated in Smad7liver-KO mice. (A) Confirmation of Smad7 deletion. Wild type
and Smad7liver-KO mice were fed with control or ethanol-containing diet for 6 weeks, followed by a single gavage of 10% ethanol or maltose
respectively (8 mice per group). Real time RT-PCR was performed with total RNA isolated from the mice with primers to detect the mRNA region
corresponding to exon4 of Smad7 gene. (B) and (C) Measurement of serum ALT and AST. The data are shown as mean 6 SD and ** indicates p,0.01
by Student’s t-test. (D) Histological analysis of the liver. Representative images of H&E staining are shown for each group of mice. Please note that
fatty liver degeneration induced by alcohol administration is enhanced in Smad7liver-KO mice. (E) Oil-Red-O staining of the liver. (F) Triglyceride level of
the liver. The data are shown as mean 6 SD. * and ** indicates p,0.05 and p,0.01 respectively.
doi:10.1371/journal.pone.0017415.g005
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administration. Combining these results, we propose that the

alteration of ethanol metabolism, lipogenesis and inflammatory

response caused by Smad7 deletion may act together to contribute

to severe alcoholic liver injury and steatosis in Smad7-deleted

mice. In this regard, our model of liver-specific deletion of Smad7

can serve as a useful tool to comprehend the biological function of

endogenous Smad7 in the liver as well as in liver diseases.

Materials and Methods

Generation of liver-specific Smad7 deletion mice and
genotyping

All animal procedures and protocols were approved by the

Institutional Animal Care and Use Committee of the Institute for

Nutritional Sciences, Chinese Academy of Sciences with approval

number 2010-AN-8. Smad7loxP/loxP mice were developed as

previously described [17]. Liver specific deletion of Smad7 mice

(Smad7liver-KO) were generated by crossing Smad7loxP/loxP mice

with Alb-Cre mice that contain a Cre recombinase driven by

albumin promoter (the Jackson Laboratory, Bar Harbor, ME,

USA). Tail biopsies of the mice were analyzed by genomic PCR.

The presence of Smad7-loxP allele was detected by primer A (59-

TGTCCCGCTTGTCTTGTTCTTTGAG-39) and primer G

(59-CAGAGCAGCCGATTGTCTGTTGTGC-39), resulting in

a ,500-bp PCR product. The wild-type allele was detected by

primers A and B (59-TGCTGACTCTCGTTTCCTGTCTTCG-

39), giving rise to a 154-bp product. The genotyping of Alb-Cre

transgenic mouse was performed following the protocol provided

by the Jackson Laboratory.

RNA isolation, RT-PCR and real-time quantitative PCR
Total RNA from mouse tissues was isolated using TRIzol

reagent (Invitrogen, Carlsbad, CA, USA). The RNA was treated

with RNase-free DNase I and reverse-transcribed with oligo(dT)

primer using the SuperScript First-Strand Synthesis System for RT-

PCR (Invitrogen). Oligonucleotide primers used for RT-PCR to

Table 1. Physiological and serum parameters of mice upon chronic-binge alcohol exposure.

Parameters Wild type Smad7liver-KO

Control-fed Ethanol-fed Control-fed Ethanol-fed

Body weight-initial (g) 23.6862.65 23.7463.04 23.4662.35 22.5862.03

Body weight-end (g) 24.8562.78 24.2864.20 26.6164.24 23.1362.65

Body weight-gain (g) 1.1862.59 0.5462.24 3.1562.21 0.5561.71$$

Liver weight (g) 0.9360.10 1.1160.24 0.9860.18 1.0960.11

Liver weight/body weight (%) 3.7060.34 4.6460.63## 3.6160.54 4.8060.56$$

EWAT (g) 0.6560.28 0.4960.24 0.7160.32 0.5660.20

EWAT/body weight (%) 2.5260.88 1.9560.72 2.5260.77 2.4060.67

Blood triglyceride (mg/ml) 0.7360.27 0.4560.22# 0.8060.35 0.4760.10$

Blood cholesterol (mmol/L) 2.4160.50 1.7260.22## 2.1760.52 1.8960.47

EWAT: Epididymal white adipose tissue.
The data are shown as means 6 SD (n = 8 for each group).
#and ##: comparison between control-fed and ethanol-fed wild type mice. # for p,0.05 and ## for p,0.01.
$and $$: comparison between control-fed and ethanol-fed Smad7Liver-KO mice. $ for p,0.05 and $$ for p,0.01.
doi:10.1371/journal.pone.0017415.t001

Figure 6. Alcohol-induced ADH1 expression is reduced by Smad7 deletion. (A) Analysis of ADH1 mRNA level of the mouse liver as of
Figure 5A by real-time PCR. The data are shown as mean 6 SD. * and ** indicates p,0.05 and p,0.01 respectively. (B) and (C) Analyses of the mRNA
levels of Smad7 and ADH1 in primary hepatocytes. Primary hepatocytes isolated from wild type and Smad7liver-KO mice were incubated with or
without ethanol (100 mmol/L) for 24 h. The mRNA were isolated and used in real-time PCR. The data are shown as mean 6 SD with * for p,0.05 and
** for p,0.01 between the groups as indicated.
doi:10.1371/journal.pone.0017415.g006
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detect Smad7 mRNA were: 59-AAGTGTTCAGGTGGCCG-

GATCTCAG-39 and 59-ACAGCATCTGGACAGCCTGCAGT-

TG-39 for exon 1-3 of Smad7, 59-CAACTGCAGGCTGTCCA-

GATGCTGTAC-39 and 59-GTAAACCCACACGCCATCCAC-

TTCC-39 for exon 3–4 of Smad7. Quantitative real-time PCR was

done with the SYBR Green PCR system (Applied Biosystems,

Foster City, CA, USA), using actin as an internal control for

normalization. Primers used for each gene are listed as follows: 59-

CTCCTCCTTTCTCGTCATCC-39 and 59- CACACACACAA-

CCCAACAAA-39 for the mRNA region corresponding to exon 4 of

Smad7, 59-GGCCGCCTTGACACCAT-39 and 59-GCACTCC-

TACGACGACGCTTA-39 for ADH-1, 59-GATCATTGCTCC-

TCCTGAGC-39 and 59-ACTCCTGCTTGCTGATCCAC-39 for

b-actin. Other primers used in this study are listed in Table S1.

Mouse model of chronic-binge ethanol consumption
The chronic alcohol-fed mouse model was established as

previously described with minor modification [21,33]. In brief,

10 to 12 weeks old male mice were fed with a nutritionally

adequate liquid diet containing 5% ethanol or a control diet for up

to 6 weeks (Dyets, Inc., Bethlehem, PA, USA). Both diets were

dispensed in glass liquid-diet feeding tubes. Ethanol was

introduced gradually by increasing the content by 1% (vol/vol)

every day until the mice were consuming diet containing 5% (vol/

vol) ethanol for up to 6 weeks. After that, the mice of ethanol-

treated group were gavaged with a single doses of ethanol (5 g/kg

body weight, 10% ethanol), whereas mice in control groups were

gavaged with isocaloric dextrin maltose. After gavage, mice were

kept on control or ethanol diet and euthanized 6 hours later.

Isolation of primary mouse hepatocytes
Mouse hepatocytes were isolated from livers of 8-week-old mice

by a modified two-step collagenase perfusion protocol [34]. In

brief, the hepatocytes were plated on collagen I coated 6-well

plates (36105 cells/well) in Dulbecco modified Eagle medium-F-

12 (DMEM, from GIBCO-BRL, Gaithersburg, MD, USA) with

Figure 7. Upregulation of lipogenesis- and inflammation-related genes by ethanol treatment and Smad7 deletion. (A) Analysis of the
mRNA levels of critical lipogenic genes of the mouse liver by real-time RT-PCR. Alcohol-feeding of the mice was as described in Figure 5A. The data
are shown as mean 6 SD. * and ** indicates p,0.05 and p,0.01 respectively. (B) Analysis of the mRNA levels of a series of inflammation-related
factors by real-time RT-PCR with the samples as in Figure 5A. The data are shown as mean 6 SD with * for p,0.05 and ** for p,0.01 between the
groups as indicated.
doi:10.1371/journal.pone.0017415.g007
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supplements as described previously [35]. The medium was

changed after 4 h with DMEM supplemented with 1% penicillin/

streptomycin. For TGF-b1 treatment, the cell culture medium was

changed to serum-free DMEM with 1% penicillin/streptomycin

and 5 ng/ml TGF-b1 (Sigma–Aldrich, St. Louis, MO, USA) was

added as indicated. For ethanol treatment, 100 mmol/L ethanol

was added in fresh medium for 24 hours. The plates were sealed

with parafilm to prevent evaporation after the addition of ethanol.

Cell motility assay
Primary hepatocytes were plated on collagen I-coated 6-well

plates (36105 cells/well) and then ‘‘wounded’’ by scratching the

cells with a 200 ml pipette tip in the presence or absence of TGF-

b1 after attachment and then monitored in 24 and 48 h by phase-

contrast microscope photography as described previously [23].

Immunoblotting analysis
For Western blotting analysis, the cells and tissues were lysed in

a radioimmunoprecipitation assay (RIPA) buffer (150 mmol/L

NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS,

50 mmol/L Tris-HCl at pH 7.4) containing phosphatase inhibi-

tors and a protease inhibitor cocktail (Sigma-Aldrich). The lysate

was subjected to SDS-PAGE, transferred to polyvinylidene

fluoride (PVDF) membranes, and incubated with the primary

antibodies, followed by horseradish peroxidase-conjugated sec-

ondary antibody (Amersham, Little Chalfont, Bucks, UK). The

bound antibody was visualised using enhanced chemiluminescence

reagents (Pierce, Rockford, USA). The antibodies used were as

follows: rabbit anti-actin antibody (Santa Cruz Biotechnology,

Santa Cruz, CA, USA), goat anti-Smad7 antibody (Santa Cruz

Biotechnology), rabbit anti-phosphorylated-Smad2 antibody (Cell

Signaling Technology, Beverly, MA, USA), rabbit anti-phosphor-

ylated-Smad3 antibody (Cell Signaling Technology), goat anti-

Smad2/3 antibody (Santa Cruz Biotechnology), rabbit anti-

cleaved-caspase-3 antibody (Cell Signaling Technology), mouse

anti-E-cadherin antibody (BD Transduction Laboratories, New

Jersey, USA), and mouse anti-vimentin antibody (Santa Cruz

Biotechnology).

Analysis of blood and tissue samples
The serum levels of alanine transaminase (ALT), aspartate

transaminase (AST) and total cholesterol (TC) were determined by

a kit from ShenSuoYouFu (Shanghai, China). Triglycerides were

determined by the Serum Triglyceride Determination Kit (Sigma-

Aldrich). The measurement of hepatic triglyceride was following a

protocol as previously reported [36]. About 40–60 mg of liver

tissue was homogenized in a total of 4 ml of a mixture of CHCl3-

CH3OH (2:1, v/v). After addition of 1 ml 0.88% NaCl, the

homogenate was centrifuged at 3700 rpm for 10 min at room

temperature. The portion at the lower organic phase was

transferred to a new tube and dried under nitrogen. The dried

residue was resuspended in 1 ml of 1% Triton X-100 in absolute

ethanol.

Histology and immunohistochemistry
Following fixation of the livers with 10% formalin/phosphate-

buffered saline, paraffin-embedded sections were subjected to

standard Hematoxylin & Eosin (H&E) staining. Hepatic lipid

content was determined by 10 mm thick frozen sections stained

with Oil Red O (Sigma–Aldrich). The immunohistochemistry was

performed with 5 mm sections using SABC (mouse/rabbit IgG) kit

according to the manufacturer’s instruction (Boster, Wuhan,

Hubei, China). The primary antibodies used were as follows:

phosphorylated Smad2 (1:200, Cell Signaling Technology) and

cleaved caspase-3 (1:1000, Cell Signaling Technology). TUNEL

assay was carried out using ApopTagH Peroxidase In Situ

Apoptosis Detection Kit (from Chemicon, Temecula, CA, USA)

following the manufacturer’s instructions.

Annexin V staining
Hepatocytes were plated on coverslips (,80,000 cells per well in

6 well plates). After overnight serum starvation, cells were treated

with 5 ng/mL TGF-b1 as indicated. Residual culture medium was

washed off the cells with phosphate-buffered saline. Cells were

stained for 5 minutes with Annexin V-PE Apoptosis Detection Kit

(BioVision Inc., Mountain View, CA, USA) and 5 mg/mL

Hoechst 33342 (Molecular Probes, Eugene, OR, USA) in

phosphate-buffered saline. Unbound stain was washed off the

cells with phosphate-buffered saline, and fluorescent signal was

detected immediately.

Immunofluorescence
Immunofluorescence staining was performed as described

previously [37]. Fluorescein isothiocyanate-phalloidin (Sigma-

Aldrich) was used to detect F-actin. Cell nuclei were counter-

stained with Hoechst 33342.

Statistical analysis
Statistically significance was assessed by one-way ANOVA or

Student’s t test.

Supporting Information

Figure S1 Expression of Cre recombinase in the wild
type and Smad7liver-KO mice. The liver samples as for

Figure 2B were used to determine the mRNA level of Cre

recombinase by real-time PCR. The relative mRNA levels of

Smad7 (exon4, also shown in Figure 2B) and Cre are shown.

Please note that in general high expression of Cre is associated

with low expression of Smad7.

(DOC)

Table S1 Primer sequences for mouse genes used in
real-time PCR.

(DOC)
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