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*ree-dimensional (3D) medical image segmentation is used to segment the target (a lesion or an organ) in 3D medical images.
*rough this process, 3D target information is obtained; hence, this technology is an important auxiliary tool for medical diagnosis.
Although some methods have proved to be successful for two-dimensional (2D) image segmentation, their direct use in the 3D case
has been unsatisfactory. To obtain more precise tumor segmentation results from 3DMR images, in this paper, we propose a method
known as the 3D shape-weighted level set method (3D-SLSM). *e proposed method first converts the LSM, which is superior with
respect to 2D image segmentation, into a 3D algorithm that is suitable for overall calculations in 3D image models, and which
improves the efficiency and accuracy of calculations. A 3D shape-weighted value is then added for each 3D-SLSM iterative process
according to the changes in volume. Besides increasing the convergence rate and eliminating background noise, this shape-weighted
value also brings the segmented contour closer to the actual tumor margins. To perform a quantitative analysis of 3D-SLSM and to
examine its feasibility in clinical applications, we have divided our experiments into computer-simulated sequence images and actual
breast MRI cases. Subsequently, we simultaneously compared various existing 3D segmentation methods. *e experimental results
demonstrated that 3D-SLSM exhibited precise segmentation results for both types of experimental images. In addition, 3D-SLSM
showed better results for quantitative data compared with existing 3D segmentation methods.

1. Introduction

In the process of breast cancer screening or medical treatment,
the size and shape of a tumor is often an important basis for
the diagnosis or treatment strategy. Segmenting the tumor
from a medical image can improve the diagnostic accuracy of
doctors, and become a guide for the surgery. In the past, many
two-dimensional (2D) image segmentation techniques have
been developed, such as the active contour model (ACM) [1],
region growing, zero crossing [2], thresholding [3], region-
based segmentation [4], watershed [5], fuzzy c-means (FCM),
texture features, and the level set method (LSM) [6, 7].
However, breast MRI has a relatively low resolution, and
tumor boundaries are often indistinct as tumors infiltrate
surrounding healthy tissue. Consequently, breast MRI tumor
segmentation has always been a challenging task. According to
the literature on image segmentation, some segmentation

methods are based on the brightness; however, these methods
are easily affected by noise. Some methods are gradient-based
and may result in errors if the boundaries are not clear. In
addition, some methods are based on local features; however,
they are often dependent on the suitability of the features
extracted as well as the image consistency. If these methods are
used in highly variable medical images, their segmentation
accuracy is also relatively unstable. However, some segmen-
tation methods demonstrate superior performance, such as
LSM and multispectral detection technology [7] that do give
good results for tumor segmentation in 2D medical images. It
is noteworthy that in order to meet the needs of multispectral
detection technology, different parameters (such as T1, T2, and
PD) must be used to produce multispectral MRIs.

Using three-dimensional (3D) models would un-
doubtedly determine tumor size and shape more accurately
than using 2D imaging. However, most of the current

Hindawi
Journal of Healthcare Engineering
Volume 2018, Article ID 7097498, 15 pages
https://doi.org/10.1155/2018/7097498

mailto:scyang@ncut.edu.tw
http://orcid.org/0000-0001-8137-3666
http://orcid.org/0000-0002-6868-0466
http://orcid.org/0000-0001-7434-3346
https://doi.org/10.1155/2018/7097498


medical imaging instruments present only 2D images. Al-
though there are some relatively expensive instruments that
can stack the original 2D images directly into a 3Dmodel, the
original 2D images usually contain mixed complex back-
ground tissues, often making the object difficult to recognize
in 3D. *erefore, the segmentation of 3D medical images has
become a computer-aided diagnostic technology in dire need
of development [8]. Due to the technologies of 2D image
segmentation and contour detection are now relatively ma-
ture, some 3D image segmentation methods use 2D seg-
mentation as the foundation to carry out segmentation on 2D
sections before stacking these 2D segmentation results into
a 3D segmentation model [9–11]. As these 3D segmentation
methods lack association between upper and lower sections
(Z-axis), the accuracy of these methods in 3D segmentation
applications is not as high as in 2D segmentation. In addition,
as these methods calculate every 2D section one-by-one, and
not the total 3D calculations, the computational burden is
significantly increased. At present, there are some existing 3D
image segmentation techniques. For example, Rebouças et al.
[12] developed ACM into 3D-ACM and compared it with 3D
region growing. Although the experimental results showed
that 3D-ACM had the better performance, it was closely
related to the settings of the initial contour and was difficult to
use as a clinical diagnostic aid. In addition, Gangsei and
Kongsro [11] extended Dijkstra’s algorithm to a 3D algo-
rithm, and conducted 3D segmentation for bone CT images.
Despite the fact that satisfactory segmentation results were
obtained, this method is not suitable for use in breast MRI
with its various mixed tissues and low contrasts. *is is
because there is a high contrast between the target and
background tissues in bone and vascular imaging, a fact that is
exploited by other 3D image segmentation algorithms [13, 14]
for bones and blood vessels. Some methods carry out seg-
mentation at three orthogonal 2D planes before combining
these segmentation results into a 3D segmentation model
[14, 15]. Although these methods significantly decrease the
computational burden, they are still based on 2D segmen-
tation and are not strictly true 3D segmentation methods.

Based on the aforementioned analyses, this paper pro-
poses a new 3D tumor segmentation method, namely, the
3D shape-weighted level set method (3D-SLSM). In com-
parison with past methods as well as our previous research
results in [9], 3D-SLSM has three major advantages. Firstly,
it is evolved from 2D-LSM, whose tissue segmentation has
been confirmed to give good results for 2D breast MRI [7].
Secondly, 3D-SLSM operates directly on the entire 3D
model, which not only reduces the computation time but
also ensures the association and interaction between each
pixel and its neighboring points on all three axes (X, Y, and
Z). *irdly, 3D-SLSM adds a characteristic shape-weighted
model in each update, so that the contour converges rapidly
towards the surface of the target object, effectively elimi-
nating the mixed surrounding background noise. In order to
verify experimentally the feasibility of the proposed method,
experimental data are assigned to two groups: computer-
simulated images and breast MRI cases with actual tumors.
Computer-simulated images help us to observe based on
quantitative analysis while breast MRIs are used to confirm

efficiency in clinical applications. In the course of the ex-
periment, the segmentation of experimental images using
various algorithms will be carried out. However, as the 3D
segmentation results of the various algorithms are 3D point
matrices that cannot be directly viewed, rendering tech-
niques must be first employed to convert these 3D point
matrices into visual 3D image models to facilitate obser-
vation and actual applications. A quantitative evaluation is
then conducted using a standard model (delineated by
physicians for actual MRI cases) as a basis. Besides evalu-
ating the performance of 3D-SLSM, the accuracy and error
rates of 3D-SLSM are also compared to existing algorithms,
such as traditional ACM and 2D/3D-LSM, in order to
validate the contributions of 3D-SLSM.

*is paper is divided into five sections, which are as
follows: Section 2 introduces the new 3D-SLSM method
proposed in this paper. Section 3 describes the re-
construction and system evaluation methods for experi-
mental data. Section 4 presents experimental results and
discussion. Finally, conclusions are presented in Section 5.

2. Methods

2.1. *ree-Dimensional Level Set Method (3D-LSM). *e
traditional LSM was first proposed in 1988 by Osher and
Sethian [16], and it is still used widely in many disciplines
today. LSM has already been confirmed to have superior
performance in the segmentation of 2D medical images.
*erefore, while developing 3D-SLSM, we selected LSM as
a foundation, and first converted traditional 2D-LSM into
3D-LSM, which can be used for overall calculations in 3D
models. In addition to increasing the computational effi-
ciency, this conversion also significantly increases the ac-
curacy of 3D segmentation as the computation process
considers the association of pixels on upper and lower
sections (Z-axis). Conventional 2D-LSM calculations re-
quire the construction of an initial 2D target region, and φ is
used to express the height level of every image pixel. After
the boundaries of the initial target region were taken as
horizontal lines (φ� 0), a height distribution map is then
constructed according to the characteristics of the various
positions in the images. *e proposed 3D-LSM first up-
grades the 2D initial target region into a 3D initial target
object before taking the contour surfaces of the initial target
object as horizontal planes. φ� 0 indicates that the point is
on its contour surface, φ> 0 indicates that the point is lo-
cated inside the target, and φ< 0 indicates that the point is
located outside the target, as shown in Figure 1.

In order to increase the association of the Z-axis for
conversion into a 3D algorithm, a new formula was rede-
fined for 3D-LSM, as shown in the following equation:

Δφ � δ(φ)􏼠μ · div
∇φ

|∇φ|
􏼠 􏼡− λ1 μ0(x, y, z)− c1( 􏼁

2

− λ2 μ0(x, y, z)− c2( 􏼁
2 − v􏼡,

(1)

where λ1, λ2, μ, and v are all weighted coefficients. c1 and c2
represent the average grayscale values inside and outside the
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contour, respectively, while μ0 represents the pixel gray-level
value. *e function δ(φ) is a Dirac delta function, which we
approximate in our implementation as follows:

δ(φ) �
1
π

ε
ε2 + φ2, (2)

where ε is a constant that is used to control the sharpness of the
contour plane. div(∇φ/|∇φ|) in (1) is used to smooth out the
entire contour plane, and can be obtained from the divergence of
the various pixel-gradient (∇) directions on the contour plane.
As 3D-LSM increases the association between gradients on the
Z-axis of the contour plane, it is therefore redefined as follows:

div
∇φ

|∇φ|
􏼠 􏼡 �

c

fx2 + fy2 + fz2( 􏼁
1.5 ∗ fx

2
+ fy

2
+ fz

2
􏼐 􏼑

0.5
,

(3)

where fx, fy, and fz represent the gradient quantization
values on the X-, Y- and Z-axes of the image, respectively.
*e term c can be obtained by the following formula:

c �fy
2 ∗fxx + fz

2 ∗fxx + fx
2 ∗fyy + fz

2 ∗fyy

+ fx
2 ∗fzz + fy

2 ∗fzz− 2∗fx∗fy∗fyz

− 2∗fx∗fy∗fxy− 2∗fx∗fz∗fxz.

(4)
In addition, the third part of (1)—λ1(μ0(x, y, z)− c1)

2 −
λ2(μ0(x, y, z)− c2)

2—is the key to moving the contour
gradually to the edge of the object in the updating process.
*rough observation, it was discovered that increasing λ1 could
cause the internal broken areas of the contour surface to be
connected. *is usually makes it easier to identify a target with
lower grayscale values. Increasing λ2 can cause the external
broken areas of the contour surface to be connected, which helps
identify a target with higher grayscale values (e.g., the tumor area
in breast MRI). *e value of v in the fourth term of (1) is the
overall height adjustment. *e higher this value is, the lower
the overall φ value will be. Meanwhile, the volume enclosed by
the entire contour surfacewill also be reduced, so the adjustment
of v will affect the volume inside the contour surface.

2.2. *ree-Dimensional Surface Rendering (3DSR). As the
results obtained from 3D image segmentation are only 3D point

matrices, which are not directly observable on the device, after
segmentation using various methods was completed, there is
a need to employ 3DSR (three-dimensional surface rendering)
techniques to convert the 3D point matrix into a 3D model for
viewing by users. While the 3DSR technique is not considered
a part of 3D image segmentation, it is an important technique
for employing segmentation algorithms in clinical applications.
In general, there are two categories of 3DSR approach.*e first
is the isosurface approximation method [17], which attaches
certain geometric planes to the equivalent surface and then uses
the 3D mapping method to image the surface. *e other is the
light projection method [18], in which light is projected in the
equidistant sampling mode for different types of accumulation.
*e typical techniques of 3DSR are contour-tracing isosurface
(CTIS) [19], volume rendering (VR) [20], and marching-cubes
isosurface (MCIS) [17, 21]. *e main disadvantage of CTIS is
that there may be multiple closed contours on each cross
section, as well as significant differences between contour lines
in two adjacent cross sections. *is makes it very difficult to
trace and connect the contour lines in adjacent cross sections,
whichmight result in a large number of connection errors when
tracing complex structures. *e disadvantage of VR is that the
projected value needs to be recalculated frequently during the
process of 3D rotation, so many calculations are required.
However, MCIS treats the small cubes in the 3D space as the
basic units, and to find the respective isosurface of each one.*e
cubes can be categorized as being either inside or outside
the object, based on values on the eight vertices; there are only
15 types in total, after eliminating rotationally similar states.*e
corresponding isosurface can then be generated quickly within
the small cubes according to a lookup table. Based on the above
analysis, this paper uses the MCIS method to construct a 3D
model of a breast tumor. About the calculation process ofMCIS,
please refer to [21] for details.

2.3. *ree-Dimensional Shape-Weighted Level Set Method
(3D-SLSM). In order to improve the speed and accuracy of
3D segmentation, we now combine 3D-LSM with the 3D
shape characteristics to obtain the 3D shape-weighted level set
method (3D-SLSM). *is adds a shape-weighted value each
time LSM updates the φ value, thus controlling the

φ < 0

φ > 0

φ = 0

Figure 1: Initial contour surface of the 3D level set method.
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Figure 2: *ree-dimensional shape-weighted value diagram.
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Figure 3: Effect of 3D shape-weighted value on a single iteration: (a) segmentation results without adding the 3D shape-weighted value;
(b) calculated 3D shape-weighted value from (a); (c) segmentation results with the 3D shape-weighted value added.
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Figure 4: Effect of 3D shape-weighted value on the iterative calculation process: (a) partial iteration segmentation results without adding the
3D shape-weighted value; (b) partial iteration segmentation results with the 3D shape-weighted value added. Leftmost sphere is the initial
contour surface in both cases.

4 Journal of Healthcare Engineering



convergence of the 3D contour lines. It is important to note
that the calculated φ value in the 3D-LSM calculation process
is a 3Dmatrix; thus, we have to use the 3D shape characteristic
to combine this φ value effectively with 3D-LSM. Here,

a shape characteristic refers to the desired shape of the object;
for different target tissues or organs in medical imaging, the
expected shape can require different considerations. *is
paper uses a breast cancer tumor as a demonstration. In view

(a)

(b)

(c)

(d)

Figure 5: *e simulated tumor images with three different levels of noise density and blurring: (a) the original image; (b) noise density at
10% with 3× 3 mask blurring; (c) noise density at 30% with 5× 5 mask blurring; (d) noise density at 50% with 7× 7 mask blurring.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6: A partial image slice of an MRI case with a breast tumor.
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of the usual presentation of this type of tumor as approxi-
mately spherical or ellipsoidal, the shape characteristic in the
experiment is computed as a sphere. Accordingly, in each 3D-
SLSM iterative operation, we must first initialize a sphere that
has the same inner volume as the target. *e center co-
ordinates of the sphere locate the center of gravity for all pixels
with φ> 0, and the volume of the sphere is equal to the sum of
all such pixels. *e radius of the sphere can be calculated
through the sphere volume equation:

V �
4
3
πr

3
, (5)

where V represents the number of pixels with φ> 0, π is the
usual mathematical constant, and r is the radius we wish to
calculate. After calculation of (5), we can obtain the radius of
the sphere, and in this way, the initial characteristic shape
(spherical)matrix can be established via the following equation:

φs(x, y, z) � −
�������������������������

x− cx( 􏼁
2

+ y− cy􏼐 􏼑
2

+ z− cz( 􏼁
2

􏽲

+ r,

(6)

where cx, cy, and czare the coordinates of the center of
gravity of all pixels. After establishing the shape characteristic
matrix, this is evolved further into a 3D shape-weighted value

that participates in each 3D-SLSM iterative operation. Ini-
tially, the weighted value on the characteristic shape surface is
defined to be zero. *e farther away the interior points are
from the shape surface, the greater the weighted value is. *e
farther away the external points are from the shape surface,
the smaller the weighted value is. *ese two conditions
combine to make the contour in the 3D-SLSM calculation
process converge towards the expected characteristic shape.
*e 3D shape-weighted value diagram is shown in Figure 2.

After combining the 3D shape-weighted value, the
definition of 3D-SLSM is shown in the following equation:

Δφ � δ(φ)􏼠μ · div
∇φ

|∇φ|
􏼠 􏼡− λ1 μ0(x, y, z)− c1( 􏼁

2

− λ2 μ0(x, y, z)− c2( 􏼁
2 − v + τφs􏼡,

(7)

where φs is the 3D characteristic shape matrix produced by the
characteristic shape, τ is the weighted matrix, and a combi-
nation of the two becomes the 3D shape-weighted value that
controls the degree of “force” that pushes the contour towards
the characteristic shape.We use an example to demonstrate the
effect of the 3D shape-weighted value. Figure 3(a) represents
a 3D-LSM iterative operation. After calculating the center of

Table 1: Characteristic list of test cases.

Case number Breast size Tumor size Breast tissue types
Case 1 Medium Medium Fatty glandular
Case 2 Small Small Fatty
Case 3 Large Large Dense glandular

(a) (b) (c) (d)

Figure 7: Establishment of standard tumor contour in a single slice: (a–c) tumor contour delineated by three experts; (d) contour formed by
the intersection area of (a–c).

2D ROI
designated from one MRI 3D MRI

3D
segmentation

Segmented result3D ROI

Figure 8: A schematic diagram for establishing a 3D ROI model based on actual MRI images.

6 Journal of Healthcare Engineering



10

10 10

20

20 20

30

30 30

40

40 40
50 50

50

(a)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(b)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(c)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(d)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(e)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(f)

Figure 9: *e segmentation results of computer-simulated images with 10% noise density and 3× 3 masked blurring: (a) standard;
(b) ACM; (c) LSM; (d) SLSM; (e) 3D-LSM; (f) 3D-SLSM.

10

10 10

20

20 20

30

30 30

40

40 40
50 50

50

(a)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(b)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(c)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(d)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(e)

10 10
20 20

30 30
40 40

50 50

10
20
30
40
50

(f)

Figure 10: *e segmentation results of computer-simulated images with 30% noise density and 5× 5 masked blurring: (a) standard;
(b) ACM; (c) LSM; (d) SLSM; (e) 3D-LSM; (f) 3D-SLSM.
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gravity and the volume of Figure 3(a), we can obtain the 3D
shape-weighted value diagram in Figure 3(b). Based on the 3D
shaped-weighted design, the closer the points are to the center,
the bigger the (positive) weight will be; the farther away the
points are from the center, the smaller the (negative) weight
will be. *e calculated 3D-SLSM results combined with the 3D
shape-weighted value are shown in Figure 3(c). Comparing
Figures 3(a) and 3(c), we can see clearly in Figure 3(a) that there
is a lot of surrounding noise and incomplete block fragments
around the periphery of the tumor, while Figure 3(c) provides
a closer look at the external appearance of the actual tumor.
Figure 4 shows the effect of the 3D shape-weighted value in the
iterative calculation process. *e leftmost sphere in Figure 4(a)
is the initial contour surface, followed by the segmentation
models of partial iterative calculation without the 3D shape-
weighted value. In Figure 4(b), the leftmost sphere is the initial
contour surface, followed by the segmentationmodels of partial
iterative calculation with the 3D shape-weighted value.
Comparing Figures 4(a) and 4(b), it can be observed that the
3D shape-weighted value pulls the contour towards the inside
of the characteristic shape, and eliminates the impact of en-
vironmental noise and fragmented blocks around the tumor.

3. Experimental Data and Evaluation Methods

*is paper uses breast MRI images and computer-simulated
images to demonstrate three-dimensional tumor segmentation
and the evaluation of its efficacy. *e computer simulation is

used for accurate quantitative analysis, and the actual cases aid in
observing feasibility for various methods in clinical applications.

3.1. Establishment of Experimental Data and Evaluation
Criteria for Computer-Simulated Images. For the computer-
simulated images to closely replicate the actual MRI images
of patients with tumors, in addition to the definition of the
tumor regions in the simulated images, we also added noises
of varying densities (10%–50%) and blurring using masks of
different sizes (3× 3 to 7× 7). Figure 5 shows the original
image and the 2D computer-simulated tumor images with
different noise densities and levels of blurring.

3.2. Establishment of Experimental Data and Evaluation
Criteria for Breast MRI Cases. *is paper uses breast MRI as
a case study for the 3D tumor segmentation experiment and
performance evaluation. *e imaging sources are from Tai-
wan Tri-Service General Hospital. *e collected cases all have
actual tumors, and the dynamic contrast-enhanced MRI
(DCE-MRI) was performed three minutes after the injection
of the developer. *e resolution of each image is 512× 512,
each case has 98 image slices with a slice spacing of 2mm, and
the scope of these slices contain the tumor site. Figure 6 shows
a partial image slice of an MRI case with a breast tumor.

*e selection of test cases took into account the different
breast sizes, tumor sizes, and breast tissue types (as shown in
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Figure 11: *e segmentation results of computer-simulated images with 50% noise density and 7× 7 masked blurring: (a) standard; (b)
ACM; (c) LSM; (d) SLSM; (e) 3D-LSM; (f) 3D-SLSM.
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Table 1). In order to perform systematic quantitative evalu-
ation, the evaluation criteria first had to be established. For
slices with the tumor image in each case, three experts de-
lineated the tumor outline. *e intersection area was taken as
the standard contour, and a standard 3D tumor contour was
further established in combination with the standard contour
in each slice. In the subsequent experiments, systematic
performance evaluation and quantitative analysis was con-
ducted for each case based on its standard 3D tumor contour.
Figure 7 shows the method of establishing a standard tumor
contour in a single slice. Figures 7(a)–7(c) are the tumor
outlines delineated by three experts, and Figure 7(d) is the
contour formed by the intersection area of the preceding three
figures, that is, the standard tumor contour of that slice. *e
standard tumor contour in each section will be stacked in the
experiment and used to construct a standard 3D tumor
model. *is will be used to evaluate the efficacy of various
segmentation methods. In addition, the proposed system is
targeted against the 3D ROI from actual cases for segmen-
tation.*eROI region can be first delineated by the user using
any 2D MRI image before the construction of a 3D ROI
model. *is approach facilitates the calculation of subsequent

segmentation algorithms. Refer to Figure 8 for the method
and process of establishing the 3D ROI.

3.3. Systematic EvaluationMethods. *e correct classification
rate (CCR), specificity (SP), and false alarm rate (FAR) are
commonly used evaluation indices in a variety of medical-
aided systems. *e closer the values of CCR and SP to 100%,
the more accurate will be the detection results of the system.
However, FAR is a marker of errors that are detected from the
system, and a lower percentage indicates a better performance.
*is work calculates the above evaluation indices based on the
standard 3D tumor contour. In addition to evaluating the 3D-
SLSMperformance, it also compares different algorithms. Each
evaluation index can be calculated by the following equations:

correct classification rate(CCR) �
TNP + TNN

N
, (8)

specificity(SP) �
TNN

TNN + FPN
, (9)

false alarm rate(FAR) �
FPN
Nn

, (10)

Table 2: Accuracy, specificity, and false alarm rate (%) of the
different algorithms and noise densities in 3× 3 mask blurred
computer-simulated images.

Noise
density

Methods
ACM LSM SLSM 3D-LSM 3D-SLSM

5%
CCR 90.43 99.24 99.34 99.7 99.76
SP 89.93 99.2 99.76 99.69 99.96
FAR 10.13 0.8 0.7 0.31 0.26

10%
CCR 90.07 99.13 99.19 99.6 99.67
SP 89.59 99.09 99.65 99.51 99.95
FAR 10.52 0.92 0.85 0.42 0.35

15%
CCR 91.99 98.35 99.12 99.45 99.61
SP 91.63 98.27 99.63 99.44 99.94
FAR 8.48 1.75 0.93 0.58 0.42

20%
CCR 91.02 98.52 98.93 99.07 99.52
SP 90.64 98.48 99.54 99.06 99.93
FAR 9.51 1.56 1.13 0.98 0.51

25%
CCR 90.3 98.02 98.74 98.6 99.41
SP 89.89 97.95 99.41 98.56 99.92
FAR 10.27 2.1 1.33 1.49 0.62

30%
CCR 90.95 96.83 98.61 97.82 99.32
SP 90.63 96.7 99.37 97.74 99.93
FAR 9.58 3.35 1.47 2.31 0.72

35%
CCR 90.02 95.22 98.34 98.48 99.16
SP 89.65 95.02 99.28 98.54 99.91
FAR 10.57 5.06 1.76 1.61 0.89

40%
CCR 90.52 94.18 98 97.75 98.96
SP 90.22 94.05 99.22 98.01 99.91
FAR 10.04 6.17 2.1 2.38 1.11

45%
CCR 89.69 95.9 97.73 96.59 98.7
SP 89.32 96.05 99.16 96.84 99.86
FAR 10.92 4.35 2.4 3.61 1.38

50%
CCR 89.39 95.28 97.55 95.08 98.42
SP 89.09 95.52 99.11 95.32 99.85
FAR 11.23 5 2.6 5.22 1.67

Table 3: Accuracy, specificity, and false alarm rate (%) of the
different algorithms and noise densities in 5× 5 mask blurred
computer-simulated images.

Noise
density

Methods
ACM LSM SLSM 3D-LSM 3D-SLSM

5%
CCR 87.65 98.88 98.94 99.18 99.43
SP 87.01 98.81 98.88 99.13 99.9
FAR 13.08 1.19 1.13 0.87 0.6

10%
CCR 89.85 99.01 99.39 99.36 99.38
SP 89.37 98.96 99.72 99.34 99.9
FAR 10.74 1.04 0.65 0.68 0.66

15%
CCR 90.57 99.07 99.34 99.28 99.35
SP 90.13 99.02 99.7 99.25 99.92
FAR 9.98 0.99 0.7 0.77 0.68

20%
CCR 90.37 99.11 99.25 99.29 99.39
SP 89.93 99.07 99.69 99.28 99.86
FAR 10.2 0.94 0.8 0.75 0.65

25%
CCR 89.71 99.06 99.16 99.38 99.29
SP 89.26 99.05 99.7 99.42 99.91
FAR 10.9 0.99 0.89 0.65 0.75

30%
CCR 88.68 99.05 99.14 99.26 99.15
SP 88.17 99.07 99.7 99.3 99.91
FAR 11.98 1.01 0.92 0.79 0.9

35%
CCR 88.08 99.12 99.01 99.34 98.94
SP 87.62 99.22 99.73 99.56 99.96
FAR 12.62 0.93 1.04 0.7 1.12

40%
CCR 89.18 98.96 98.89 99.25 99.31
SP 88.77 99.14 99.68 99.45 99.81
FAR 11.46 1.1 1.17 0.8 0.73

45%
CCR 89.34 98.91 98.8 99.24 99.27
SP 88.94 99.14 99.72 99.63 99.74
FAR 11.29 1.16 1.27 0.8 0.77

50%
CCR 88 98.8 98.55 99.01 99.08
SP 87.55 99.21 99.68 99.46 99.76
FAR 12.71 1.27 1.53 1.05 0.97
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where N represents the total number of pixels in the 3D ROI
and Nn represents the total number of pixels outside the
standard tumor. TPN (true positive number) represents the
number of pixels within the standard tumor and still
remained inside the tumor after segmentation, FPN (false
positive number) represents the number of pixels that were
outside the standard tumor, but which were resulted as
inside the tumor after segmentation, TNN (true negative
number) represents the number of pixels that were initially
outside the standard tumor and still remained outside the
tumor after segmentation, and FNN (false negative number)
represents the number of pixels that were initially inside the
standard tumor, but which were resulted outside the tumor
after segmentation. Generally, TPN and TNN represent the
numbers of pixels segmented correctly, while FPN and FNN
are the numbers of pixels wrongly segmented.

4. Experimental Results

4.1. Establishment and Comparison of 3D Tumor Segmenta-
tionModels for Computer-Simulated Images. In this section,
the computer-simulated images that were generated in
Figure 5 will be used to carry out different 3D tumor seg-
mentation methods, and the results will be compared after
the segmentation. Figures 9–11 demonstrate the segmen-
tation results of computer-simulated images with three
different levels of blurring and noise. From the results shown
in Figures 9–11, the segmentation of 3D-SLSM from
computer-simulated images, which were generated with
three different levels of blurring and noise, is the nearest to
standard tumors when compared with that of the existing
methods (ACM, LSM, SLSM, and 3D-LSM).

4.2. Quantitative Evaluation and Comparison for Computer-
Simulated Images. *e use of computer-simulated tumor
images aided in carrying out accurate quantitative analysis as
the tumor region is correctly defined. Tables 2–4 show the
accuracy, specificity, and the false alarm rates when a 3D
tumor segmentation is carried out on computer-simulated
images that have undergone three different levels of blurring
(3× 3, 5× 5, and 7× 7) and noise densities. From the
quantitative data, we see that 3D-SLSM has the best per-
formance in accuracy, specificity, and false alarm rates in the
experimental results (Tables 2 and 3), where image blurring
was carried out using different masks (3× 3 and 5× 5).
However, when the image underwent the maximum blur-
ring (7× 7), 2D-SLSM and 3D-SLSM demonstrated similar
performances in specificity. *e overly blurred images
benefitted 3D-SLSM in considering the correlation between
sections to be weakened. In the same way, with maximum
blurring (7× 7) and a noise density of above 45%, 3D-LSM
and 3D-SLSM delivered similar performances with regard to
accuracy (as shown in Table 4). *is was due to the 3D
shape-weighted value not being able to carry out its function
in calculation when the image is overly blurred and has too
much noise.

4.3. Establishment and Comparison of 3D Tumor Segmenta-
tion Models for Breast MRI Cases. In this section, we use
ACM, traditional LSM, shape-based LSM (SLSM), 3D-LSM,
and the 3D-SLSM proposed in this paper to perform 3D
tumor segmentation on the experimental cases. *e
resulting 3D tumor contour matrix is converted to a 3D
surface (3D tumor segmentation model) via the 3DSR
process of MCIS in order to observe and compare the results.
*e first case has a tissue type of both fat and glandular, and
both the breast and tumor sizes are medium. *e 3D tumor
segmentation results of this case that were obtained with the
various methods are shown in Figure 12.*e second case has
a tissue type of relatively more glandular, and both the breast
and tumor sizes are relatively small. *e segmentation re-
sults of this case are shown in Figure 13. *e third case has
a tissue type of relatively more fat, and both the breast and
tumor sizes are relatively large. *e segmentation results of
this case are shown in Figure 14. In the experimental results
of the three cases (Figures 12–14), figure (a) is the standard
3D tumor model, the establishment process of which is

Table 4: Accuracy, specificity, and false alarm rate (%) of the
different algorithms and noise densities in 7× 7 mask blurred
computer-simulated images.

Noise
density

Methods
ACM LSM SLSM 3D-LSM 3D-SLSM

5%
CCR 88.22 98.5 99.16 98.87 99.21
SP 87.65 98.42 99.63 98.82 99.25
FAR 12.48 1.59 0.89 1.2 0.84

10%
CCR 88.67 98.67 99.12 98.96 99.23
SP 88.14 98.62 99.66 98.93 99.29
FAR 11.99 1.4 0.93 1.11 0.81

15%
CCR 87.42 98.74 99.09 98.99 99.19
SP 86.82 98.69 99.65 98.97 99.27
FAR 13.32 1.33 0.96 1.06 0.85

20%
CCR 87.72 98.88 99.04 99.13 99.3
SP 87.15 98.85 99.68 99.15 99.43
FAR 13 1.19 1.02 0.92 0.74

25%
CCR 87.89 98.86 98.99 99.11 99.23
SP 87.35 98.87 99.69 99.17 99.44
FAR 12.83 1.2 1.07 0.94 0.81

30%
CCR 86.1 98.91 98.96 99.15 99.23
SP 85.43 98.95 99.71 99.23 99.46
FAR 14.72 1.16 1.11 0.9 0.82

35%
CCR 86.27 98.91 98.87 99.19 99.21
SP 85.63 99.03 99.72 99.36 99.54
FAR 14.54 1.15 1.2 0.86 0.84

40%
CCR 86.43 99 98.74 99.2 99.21
SP 85.79 99.18 99.73 99.44 99.64
FAR 14.37 1.05 1.34 0.84 0.84

45%
CCR 84.41 98.94 98.63 99.16 99.13
SP 83.7 99.24 99.75 99.57 99.73
FAR 16.51 1.12 1.45 0.89 0.92

50%
CCR 84.29 98.94 98.52 99.1 99.12
SP 83.55 99.37 99.78 99.66 99.66
FAR 16.63 1.12 1.57 0.95 0.93
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described in Section 3.1; figures (b–f) are the 3D tumor
segmentation models obtained by ACM, LSM, SLSM, 3D-
LSM, and 3D-SLSM, respectively. *e following conclusions
can be drawn from these 3D tumor segmentation results. (1)
When 2D segmentation techniques evolve into 3D tech-
niques, the application of 3D segmentation gives good
performance because the upper and lower slices are con-
nected. (2) Whether it is 2D or 3D segmentation technology,
combining shape characteristics can result in better per-
formance. (3) *e results in Figures 12–14 show that the 3D
tumor segmentation model generated by the 3D-SLSM
proposed in this paper is the one that is most consistent
with the standard 3D tumor model.

4.4. Quantitative Evaluation and Comparison for Breast MRI
Cases. *is section describes the quantitative analysis based
on standard 3D tumor contours obtained from actual MRI
cases (Figures 12(a), 13(a), and 14(a)). We compared the

performance of 3D-SLSM with some competitive methods
such as ACM, LSM, SLSM, and 3D-LSM. *e construction
methods employed for standard 3D tumor contours were
described in Section 3.2. In addition to using the numbers of
TPN, FPN, TNN, FNN, Np, Nn, and N to show the analysis
results, three evaluation markers (CCR, SP, and FAR) were
calculated to facilitate the comparison of the system per-
formance. Here, the newly added Np represents the total
number of pixels inside standard tumors, and represents the
actual size of the tumor. Table 5 shows the various pixel
quantities when different methods were employed to perform
segmentation in different cases. Equations (8)–(10) were
employed to perform the further calculation of three evalu-
ation indicators that are commonly used in medical auxiliary
systems, CCR, SP, and FAR (as shown in Table 6). Combining
the observation in Tables 5 and 6, we can conclude that (1)
LSM has a better performance than ACM in 3D tumor
segmentation, and this confirms the appropriateness when
LSM was chosen as a foundation in the proposed method.
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Figure 12: 3D tumor segmentation results of Case 1 obtained with different algorithms: (a) standard; (b) ACM; (c) LSM; (d) SLSM;
(e) 3D-LSM; (f) 3D-SLSM.
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(2) *e conversion of traditional 2D algorithms into 3D al-
gorithms can increase the accuracy of 3D segmentation. (3) A
combination of shape characteristics can similarly increase
segmentation accuracy. (4) Converting traditional 2D-LSM
into 3D algorithms and performing a simultaneous combi-
nation with shape characteristics into 3D-SLSM can obtain
higher CCR and SP, as well as a lower FAR.

*ese quantitative results verified that 3D-SLSM can
effectively eliminate background noise, so contours that are
obtained from segmentation are closer to actual tumor
boundaries, and demonstrate the feasibility of 3D-SLSM in
clinical applications.

5. Conclusions

3Dmedical image segmentation can provide 3D information
of lesions or organs, and therefore is an important auxiliary
tool for medical diagnosis. However, existing 3D image
segmentation techniques still have some shortcomings.
Although many 2D image segmentation methods have been

proven to have good results, the overlaying of results from
2D segmentation to carry out 3D image segmentation will
not only result in computational burden but also poor results
owing to the lack of association between adjacent sections. In
order to obtain more precise 3D segmentation results and
improve computational efficiency, this paper proposed an
innovative 3D medical image segmentation method, which
we call the 3D shape-weighted level set method (3D-SLSM).
*e proposed method can carry out the precise segmenta-
tion of tumors from 3D medical images. During the de-
velopment of 3D-SLSM, the 2D segmentation technology
was first evolved to 3D in order to facilitate the simultaneous
operation of 3D MRI, with pixels associated with each other
in the three coordinate axes (X, Y, and Z). Furthermore,
since medical images often contain multiple different tissues
types, the segmentation results of most of the 3D seg-
mentation algorithms will be affected largely by errors
and/or noise. *erefore, 3D-SLSM adds the 3D shape-
weighted value in each iterative process according to the
change in volume, which not only accelerates convergence
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Figure 13: 3D tumor segmentation results of Case 2 obtained with different algorithms: (a) standard; (b) ACM; (c) LSM; (d) SLSM;
(e) 3D-LSM; (f) 3D-SLSM.
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and eliminates background noise but also brings the seg-
mented contour closer to the actual outline of the tumor
margin.

To evaluate the accuracy of 3D-SLSM, we use breast MRI
cases and computer-simulated images to demonstrate 3D
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Figure 14: 3D tumor segmentation results of Case 3 obtained with different algorithms: (a) standard; (b) ACM; (c) LSM; (d) SLSM;
(e) 3D-LSM; (f ) 3D-SLSM.

Table 5: TPN, FPN, TNN, FNN, Np, Nn, and N numbers of the
different algorithms for each case in units of pixel.

TPN FPN TNN FNN Np Nn N
Case 1
ACM 6768 44035 113364 571 7339 157399 164738
LSM 6695 15600 141799 644 7339 157399 164738
SLSM 5004 3074 154325 2335 7339 157399 164738
3D-
LSM 6926 11959 145440 413 7339 157399 164738

3D-
SLSM 6006 518 156881 1333 7339 157399 164738

Case 2
ACM 5648 64123 93276 1691 2784 161954 164738
LSM 2601 4461 157493 183 2784 161954 164738
SLSM 2122 2156 159798 662 2784 161954 164738
3D-
LSM 2530 2421 159533 254 2784 161954 164738

3D-
SLSM 2173 253 161701 611 2784 161954 164738

Case 3
ACM 57877 102006 718123 454 58331 820129 878460
LSM 55432 60356 759773 2899 58331 820129 878460
SLSM 37814 18512 801617 20517 58331 820129 878460
3D-
LSM 48647 37622 782507 9684 58331 820129 878460

3D-
SLSM 35338 11217 808912 22993 58331 820129 878460

Table 6: Accuracy, specificity, and false alarm rate (%) of the
different algorithms in each case.

CCR SP FAR
Case 1
ACM 72.92 72.02 27.98
LSM 90.14 90.09 9.91
SLSM 96.72 98.05 1.95
3D-LSM 92.49 92.40 7.60
3D-SLSM 98.88 99.67 0.33
Case 2
ACM 60.05 59.26 39.59
LSM 97.18 97.25 2.75
SLSM 98.29 98.67 1.33
3D-LSM 98.38 98.51 1.49
3D-SLSM 99.48 99.84 0.16
Case 3
ACM 88.34 87.56 12.44
LSM 92.80 92.64 7.36
SLSM 95.56 97.74 2.26
3D-LSM 94.61 95.41 4.59
3D-SLSM 96.11 98.63 1.37
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tumor segmentation results. *e actual cases aid in ob-
serving feasibility for various methods in clinical applica-
tions and the use of computer-simulated tumor images aided
in carrying out accurate quantitative analysis as the tumor
region is correctly defined. For the quantitative analysis to be
fairer and complete, we considered three important influ-
encing factors (the breast volume, the tumor size, and the
breast tissue type) in image segmentation for actual cases,
and made serial rational arrangements for the level of noise
density and blurring intensity in computer-simulated cases.
As the raw results from 3D segmentation are in the form of
a 3D point matrix, in order to facilitate visual observation
and comparison, the 3D point matrix after segmentation was
first processed by MCIS to construct a 3D tumor image
model. Subsequently, the standard tumor model was used
for quantitative evaluation in order to validate the perfor-
mance of various algorithms. Finally, the accuracy and error
rates of conventional ACM, 2D, and 3D-LSM, as well as
other methods were compared. *e experimental results
demonstrate that the 3D-SLSM developed in this study is not
only more accurate than existing methods and has less noise
after segmentation, but it also has the highest accuracy and
lowest false alarm rate when compared with the standard
tumor model. However, it is worth noting that 3D-SLSM
benefits as the overall 3D calculations decrease when the
level of blurring is high, resulting in its accuracy being
comparable to 2D-SLSM. When the level of blurring and
noise density is simultaneously high, the 3D shape-weighted
value cannot carry out its function, causing a decrease in
specificity.*e results of this paper may be used in the future
to aid clinical diagnosis, tracking of lesions, surgical guid-
ance, 3D shape-feature extraction, and other research.
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