
RESEARCH ARTICLE

A Novel Method for Quantifying the Inhaled
Dose of Air Pollutants Based on Heart Rate,
Breathing Rate and Forced Vital Capacity
Roby Greenwald1,2*, Matthew J. Hayat3, Jerusha Barton2, Anastasia Lopukhin2

1 Division of Environmental Health, School of Public Health, Georgia State University, Atlanta, Georgia,
United States of America, 2 Department of Environmental Health, Rollins School of Public Health, Emory
University, Atlanta, Georgia, United States of America, 3 Division of Epidemiology and Biostatistics, School
of Public Health, Georgia State University, Atlanta, Georgia, United States of America

* rgreenwald@gsu.edu

Abstract
To better understand the interaction of physical activity and air pollution exposure, it is

important to quantify the change in ventilation rate incurred by activity. In this paper, we

describe a method for estimating ventilation using easily-measured variables such as heart

rate (HR), breathing rate (fB), and forced vital capacity (FVC). We recruited healthy adoles-

cents to use a treadmill while we continuously measured HR, fB, and the tidal volume (VT) of

each breath. Participants began at rest then walked and ran at increasing speed until HR

was 160–180 beats per minute followed by a cool down period. The novel feature of this

method is that minute ventilation ( _VE) was normalized by FVC. We used general linear

mixed models with a random effect for subject and identified nine potential predictor vari-

ables that influence either _VE or FVC. We assessed predictive performance with a five-fold

cross-validation procedure. We used a brute force selection process to identify the best per-

forming models based on cross-validation percent error, the Akaike Information Criterion

and the p-value of parameter estimates. We found a two-predictor model including HR and

fB to have the best predictive performance ( _VE/FVC = -4.247+0.0595HR+0.226fB, mean

percent error = 8.1±29%); however, given the ubiquity of HR measurements, a one-predic-

tor model including HR may also be useful ( _VE/FVC = -3.859+0.101HR, mean percent

error = 11.3±36%).

Introduction
The negative health consequences related to air pollution exposure are widely acknowledged
and include cardiovascular, respiratory, and nervous system health effects [1–6]. Similarly, obe-
sity is associated with many negative health outcomes including cardiovascular disease, type 2
diabetes, several different types of cancer, and many co-morbidities [7]. Physical activity is an
important element in reducing the mortality and morbidity risks of obesity and improving
overall well-being[8–12]. Physical activity increases the ventilation rate and in the presence of
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air pollution also increases the inhaled dose of air pollution. This issue is of particular concern
in the field of active transportation (i.e., walking or bicycling), but also has implications for
occupational or recreational activity in places of poor air quality. In order to better understand
the interaction of physical activity with air pollution exposure, it is important to improve exist-
ing methods of quantifying the change in inhaled dose related to physical activity.

Numerous previous studies have examined the topic of ventilation rate and physical activity
in the context of air pollution exposure. An early investigation by Samet et al. [13,14] used

heart rate (HR) to predict minute ventilation (the rate of expired ventilation, _VE) in a panel of
58 adults and children in NewMexico who were engaged in three types of activities. They

found that though the regression of _VE to HR produced approximately parallel curves for all

subjects, there was as much as a 2–3 fold difference in _VE at the same HR between subjects.
Zuurbier et al. [15] performed the same measurements on a panel of commuters in the Nether-
lands in order to estimate differences in exposure between commute types and had very similar
findings. Bernmark et al. [16] performed these measurements on a panel of five bicycle messen-
gers in Stockholm and also found large inter-subject variability. Each of these studies demon-

strated the need to regress _VE to HR for each subject independently in order to obtain an
equation that could then be used to estimate the inhaled volume of air in an ambulatory setting.
Van Wijnen et al. [17] used a different approach to assess inhaled dose in a panel of cyclists,
drivers and pedestrians in Amsterdam: they directly measured ventilation by having subjects
exhale through a face mask connected to a gas meter. This study also found a variety of ventila-
tion rates, but the mask employed to obtain these measurements is not conducive to large-scale

field studies of persons in natural settings. Beals et al. [18] examined _VE in 160 children and

adults in California with a goal of quantifying the variability of _VE across the population. They
determined the distribution of ventilation rates for different types of activities and concluded
there was a large amount of inter-subject variability in ventilation rates based on factors such
as age, sex, and the amount of physical activity.

Two recently published studies have examined the air pollution inhaled dose in various set-

tings using similar methodology: performing measurements of _VE and HR in a controlled set-
ting, developing a regression model for each subject, then using ambulatory HR measurements

to estimate _VE and inhaled dose in a natural setting. Ramos et al. [19] estimated _VE and inhaled

dose in 20 volunteers participating in indoor physical activities by performing the _VE and HR

regression for each subject individually. Cozza et al. [20] estimated _VE and inhaled dose in an
occupational setting for two groups of participants, one group in a city street setting and the
other in a forest park setting. In this study, a linear mixed effects model with random intercepts
and slopes was developed for each group and again demonstrated the limitations of inter-sub-

ject variability in the relationship of _VE and HR.

A third recent study by Faria et al. [21] used a unique approach to estimate _VE and inhaled
dose in pedestrians with a regression model based on power expenditure. This model requires
information pertaining to pedestrian velocity and the incline gradient. Both of these predictors
must be measured using dedicated equipment. It was validated in three subjects with a percent
difference between predictions and observations ranging from 3–34%.

In light of this previous work, the purpose of this study was to develop a simple method to

easily quantify _VE based on data that is readily-available or easy to measure in the field using
inexpensive equipment. An important goal was to eliminate the need to perform a regression

of _VE and HR for each subject in a laboratory setting. The method we describe here predicts _VE

using widely-measured HR (in addition to numerous medical devices, there are many con-
sumer-grade wearable devices that measure and record HR data) and the less ubiquitous
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though still easily-measured breathing rate (or breath frequency, fB). The key novel feature of

this method is that _VE is normalized to forced vital capacity (FVC), an easily measured or esti-
mated value closely related to an individual’s functional lung volume. Since FVC is largely
determined by a person’s age, height, sex, and race, this normalization procedure facilitates
comparison of data from persons of various body morphologies and lung sizes.

Methods

Study Design
This study was approved by the Emory University Institutional Review Board. Written consent
was obtained from all participants. For participants under 18 years of age, this consisted of
written parental consent along with written assent by the subject. Subjects 18 years or older
provided their own written consent. A repeated measures study design was used. This study
was nested within a larger ongoing project examining air pollution exposure in adolescent ath-
letes, and therefore, in order to match the population of the parent study, we recruited a panel
of 15 healthy adolescents who participate in extracurricular athletic activities from a high
school in Atlanta, Georgia.

Data collection
Study participants engaged in physical activity in the form of walking and running on a tread-
mill in the high school’s indoor sports facility. A treadmill test was selected over a stationary
cycling test in the interest of similarity to the types of activities performed in the main study.
The treadmill test consisted of about a minute at rest, a minute of walking, and 4–5 minutes of
running at gradually increasing speed until HR reached 160–180 beats per minute. At this
point, subjects decreased to a jog and then a walk for a cool down period of 3–4 minutes.

During the entire treadmill test, subjects wore a chest strap with an integrated electronic
device for the continuous measurement of HR and fB as well as an accelerometer for measuring
motion (BioHarness 3, Zephyr Technology Corp.). This device measures the electrocardiogram
through two leads, and fB is measured by a chest expansion sensor, both embedded in the
strap. The BioHarness is equipped with a Bluetooth1 transmitter, and HR and fB were moni-
tored in real-time during the treadmill test by study personnel using a laptop computer.

We measured the tidal volume (VT) of each exhalation throughout the entire treadmill test
by connecting the exhalation port on a face mask (Training Mask 2.0, Training Mask) to a res-
pirometer (Wright Mark 8, nSpire Health Inc.). This model of mask fits tightly against the face
and is designed to be worn during intense physical activity. We saw no evidence of air flow
leakage around the mask even at high inspiratory or expiratory flow. We removed the resis-
tance valves that are used with this mask for training purposes, and during pre-test evaluation,
we detected little resistance to either inspiratory or expiratory flow using the mask and respi-
rometer set-up, even at high ventilation rate. Subjects were instructed to stop the test and
remove the mask immediately if they experienced difficulty breathing, though this did not hap-
pen in practice.

Both before and after the treadmill test, subjects performed three spirometry maneuvers
using a handheld spirometer (EasyOne Plus, ndd Medical Technologies Inc.) under the direc-
tion of trained study staff following the recommended procedures of the American Thoracic
Society. The forced vital capacity maneuver (FVC) was used, and measurements used for data
analysis were FVC, forced expiratory volume in one second (FEV1), and the FEV1/FVC ratio.
For all analyses, we used the data from the pre-test maneuver with the highest FVC and an
acceptable flow-volume loop.
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Data processing
The BioHarness proprietary software creates a summary file containing data with 1-second
time resolution, including HR (beats per minute), fB (breaths per minute) and an activity
parameter (ACT) equal to the vector addition of three-dimensional acceleration expressed as a
fraction of standard gravity. We then examined the respirometer data, and each time an exha-
lation was observed, the total volume of that breath (VT) was added to the summary file at the
time the exhalation began. This resulted in a new data file with 1-second time resolution con-
taining HR, fB, ACT and VT data. From this compilation, we created four time-averaged data
sets: 60-, 30-, and 15-second averages, and an “individual breath” data set of averages since the
previous breath (typically 1–7 seconds). For all data sets, each row contained the corresponding
average of HR, fB, and ACT as well as VT data. We then added several additional columns of

calculated values to the data sets, namely _VE, both _VE and VT normalized to FVC, and a dichot-
omous indicator variable labeled “warm” (for warm up or cool down) equal to zero if HR was
increasing and one if decreasing. Due to the design of the treadmill test, in most cases, HR
monotonically increased to the maximum value and then decreased during the cool down

period. It is important to point out that _VE in these data sets is calculated as VT times fB and
therefore represents the mean volumetric flow rate during the averaging period rather than the
literal volume of air inhaled in one minute.

Statistical methods

We used general linear mixed models to model the multiple _VE/FVC measurements taken on
each participant. This is an appropriate statistical model to use with repeated measures data
[22]. We included a random effect for subject to account for the multiple measurements taken
over time on each subject. To explore the sensitivity of model estimates to within-subject
covariance structure, we ran all models using variance components, compound symmetry,
unstructured, and first order heterogeneous autoregressive covariance structures. One subject

in particular appeared to exhibit increased variance in _VE at higher values, and consequently
the unstructured covariance matrix was unable to produce parameter estimates when this sub-
ject was included. Otherwise, parameter estimates were not found to be sensitive to covariance
structure. We used the PROCMIXED procedure of SAS v9.3 (SAS Institute Inc, Cary, NC)
and the lme4 package for R v3.2.0 (R Foundation for Statistical Computing) to take advantage
of both package’s respective features. Specifically, R was used to construct programming loops
to evaluate hundreds of models in a single pass during the model selection process while SAS
was used for the evaluation of covariance structures and calculation of p values for parameter
estimates. All presented model results are from SAS using the variance components structure.
The level of significance was set a priori at 0.05.

We employed a brute force method of model selection wherein all possible combinations of
predictors were evaluated. We included in the full model all measurements that could plausibly

influence _VE, namely HR, fB, ACT, warm, age, sex, body mass index (BMI), FEV1/FVC, and
height. We evaluated all models with one predictor, two predictors, and so on up to all nine
predictors for a total of 511 possible models. For a given number of predictors, we selected the
best model based on three criteria: the cross-validated percent error (described below), the
Akaike Information Criterion (AIC), and the p-value of parameter estimates. Since the goal of
this project was to develop a predictive model for estimating air pollution inhaled dose, special
consideration was given to predictors that are widely available and easily measured in the field.

A five-fold cross-validation procedure was used to assess model performance. The 15 ado-
lescent subjects were randomly divided into five groups such that each group was comprised of
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a training set of 12 subjects and a validation set of three. Parameter estimates were calculated
based on the training sets, predictions were made for the validation sets, and then the predic-
tions from all five validation sets were assembled and compared with observations. The cross-
validated percent error was calculated as (predictions-observations)/observations.

Results and Discussion

Subject characteristics
Subject information is provided in Table 1. Participants were 15–18 years of age and in good
health as might be expected of adolescents who engage in athletic training and sporting activities.
Height, weight, and BMI were normal for this age range. Three subjects reported having received
a physician’s diagnosis of asthma in their lifetime, but only one of these reported asthma symp-
toms in the previous year, and none were currently experiencing symptoms or taking asthma
medication. Lung function measurements were compared to the standards established by the
third National Health and Nutrition Examination Survey (NHANES III) [23] for the prediction
of lung function values based on age, height, sex, and race. With the exception of two subjects
(one of whom reported asthma symptoms in the previous year), FVC and FEV1 were well above
the lower limit of normal values and were 85–115% of the NHANES III predicted values.

Selection of time-base for averaged values

As oxygen demand increases during physical activity, _VE is elevated by increasing both fB and
VT. In addition, airways may begin to dynamically compress during rapid exhalation, and this

Table 1. Subject characteristics.

Age in yearsa 17.3(1.3)

Race/ethnicityb

Non-Hispanic white 11(73)

African-American 1(6.7)

Hispanic 2(13)

Asian 1(6.7)

Sexb

Male 9(60)

Female 6(40)

Height [cm]a 175(10)

Weight [kg]a 63(13)

BMIa 20.6(2.9)

Lung Functionc

FVC 4.34(0.78)

FEV1 3.80(0.61)

FEV1/FVC 0.88(0.051)

Lung Functiond

FVC 92(10)

FEV1 94(12)

FEV1/FVC 102(5.1)

a Values are mean(SD)
b Values are frequency(percentage)
c Values are mean(SD) of the measured values (in L) or ratios
d Values are mean(SD) of the percent of the NHANES III predicted values

doi:10.1371/journal.pone.0147578.t001
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stimulates termination of exhalation and initiation of the following breath [24]. This phenome-
non may manifest itself as a comparatively shallow breath followed rapidly by a larger breath.

Given that _VE is calculated as the product of VT and fB, on time scales of a few breaths or less,

this may result in a noisy _VE signal. Longer averaging times will reduce this noise, but at the

same time, true changes in HR and _VE occur on a time scale comparable to changes in activity
level and oxygen demand. Therefore, choosing an averaging time that is too long may obscure
intermediate data points and reduce statistical power. We evaluated selected models at all four
averaging times and obtained similar parameter estimates. Estimates for a model containing
HR and fB as predictors are shown in Table 2. As can be seen from these results, predictive per-
formance as assessed by cross-validation improves with longer averaging times while confi-
dence intervals broaden due to reduced statistical power, although all estimates presented in
Table 2 have p<0.0001. Given the similarity in model results across time-bases, we chose to
focus on the 30-second average data set as a compromise between the extremes, and all the fol-
lowing results are from this data set.

Model selection

Using _VE/FVC as the dependent variable, we followed a brute force process for the selection of
predictors by evaluating all 511 possible models containing from one to nine of the full set of pre-
dictors, including HR, fB, ACT, warm, age (years), sex (coded 0 for male and 1 for female), BMI,
FEV1/FVC, and height (cm). For a given number of predictors, the best model was selected based
on the cross-validated percent error, AIC values, and the p-value of parameter estimates, and the
results for models using 30-second averaged data are shown in Table 3. For models containing
between three and eight predictors, the model with the lowest percent error was not the same as
the one with the lowest AIC. In this situation, we examined the p-value of the parameter esti-
mates to determine if there was a higher degree of confidence in the estimates of a particular
model based on the cumulative p-values. In all cases, we unambiguously identified one model as
surpassing the other models for that number of predictors. By using all three of these criteria, the
brute force selection process produced a pattern identical to both a forward and backward step-
wise selection process; however, if only cross-validation percent error or AIC were independently
used as model selection criteria, both stepwise selection processes would have produced predictor
selection patterns different from each other as well as what is shown in Table 3.

This discussion of the predictor selection process is essentially moot however since, as can
be seen from the results in Table 3, addition of predictors beyond HR and fB did not improve

Table 2. Influence of averaging time on parameter estimates. For parameter estimates, the first row is the estimate, and the second row is the 95% confi-
dence interval. All have p<0.0001. Percent error refers to the difference between predictions and observations from cross validation, and values are mean
(standard deviation).

IBa 15 sec. 30 sec. 60 sec.

Intercept -4.28 -4.20 -4.25 -4.34

-5.40,-3.16 -5.35,-3.05 -5.49,-3.00 -5.73,-2.95

HR 0.057 0.060 0.063

0.054,0.062 0.051,0.064 0.051,0.068 0.051,0.075

fB 0.24 0.24 0.23 0.21

0.22,0.26 0.21,0.26 0.19,0.26 0.16,0.26

Percent error 12.3(54)% 8.9(31)% 8.1(29)% 7.2(26)%

aIndividual Breath: HR, fB, and V_ E averaged over the time interval since the previous breath (1–7 seconds).

doi:10.1371/journal.pone.0147578.t002
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predictive performance. While the addition of ACT, warm, age, sex and BMI to the model low-
ered the AIC value, it actually worsened the cross-validated percent error. In all models con-
taining both HR and fB, the p-value for these parameter estimates was less than 0.0001, and in
the case of fB, the magnitude of the parameter estimate was practically unchanged by additional

predictors. Since the dependent variable is _VE normalized by FVC, it was not surprising that
factors with a strong influence on FVC (specifically height, sex, and age) would not be effective

predictors of _VE/FVC.
The rate of change of both fB or VT may be sensitive to whether activity intensity is increas-

ing or decreasing [25]. We parameterized this effect by using the dichotomous indicator vari-
able “warm”. In a 4-parameter model, the estimate for warm was 7, suggesting that for the

same HR, fB and ACT, _VE/FVC would be a little more than half a unit higher in the cool-down
period than in the warm-up period. Although this estimate was nominally significant with a
p-value of 0.02, addition of this variable to the model slightly worsened cross-validated percent
error compared to a 3-parameter model containing just HR, fB, and ACT. In a 3-parameter
model with HR, fB, and warm, the estimate for warm is quite small (0.015) with a highly non-
significant p-value of 0.92. For these reasons, we conclude that information concerning the

direction of change of HR is not useful for predicting _VE in this population.

We additionally evaluated two other parameters that could plausibly influence _VE/FVC:
BMI and FEV1/FVC. Since it is well-known that fitness level improves lung function [26,27],

we explored its effect on _VE/FVC by using BMI as a proxy. Without exception, including BMI
as a predictor worsened predictive performance. In a 3-parameter model including HR, fB, and

Table 3. Results of general linear mixedmodels, displaying predictors included in eachmodel, parameter estimates, p-values, model AIC values,
and percent error. In all models, the dependent variable is V_ E/FVC. For parameter estimates, the first row is the estimate, and the second row is the p-value.
Percent error refers to the difference between predictions and observations from cross validation, and values are mean(standard deviation).

model 1 model 2 model 3 model 4 model 5 model 6 model 7 model 8 model 9

-3.859 -4.247 -3.782 -2.85 11.65 15.9 12.0 14.30 15.44

<0.0001 <0.0001 <0.0001 0.0019 0.0559 0.0908 0.0489 0.343 0.479

HR 0.101 0.0595 0.0531 0.0414 0.0420 0.0420 0.0418 0.0418 0.0418

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

fB - 0.226 0.229 0.227 0.229 0.228 0.227 0.227 0.227

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

ACT - - 0.490 1.29 1.23 1.24 1.26 1.26 1.26

0.0805 0.0037 0.0055 0.0053 0.0046 0.0046 0.0046

warm - - - 0.566 0.540 0.544 0.554 0.554 0.554

0.0200 0.0264 0.0253 0.0231 0.0231 0.0233

age - - - - -0.845 -0.813 -1.17 -1.20 -1.19

0.0094 0.0156 0.0022 0.0045 0.0087

sex - - - - - -0.0273 1.09 1.14 1.09

0.518 0.202 0.223 0.369

BMI - - - - - - 0.241 0.243 0.241

0.154 0.171 0.202

FEV1/FVC - - - - - - - -2.28 -2.69

0.861 0.8546

height - - - - - - - - -0.00481

0.938

AIC 1244.0 1136.8 1134.4 1130.0 1124.6 1128.7 1122.3 1115.3 1119.1

Percent error 11.3(36)% 8.1(29)% 8.3(29)% 8.5(28)% 9.5(26)% 8.8(27)% 8.9(28)% 10.4(29)% 10.3(33)%

doi:10.1371/journal.pone.0147578.t003
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BMI, the estimate for BMI was -0.064 (p = 0.71), leading us to the conclusion that BMI is not a

useful predictor of _VE/FVC in this population. A reduction in FEV1/FVC is associated with air-
way obstructions whereas airway restrictions tend to reduce both FEV1 and FVC[28]. Individu-
als with a low ratio could experience reduced VT at high fB compared to individuals with a
normal or high ratio; however, our model results do not suggest an association between FEV1/

FVC and _VE/FVC. With respect to both BMI and FEV1/FVC, an obvious limitation of this
study is that all subjects were healthy adolescent athletes with BMI and FEV1/FVC well within

the normal range, and our results therefore do not preclude the possibility that _VE/FVC may in
other populations be influenced by fitness level or airway obstructive disease. As an alternative

method for investigating the influence of FEV1, we evaluated all models using _VE normalized

to FEV1 as the dependent variable rather than _VE/FVC. The cross-validation results for these

models were essentially the same as for _VE/FVC, as might be expected since there was a very
narrow range of FEV1/FVC ratios amongst our study subjects.

Recommended model

Given these considerations, our best or most practical predictive models are model 1: _VE/FVC =
-3.859+0.101HR (with a mean percent error of 11.3±36% as shown in Fig 1) and model 2:
_VE/FVC = -4.247+0.0595HR+0.226fB (with a mean percent error of 8.1±29% as shown in Fig 2).
Although the mean cross-validated percent error is higher for model 1 than model 2, it has the
advantage of only using one predictor, HR, which is very easily measured in the field using a
wide variety of inexpensive consumer devices. Model 2 additionally requires independent mea-
surement of fB, which is easily obtained with unobtrusive devices in research studies but is
unlikely to be available in studies without dedicated equipment. As HR increases from baseline to
modest levels of physical activity, both VT and fB increase in an approximately linear fashion
with respect to HR. In this scenario, it would seem that HR alone would be sufficient to predict
_VE/FVC. As HR continues to increase during more vigorous activity, VT plateaus and _VE may
only be increased by increasing fB [24]. We examined the possibility that a one-predictor model
with HR would have a higher predictive performance at HR<120, 130 or 140; however, we did
not find this to be the case. We also examined the possibility that a one-predictor model with fB
would be advantageous, but we did not find this to be true. The results for this model are
_VE/FVC = -1.913+0.439fB (with a mean percent error of 9.7±38%). While this is marginally bet-
ter than model 1, it is not better than model 2, and it is unlikely that there will be a situation in a
field campaign where fB data is available while HR data is not.

Both models 1 and 2 require measurements of FVC in order to calculate V
:

E and inhaled
dose; however, in the absence of spirometry, reasonable estimates of FVC may be calculated for
healthy individuals using the NHANES III [23] coefficients and subject height, age, sex, and
race information. Fig 3 shows the equivalent model 2 normalized to NHANES III predicted
FVC. Although the mean cross-validated percent error is lower in this model than for model 2
normalized to measured FVC, this result is dependent on the degree to which measured FVC
matched predicted FVC in this study population.

Use for estimation of inhaled dose
As a demonstration of the practical use of this model for estimating air pollution inhaled dose,
we applied model 2 to data collected as part of the parent study of air pollution and physical
activity involving high school sports teams. We selected at random a sample day on which the
soccer team was conducting a practice on the school field while the track and field team prac-
ticed on the encircling track. Participants of both teams were simultaneously present at this
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location, and air pollution measurements were performed with 1-minute time resolution,
including the mass of particular matter less than 2.5 μm (PM2.5). Fig 4 shows the time series of
PM2.5 inhaled dose for a soccer player and a sprinter on the track team. Both subjects were
males of the same age with approximately the same height and FVC. Some minute-to-minute
changes in inhaled dose were related to changes in the PM2.5 concentration, but most were

related to changes in _VE in response to physical activity. The exposure periods were overlap-
ping, and the mean PM2.5 concentration was 3.9 μg�m-3 during the sprinter’s 105-minute expo-
sure period and 3.4 μg�m-3 during the soccer player’s 90-minute exposure period. The
corresponding exposures (concentration�time) were 413 and 420 μg�min�m-3 respectively.
Although the exposures were nearly the same, the sprinter inhaled 4.3 m3 of air while the soc-
cer player inhaled 3.4 m3, and the corresponding inhaled doses were 16.6 μg (0.19 μg/kg body
mass) and 12.3 μg (0.22 μg/kg body mass) respectively. These subjects were very active during
this period with both HR and fB at times approaching their maximum values; however, if the

Fig 1. Five-fold cross validation results for the model V
:

E/FVC = -3.859 + 0.101HR. The mean percent error for this model is 11.3±36%.

doi:10.1371/journal.pone.0147578.g001
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subjects had remained at rest during the exposure period with baseline _VE, their inhaled dose
of PM2.5 would have been 5.0 and 4.8 μg respectively, or about a third of the dose during activ-
ity. There were only slight differences in dose estimates using model 1 (with HR as the only
predictor). The model 1 inhaled dose estimate was found to be 0.6% lower for the sprinter and
2.4% higher for the soccer player.

Limitations
This study involved a panel of healthy adolescents, and therefore our results may not be gener-
alizable at the population level. Although age was not found to be an important predictor of
_VE/FVC, this may be due to the narrow age range of study participants, none of whom had yet
reached adulthood. Given that FVC steadily declines with age once adulthood is reached, it is

possible that _VE/FVC may also be affected by age in adults. Similarly, these results may not be

Fig 2. Five-fold cross validation results for the model V
:

E/FVC = -4.247 + 0.0595HR + 0.226fB. The mean percent error for this model is 8.1±29%.

doi:10.1371/journal.pone.0147578.g002
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applicable to pre-adolescent children. Although three subjects reported a history of asthma, none
were currently experiencing symptoms, and no subjects had obstructive airway disease. In an
exploratory analysis, we excluded the three subjects with a history of asthma, and the result was
not significantly different than excluding at random three subjects without a history of asthma.

Consequently, our results do not offer any insight into the role of airway disease on _VE/FVC.

Conclusion

We describe a novel method to estimate _VE for healthy adolescents using only measurements
of HR and fB. Since individuals of various sizes and fitness levels have widely varying lung

capacities, the key feature of this method is to normalize _VE by FVC. It is preferable to have
accurate and recent spirometric measurements of FVC, but in their absence, we found little

Fig 3. Five-fold cross validation results for the model V
:

E/(predicted FVC) = -4.148 + 0.0535HR + 0.221fB, where predicted FVC is calculated using
NHANES III coefficients. The mean percent error for this model is 6.0±28%.

doi:10.1371/journal.pone.0147578.g003
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difference in model predictions when using FVC predicted using NHANES III coefficients for
healthy subjects with normal lung function. A five-fold cross-validation procedure found a
mean percent error of 8.1% for a two-predictor model including HR and fB and 11.3% for a
model using HR as the sole predictor. Although additional work is needed to refine these esti-
mates and examine these associations in other populations, the method described here is a sub-

stantial improvement over existing methods for estimating _VE in natural settings. When
coupled with time-resolved air pollution measurements, this method allows estimation of the
inhaled dose of air pollution and may be particularly useful in estimating changes in inhaled
dose resulting from physical activity.

Supporting Information
S1 File. The dataset of 30-second averaged data is included in an online supplement.
(ZIP)
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Fig 4. Time-resolved inhaled does of PM2.5 for a sprinter (black line) and a soccer player (gray line) during after-school practice. The cumulative
inhaled dose was 16.6 μg for the sprinter, and 12.3 μg for the soccer player.

doi:10.1371/journal.pone.0147578.g004
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