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Abstract
Rapid environmental change is altering the selective pressures experienced by ma-
rine species. While adaptation to local environmental conditions depends on a bal-
ance between dispersal and natural selection across the seascape, the spatial scale of 
adaptation and the relative importance of mechanisms maintaining adaptation in the 
ocean are not well understood. Here, using population assignment tests, Approximate 
Bayesian Computation (ABC), and genome scans with double-digest restriction-site 
associated DNA sequencing data, we evaluated population structure and locus–envi-
ronment associations in a commercially important species, summer flounder 
(Paralichthys dentatus), along the U.S. east coast. Based on 1,137 single nucleotide 
polymorphisms across 232 individuals spanning nearly 1,900 km, we found no indi-
cation of population structure across Cape Hatteras, North Carolina (FST = 0.0014) or 
of isolation by distance along the coast using individual relatedness. ABC estimated 
the probability of dispersal across the biogeographic break at Cape Hatteras to be 
high (95% credible interval: 7%–50% migration). However, we found 15 loci whose 
allele frequencies were associated with at least one of four environmental variables. 
Of those, 11 were correlated with bottom temperature. For summer flounder, our 
results suggest continued fisheries management as a single population and identify 
likely response mechanisms to climate change. Broadly speaking, our findings sug-
gest that spatial balancing selection can manifest in adaptive divergence on regional 
scales in marine fish despite high dispersal, and that these conditions likely result in 
the widespread distribution of adaptive alleles and a high potential for future genetic 
adaptation in response to changing environmental conditions. In the context of a 
rapidly changing world, a landscape genomics perspective offers a useful approach 
for understanding the causes and consequences of genetic differentiation.
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1  | INTRODUC TION

The rapid rate of environmental change is altering the selective pres-
sures experienced by species and threatening global biodiversity 
(McCauley et al., 2015; Sala et al., 2000). Understanding species’ re-
sponses to environmental change and determining which species will 
persist into the future, and which will not, are major challenges in the 
fields of ecology and evolution. In the ocean, populations of species 
can persist by moving in response to shifting conditions, such as cli-
mate (Pinsky, Worm, Fogarty, Sarmiento, & Levin, 2013; Poloczanska 
et al., 2013), or by adapting in situ through genetic changes or pheno-
typic plasticity (Crozier & Hutchings, 2014; Hoffmann & Sgro, 2011; 
Hollander, 2008). Distinguishing between environmental-induced 
genetic adaptation and phenotypic plasticity is challenging (Merilä 
& Hendry, 2014; Reusch, 2014), but populations can respond quickly 
to environmental cues through both mechanisms (Hendry, Farrugia, 
& Kinnison, 2008; Kovach, Gharrett, & Tallmon, 2012; Miller et al., 
2012; Reznick, Bryga, & Endler, 1990; Reznick & Ghalambor, 2001). 
The means by which species respond to changing environments are 
determined by the potential for dispersal, the strength of selection, 
and the scale of environmental heterogeneity (Levins, 1968). Thus, 
understanding marine species’ responses to environmental change 
requires knowledge of how phenotypic and genotypic spatial vari-
ations are shaped by the dispersal-selection balance across the 
seascape.

Our understanding of the spatial scale of genetic mixing in ma-
rine species has been undergoing a paradigm shift. The majority of 
marine species have historically been viewed as highly connected, 
well-mixed populations by virtue of their high dispersal rates, 
lengthy pelagic larval durations, and the assumption that larvae 
act as relatively passive particles (Siegel, Kinlan, Gaylord, & Gaines, 
2003). Despite the positive correlation between pelagic duration 
and dispersal distance (Shanks, 2009), evidence has emerged that 
many wide-ranging marine species exhibit fine-scale population 
substructure at neutral loci (Benestan et al., 2015; Therkildsen et al., 
2013) or are locally adapted to their surrounding conditions at loci 
experiencing natural selection (Conover, Clarke, Munch, & Wagner, 
2006; Pespeni & Palumbi, 2013; Sanford & Kelly, 2011; Therkildsen 
et al., 2013). These lines of evidence suggest that marine popula-
tions are not as homogenous as previously thought (Hedgecock, 
1986). For instance, species occupying a wide geographic area char-
acterized by an environmental cline can become genetically matched 
to their local environment if dispersal is low enough or, alternatively, 
if selection is strong enough. Thus, spatial local adaptation (Kawecki 
& Ebert, 2004) or spatial balancing selection (Hedrick, Ginevan, 
& Ewing, 1976; Sotka, 2012; Whitlock, 2015), which is sometimes 
called spatially varying selection (Bernatchez, 2016), can result in 
genetic divergence at particular loci between populations occupying 
different habitats. This is important because, populations harbor-
ing adaptive polymorphisms across a heterogeneous landscape can 
serve as repositories of genetic variation, contributing potentially 
beneficial alleles to other populations along the cline, and enabling 
species persistence as environmental conditions shift.

Summer flounder (Paralichthys dentatus) support an economically 
important commercial and recreational fishery and inhabit estuarine 
and continental shelf waters characterized by environmental dif-
ferences from Nova Scotia, Canada to Florida, USA. In particular, 
the warm Gulf Stream flows northward from Florida, hugging the 
coast until it spirals offshore at Cape Hatteras, North Carolina, cre-
ating a steep thermal gradient. Summer flounder exhibit a seasonal 
inshore–offshore migration pattern. Adults and juveniles reside in 
shallow coastal and estuarine waters during the summer months 
before moving offshore in the fall and early winter, when spawn-
ing occurs. Both adult and juvenile fish remain on the continental 
shelf throughout the winter and then return to coastal and estua-
rine waters in the late spring to early summer (O’Brien, Burnett, & 
Mayo, 1993; Packer et al., 1999). Overfishing of summer flounder 
resulted in a sharp population decline in the late 1980s and early 
1990s, prompting severe fishing restrictions and conservation mea-
sures to improve stock abundance (Terceiro, 2011). Today, the sum-
mer flounder stock has been successfully rebuilt and is managed as 
a single population with state allocations of fisheries quota based on 
the 1980s population distribution. The center of summer flounder 
abundance lies offshore of the Mid-Atlantic states, between Cape 
Cod, Massachusetts and Cape Hatteras, North Carolina (Packer 
et al., 1999). Recent studies have suggested that summer flounder 
biomass has shifted within the Mid-Atlantic, due either to changing 
climate (Nye, Link, Hare, & Overholtz, 2009; Pinsky & Fogarty, 2012) 
or as a response to fishing pressure (Bell, Richardson, Hare, Lynch, & 
Fratantoni, 2014). Regardless of mechanism, shifts in summer floun-
der biomass have management consequences because of a growing 
mismatch between state allocations in quota and the geographic 
distribution of summer flounder biomass. Even though some fish-
eries can track shifting species, the disparity between the locations 
of fish and fishermen is likely to have socioeconomic consequences 
(Pinsky & Fogarty, 2012). The situation may be further complicated 
if population genetic structure exists, as state allocations would be 
affecting different spawning stocks.

Past studies on population structure in summer flounder have 
found differences in allozymes, morphology, meristic traits, and 
timing of shallow water ingress between individuals caught north 
and south of Cape Hatteras, suggesting the existence of multiple 
spawning stocks, or subpopulations (Able, Matheson, Morse, Fahay, 
& Shepherd, 1990; Able et al., 2011; Burke, Monaghan, & Yokoyama, 
2000; Kraus & Musick, 2000; Van Housen, 1984). However, another 
study found no genetic differentiation between supposed subpopu-
lations after examining mitochondrial DNA (Jones & Quattro, 1999), 
so summer flounder population substructure remains equivocal. 
With the increasing ease of sampling hundreds to thousands of loci 
across the genome, reduced representation sequencing in summer 
flounder can provide a more robust estimate of population struc-
ture, as well as assess genetic variation across spatially divergent 
environmental conditions.

In this study, we use double-digest restriction-site-associated 
DNA (ddRAD) sequencing to generate 1,137 single nucleotide 
polymorphisms (SNPs) genotyped in 232 adult summer flounder 
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individuals captured along the U.S. east coast. Using these data, 
we address two questions: (i) Do summer flounder exhibit pop-
ulation structure and (ii) are there particular loci that suggest lo-
cally divergent environmental selection? Our results contribute to 
a growing number of studies suggesting that a balance between 
multiple evolutionary forces shapes the genetic makeup of marine 
populations and that understanding these forces is important for 
the persistence and management of species under future climate 
change.

2  | METHODS

2.1 | Sample collection

Regional bottom trawl surveys in 2013–2014 collected adult 
summer flounder from Massachusetts to Florida (Table 1 and 
Figure 1): the Southeast Area Monitoring and Assessment 
Program (SEAMAP; n = 123) during Fall 2013 – Spring 2014 and 
the Northeast Fisheries Science Center Fall Bottom Trawl Survey 
(NEFSC FBTS; n = 153) during Fall 2014. These were augmented 
by specimens collected by the North Carolina Department of 
Natural Resources (NCDNR; n = 30) from recreational anglers fish-
ing on artificial reefs during summer 2014. Total length of speci-
mens ranged from 17.4 to 76.5 cm, with an average of 39.3 cm 
and a median of 38.6 cm. All individuals from the NEFSC FBTS 
were classified as mature, but information on maturity was not 
available for the SEAMAP nor NCDNR individuals. Previous pub-
lished estimates of median length of maturity for summer flounder 
range from 28 to 32 cm for females and 24.9 to 28.9 cm for males 
(Morse, 1981; O’Brien et al., 1993; Wenner et al., 1990). Based 
on these estimates, some SEAMAP and NCDNR individuals may 
have been immature, but mature and immature summer flounder 
move offshore and overwinter together (Packer et al., 1999). For 
all samples (n = 306), a small muscle tissue plug and/or fin clip 
was removed and preserved in 95% ethanol. Tissue and fin clips 
were taken upon capture for NEFSC FBTS and NCDNR specimens. 
SEAMAP specimens were shipped frozen to Rutgers University, 
where tissue and fin clip samples were taken after thawing. All tis-
sue and fin clip samples were held at -20°C until DNA extraction.

2.2 | DNA extraction

To extract whole genomic DNA from adult summer flounder, 
≤ 20 mg of muscle tissue or fin was lysed, and DNA was washed 
and eluted using DNeasy 96 Blood & Tissue Kits (QIAGEN; Hilden, 
Germany) and the manufacturer’s recommended protocols. DNA ex-
tracts were visualized on 2% agarose gels to assess quality and were 
subsequently quantified using PicoGreen (Thermo Fisher Scientific, 
Waltham, MA, USA) and a SpectraMax M3 Microplate Reader 
(Molecular Devices; Sunnyvale, CA, USA).

TABLE  1 Sampling year, season, source, latitudinal range, sample size, and range of total lengths (TL) for each collection of adult summer 
flounder. The range of total lengths reflects available data for each collection

Year Season Source Latitudinal range (°) N TL Range (cm)

2013 Fall Southeast Area Monitoring & Assessment Program 
(SEAMAP)

28.96–35.20 54 25.3–40.0

2014 Spring Southeast Area Monitoring & Assessment Program 
(SEAMAP)

31.83–35.19 69 17.4–43.1

2014 Summer North Carolina Department of Natural Resources 
(NCDNR)

34.56–34.70 30 38.7–48.3

2014 Fall Northeast Fisheries Science Center (NEFSC) 
Fall Bottom Trawl Survey

36.41–41.55 153 35.5–76.5

F IGURE  1 Sampling locations of adult summer flounder 
(n = 306) from bottom trawl surveys and recreational sampling 
along the U.S. east coast. Circle area reflects sampling size at each 
location. Important geographic and oceanographic features are also 
noted. The * indicates the location (28.3849, -80.5463) from which 
“distance along the coast” was calculated for locus–environment 
associations

Gulf Stream
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2.3 | Library preparation and sequencing

Summer flounder ddRAD libraries were prepared according to a 
protocol adapted from Peterson, Weber, Kay, Fisher, and Hoekstra 
(2012). In brief, successful extracts were digested in 50 μl reactions 
using PstI and EcoRI restriction enzymes for 4 hr at 37°C. Digested 
samples were cleaned with AMPure beads (Beckman Coulter; 
Brea, CA, USA) to remove small DNA fragments less than 100 
base pairs (bp) in size and any remaining proteins, including restric-
tion enzymes. Cleaned digestions were then quantified again with 
PicoGreen and a SpectraMax M3 Microplate Reader. High-quality 
digested samples were sorted by DNA quantity and grouped into 
pools of up to 48 individual samples for ligation of P1 adapters con-
taining unique 6-nucleotide barcodes and a P2 forked adapter. P1 
adapters were designed to adhere to the sticky end left by PstI while 
the P2 adapter was designed to ligate to the overhang left by EcoRI. 
Each sample grouped into a pool was individually ligated using X ng 
of digested DNA in 30 μl reactions, where X was 10-200, depend-
ing on the pool. Ligation reactions occurred at 25°C for 1.5 hr, after 
which the enzyme was heat-killed at 65°C for 10 min, followed by a 
decrease of 2°C every 90 s until room temperature was achieved. 
Ligated samples were then pooled and cleaned twice with AMPure 
beads. Pooled samples were size selected to 273 ± 27 bp using a 
Pippin Prep (Sage Science; Beverly, MA) and then amplified with PCR 
using read 1 and read 2 primers (Table S1) designed to only amplify 
DNA with both P1 and P2 adapters. Read 2 PCR primers contained 
one of 12 Illumina indices so that pools could be distinguished from 
one another. AMPure beads were used to clean away extraneous 
proteins and small-sized DNA. Qubit Fluorometric Quantitation 
(Thermo Fisher Scientific; Waltham, MA, USA) was used to quantify 
the final concentration of each pool. An initial 10 nM library com-
posed of two pools containing 20 individuals each was sent to the 
Rutgers Genome Cooperative (New Brunswick, NJ, USA) for 200 bp 
single-end sequencing on the Illumina Miseq platform. A subsequent 
10 nM library of five pools containing 48 individuals each was sent 
to the Princeton Core Facility (Princeton, NJ, USA) for 141 bp single-
end sequencing on a single lane run using the Illumina HiSeq 2500 
platform. In total, we sequenced of 280 adult summer flounder.

2.4 | Bioinformatics and genotyping

To distinguish between pooled libraries, sequenced reads were de-
multiplexed by Illumina index using a Python script adapted from 
FASTX Barcode Splitter in the FASTX toolkit programs (Gordon, 
2011). To determine reads from particular individuals, sequenced 
reads were further demultiplexed by barcode and cleaned using 
process_radtags in STACKS v.1.29 (Catchen, Hohenlohe, Bassham, 
Amores, & Cresko, 2013). Next, sequences were run through the 
dDocent v. 2.14 pipeline (Puritz, Hollenbeck, & Gold, 2014), an 
analysis software for ddRAD sequencing data that trims, assembles, 
maps, and calls SNPs. In brief, using default dDocent settings unless 
otherwise noted, reads were trimmed for quality using TrimGalore! 
De novo single-end assembly of reference sequences was performed 

with Rainbow using alleles with a minimum within-individual cov-
erage level of 2.5 and a minimum occurrence in 15 individuals. 
Reference sequences with ≥90% similarity were clustered together 
with CD-HIT. Individual quality-trimmed reads were then mapped 
to the reference sequences using BWA, and SNPs were identified 
with FreeBayes.

Variant SNPs that were successfully genotyped in at least 50% 
of individuals with a minor allele count of at least three were re-
tained in the analysis. To remove individuals that did not sequence 
well, any genotypes with fewer than three reads were recoded as 
“missing.” About 15% of individuals with the most missing data, 
corresponding to individuals with more than 77% missing data, 
were discarded. This filter left 241 of 280 individuals for further 
analysis. Data were then restricted to variants occurring in 95% 
of individuals with a minor allele frequency (MAF) of 0.05 and a 
minimum mean depth of 20. Further filtering was conducted using 
a filtering script distributed with dDocent that filters reads based 
on allele balance, locus quality, mapping quality, depth, and strand 
representation. First, variable sites were removed if the average 
allele balance at heterozygous genotypes was less than 25%, the 
ratio of quality score to depth was less than 0.2, and the ratio be-
tween the mean mapping quality of the alternate and reference al-
leles was less than 0.25 or more than 1.75. The average depth and 
standard deviation were then calculated across all individuals for all 
remaining sites. Sites with depths greater than the average depth 
plus one standard deviation were removed if the quality score was 
less than double the depth. At last, to filter out sites with unrea-
sonably high mean depth, we calculated mean depth and kept the 
lower 95% of the distribution, corresponding to a mean depth of 88 
or less. Indels were then removed, and only the first SNP at each 
contig was retained to help ensure an unlinked dataset. Hence, we 
will hereafter refer to these SNPs as loci.

From initial investigations of the dataset, we discovered 10 
very closely related summer flounder based on Rousset’s dis-
tance that were caught in the same tow. No other tow exhibited 
a similar degree of genetic similarity. These fish were not siblings 
based on analysis in COLONY v.2.0.6.3 (Jones & Wang, 2010), 
but could be the result of cross-contamination in the trawl net. 
We excluded 9 of 10 of these individuals for the analyses pre-
sented in the paper, but also tested whether our findings were 
sensitive to this choice by performing the analyses with all indi-
viduals included. Even with all individuals included, we found no 
genomewide population structure and the majority of candidate 
loci were associated with bottom temperature (Figure S1 and 
Table S2). Overall, our filtering resulted in 1,137 loci across 232 
individuals for analysis.

2.5 | Identifying population structure

We used three approaches to investigate spatial genetic structure 
in our summer flounder dataset: principal component analysis (PCA) 
followed by two analyses using Bayesian clustering algorithms imple-
mented in the STRUCTURE and Geneland programs. We performed 
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PCA using the adegenet v. 2.0.0 (Jombart, 2008) and ade4 v.1.7-2 
packages (Chessel, Dufour, & Thioulouse, 2004) in R version 3.2.2 
(R Core Team 2015), and any missing data (0.57%) were interpolated 
using mean allele frequency.

Next, we used STRUCTURE v.2.3.4, a Bayesian clustering al-
gorithm that is not dependent on location information (Pritchard, 
Stephens, & Donnelly, 2000), to identify the number of putative 
populations. In STRUCTURE, we used a burn-in of 10,000 itera-
tions followed by an additional 200,000 Markov chain Monte Carlo 
(MCMC) steps assuming admixture and correlated allele frequency 
models with prior sampling location information (Hubisz, Falush, 
Stephens, & Pritchard, 2009). We selected the admixture and cor-
related allele frequency models because they are considered to 
be the best when subtle population structure is expected (Falush, 
Stephens, & Pritchard, 2003). We initially analyzed all available 1,137 
loci, and then subsequently analyzed the 1,005 that remained after 
removing loci not in Hardy–Weinberg proportions (HWP; p < 0.01, 
exact test). Loci not in HWP were identified with the pegas v. 0.10 
package (Paradis, 2010) in R. We ran 10 replicates of K from 1 to 5, 
where K is the number of population clusters, for each set of loci and 
checked for parameter stabilization using the burn-in and MCMC 
lengths above.

To determine the optimal K, the 10 STRUCTURE replicates for 
each K were packaged and input into STRUCTURE HARVESTER, 
a web-based program that facilitates visualization of STRUCTURE 
output and selection of the optimal K (Earl & VonHoldt, 2012). The 
mean likelihood values (L(K)), as well as ΔK, a second order rate of 
change of L(K) with respect to K, were used to determine the optimal 
number of populations. The ΔK method of determining the optimal K 
corresponds to the true value of K more often than the L(K) method, 
but it cannot evaluate scenarios when K = 1, limiting its usefulness 
when a single population exists (Evanno, Regnaut, & Goudet, 2005). 
To visualize the percent assignment of each individual into the pu-
tative populations, output from STRUCTURE HARVESTER was fed 
into CLUMPP, a program that averages the mean of the posteriors 
from multiple runs of the optimal K (Jakobsson & Rosenberg, 2007). 
At last, these averaged posterior means were plotted using Distruct 
(Rosenberg, 2004).

As different Bayesian clustering methods can produce different 
results (Frantz, Cellina, Krier, Schley, & Burke, 2009), we also used 
the Geneland v.4.0.7 package in R (Guillot, Mortier, & Estoup, 2005) 
to avoid drawing conclusions with potentially important conserva-
tion implications on a single analysis. Geneland is a Bayesian cluster-
ing program that utilizes geo-referenced multi-locus genetic data to 
determine population structure. Latitude and longitude were con-
verted to UTM and standardized to zone 18. With the full dataset 
of 1,137 loci in 232 individuals, we used 100,000 MCMC iterations 
thinned to every 100th iteration, allowed the number of K clusters 
to vary between 1 and 10 and applied the spatial method with the 
uncorrelated frequency model. We then performed an additional 
analysis using the correlated frequency model and examined how 
the posterior distribution changed (as suggested by the Geneland 
manual).

2.6 | Isolation by distance

Pairwise genetic differences among 232 individuals using 1,137 
loci were calculated using Rousset’s distance (Rousset, 2000) in 
SPAGEDI (Hardy & Vekemans, 2002):

where Rousset’s distance (ar) is the difference between the proba-
bility of identity of two genes within an individual (Qw) and the prob-
ability of identity of two genes at some geographic distance r (Qr), 
divided by the probability of two genes not being identical within 
an individual. A corresponding matrix of geographic differences 
between individuals was calculated using least cost path analysis 
constrained to the continental shelf at the 200-meter isobath in the 
marmap v.0.9.6 package (Pante & Simon-Bouhet, 2013) in R.

A Mantel test was performed to compare pairwise genetic dis-
tances against geographic distances. The Mantel analysis was con-
ducted with the R package ade4 v.1.7-2 (Chessel et al., 2004) using 
10,000 permutations to test for correlation between Rousset’s ge-
netic distance and geographic distance in kilometers.

2.7 | Estimating dispersal

To better translate our genetic structure data into inferences about 
ecological processes, we estimated the dispersal rate across Cape 
Hatteras, North Carolina, a putative zoogeographic barrier for this 
species, using Approximate Bayesian Computation (ABC). ABC is a 
powerful statistical framework that can be used to estimate demo-
graphic and evolutionary parameters from large genomic datasets 
without explicitly calculating a likelihood function (Tavaré, Balding, 
Griffiths, & Donnelly, 1997; Beaumont, Zhang, & Balding, 2002 
and reviews by Bertorelle, Benazzo, & Mona, 2010; Csilléry, Blum, 
Gaggiotti, & François, 2010). In brief, a large number of simulations 
are performed, with parameters being drawn from a probability dis-
tribution. The simulated genetic data are then reduced to summary 
statistics. Next, the simulated summary statistics are compared to 
the observed statistics and a metric of distance is calculated for each 
simulation. The associated demographic parameters for each simu-
lation are then either accepted or rejected based on their distance 
metric, yielding simulations and associated parameters whose sum-
mary statistics most closely match those of the observed data.

To estimate dispersal across Cape Hatteras, a putative zoo-
geographic barrier for summer flounder, we first grouped our 
232 individuals into populations occurring north (n = 135) or 
south (n = 97) of Cape Hatteras, North Carolina. We limited our 
ABC analysis to the 663 loci (out of 1,137) with no missing data 
across all individuals. We then summarized these observed ge-
netic data by computing the joint site frequency spectrum (SFS). 
Fastsimcoal2 (Excoffier, Dupanloup, Huerta-Sánchez, Sousa, & Foll, 
2013) was used to generate 100,000 coalescent simulations of a 

ar=
Qw−Qr

1−Qw
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simple demographic model consisting of dispersal between two 
populations. Population effective sizes north and south of Cape 
Hatteras (POPONE and POPTWO, respectively) were drawn from 
log-uniform distributions from 100 to 100,000. Dispersal between 
these two populations (DISP) was measured as the probability of 
an individual dispersing to the other population, and this proba-
bility was drawn from a uniform distribution from 0 to 0.5. As low 
frequency SNPs were discarded during the bioinformatics process, 
the observed data had a MAF cutoff of 0.043. To match that of 
the observed data, simulated SNPs with a MAF of < 0.043 were 
also removed. We then downsampled the simulated loci to 663 and 
computed the joint SFS for each simulation.

There is still debate about how many summary statistics are ap-
propriate for ABC analysis. Using too few summary statistics is likely 
to bias ABC estimates (Beaumont et al., 2002; Marjoram, Molitor, 
Plagnol, & Tavare, 2003), but highly dimensional datasets can also 
reduce the accuracy of estimation (Blum, 2010). We chose to reduce 
the dimensionality of our data with PCA. To avoid computational 
limits, the initial 10,000 simulations were used to define PCA axes in 
R using the prcomp function and the remaining 90,000 simulations 
and the observed data were projected onto these PCA axes. We ex-
amined the robustness of ABC parameter estimates based on the 
number of summary statistics used and found that the number of 
summary statistics employed had little effect on dispersal parame-
ter estimation (Table S3). As we wished to maximize the proportion 
of variance explained in the data, we present results that retained 
all 10,000 principal components as summary statistics in the ABC 
analysis.

Approximate Bayesian Computation model selection was per-
formed using the abc package (Csilléry, François, & Blum, 2012) in R. 
Using simple rejection sampling, we accepted the 500 (0.5%) simu-
lations with the shortest Euclidean distance between the simulated 
and observed summary statistics (the PCA-projected SFS). Using the 
density function in R, we plotted the posterior probability distribu-
tions comprised of these retained simulations for each parameter. 
The POPONE and POPTWO parameters were log10-transformed 
for plotting. This allowed us to estimate our parameters of inter-
est (POPONE, POPTWO and DISP) and to determine the degree to 
which summer flounder were panmictic.

2.8 | Environmental associations using BayEnv 
2.0 and redundancy analysis

To examine the possibility of locally divergent selection in sum-
mer flounder across the species range, we used two methods to 
identify correlations between allele frequencies and each of four 
environmental variables: distance along the coast, depth of sam-
pling location, bottom temperature, and bottom salinity. The first 
method was a univariate Bayesian method by Coop, Witonsky, Di 
Rienzo, and Pritchard (2010) implemented in BayEnv 2.0 (Günther 
& Coop, 2013). Unlike Fst outlier tests, BayEnv 2.0 does not assume 

samples are evolutionarily independent, which can help account for 
shared demographic history. To do this, a background covariance 
matrix is calculated to help control for nonindependence between 
closely related populations. As a result, BayEnv 2.0 is more robust 
at determining genetic loci under selection in isolation by distance 
and range expansion scenarios (Lotterhos & Whitlock, 2014). Next, 
a Bayes factor (BF) is estimated for each locus as a measure of 
association strength between allele frequency at each locus and 
an environmental variable while accounting for the background 
covariance.

We used the same 232 summer flounder as for the ABC analysis, 
but divided individuals into five groups for BayEnv 2.0 analysis based 
on the following geographic boundaries: Atlantis Canyon, Hudson 
Canyon, Cape Hatteras, and Cape Fear (Figure 1). These geographic 
features were hypothesized as possible limits to dispersal of sum-
mer flounder. This division resulted in n = 40, 54, 41, 60, and 37 in-
dividuals in each group, respectively, from north to south. Distance 
along the coast (Figure 1) was calculated for each individual using 
the “Law of cosines” great-circle distance in the GEOSPHERE v.1.5-1 
package (Hijmans, 2015) in R. Environmental variables for each indi-
vidual within a group were averaged and then standardized across 
populations, as recommended by Coop et al. (2010). For individual 
fish for which environmental variables were lacking, environmental 
data from nearby NOAA trawls occurring during a similar time pe-
riod were used.

To create the background covariance matrix, loci not in HWP 
according to the pegas v.0.10 package (Paradis, 2010) in R were 
first removed (p < 0.01, exact test), leaving 1,005 loci with which 
to estimate covariance between populations. BayEnv 2.0 estimates 
the covariance matrix using 100,000 MCMC iterations, thinned to 
every 500th step. The covariance matrices from the last 40 thinned 
MCMC iterations were averaged to create the background covari-
ance matrix.

All 1,137 loci were examined separately for associations 
with standardized environmental variables using 500,000 it-
erations for each locus. BayEnv 2.0 was run 10 times to check 
for consistency between independent runs, as MCMC methods 
can be sensitive to initial conditions (Blair, Granka, & Feldman, 
2014). The median Bayes factors (BFs) across the 10 runs were 
computed for each variable, with median BFs > 3 considered as 
suggestive of divergent environmental selection (Kass & Raftery, 
1995). The significance of locus–environment associations iden-
tified by BayEnv 2.0 was tested using 10 random permutations 
of the environmental data. Each permuted environmental dataset 
was averaged and then standardized across the original BayEnv 
2.0 populations. A BayEnv 2.0 analysis was then conducted using 
each environmental dataset and the median BF across 10 runs for 
each environmental variable was calculated. We then averaged 
the median BFs for each locus across the 10 permutations to ob-
tain the number of BFs > 3 that would be expected under this null 
model of no association.
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The second method used to identify potential loci experiencing 
environmental selection was redundancy analysis (RDA), a multivar-
iate, ordination-based method that summarizes the variation in a set 
of response variables that can be explained by a set of explanatory 
variables. In this case, allele frequencies comprise the response 
variables and the environmental data are the explanatory variables. 
Forester, Jones, Joost, Landguth, and Lasky (2016) used simulations 
to demonstrate that multivariate methods have high power to de-
tect locally adapted loci and that these methods maintain low false-
positive rates under a variety of scenarios with differing amounts 
of dispersal, selection, and habitat patchiness. To perform RDA, we 
used the vegan 2.4-1 package (Oksanen et al., 2016) in R on stan-
dardized environmental data and a centered allele frequency dataset 
containing only a single allele at each of 1,137 loci across our 232 
summer flounder adults. Similar to PCA, any missing data were inter-
polated using mean allele frequency. Potential outlier loci were iden-
tified as loci with scores ± 3 standard deviations from the mean axis 
score for each of the first three constrained axes. Potential outlier 
loci were then tested for association with environmental variables 
by regressing allele frequencies against each environmental variable 
and calculating the correlation coefficient. We set the cutoff for a 
significant relationship at p-value < 0.001. To test the significance 
of locus–environment associations identified by RDA, we random-
ized the environmental data 10,000 times and identified outliers and 
associations with the environment as described above. In addition, 
we relaxed the assumption of linearity by fitting generalized additive 
models (GAMs) between the RDA outlier loci and each environmen-
tal variable. We looked for significant locus–environment associa-
tions (p-value < 0.001) in the same way as for the linear models.

We used BLAST annotation to explore the gene function of 
contigs containing environmentally associated loci from both the 
BayEnv 2.0 and RDA analyses using the megablast and blastx al-
gorithms with the nucleotide collection (nr/nt) and nonredundant 

protein sequences (nr) databases, respectively. We also used the 
megablast algorithm against the Paralichthys olivaceus genome.

3  | RESULTS

3.1 | Genotyping results

Sequencing of 280 individuals resulted in a total of nearly 158 million 
reads. Demultiplexing of raw reads using Illumina indices resulted in 
143.1 million reads. The average number of quality filtered reads per 
individual was 511,179 ± 294,522 reads (mean ± standard deviation). 
The dDocent pipeline identified 89,549 unique contigs, with an aver-
age per nucleotide read depth greater than 39X. Contig sequences 
with ≥90% similarity were clustered together, resulting in a de novo 
reference assembly of 46,894 contigs. From this, 313,477 putative 
SNPs were identified throughout the summer flounder genome. 
After applying our different filtering steps, 1,137 highly informative 
loci across 232 individuals were retained for subsequent analysis.

F IGURE  2 Principal component analysis plot of 232 individuals 
at 1,137 loci. Color indicates latitude

F IGURE  3 Bayesian clustering assignment implemented in STRUCTURE using the full dataset of 1,137 loci (upper panel) and 1,005 loci 
passing HWP filters (lower panel), with colors indicating clusters, or populations. Using all 1,137 loci, the optimal number of clusters was 
K = 2 (upper panel). The optimal number of clusters using 1,005 loci that passed HWP filters was K = 2 (lower panel). Taken together, we 
interpret these analyses as a lack of population structure in summer flounder
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3.2 | Identifying population structure

The PCA of 1,137 loci sampled from 232 summer flounder adult in-
dividuals revealed no distinctive population structure along the U.S. 
east coast between Massachusetts and Florida (Figure 2). The first 
and second principal components explained 1.42% and 1.18% of the 
variance, respectively.

Analysis in STRUCTURE revealed minimal population structure, 
with no clear geographic boundaries. After testing K = 1 to K = 5, 
both the mean likelihood values (L(K)) and the Evanno method (ΔK) 
suggested two clusters (K = 2) regardless of the set of loci (all 1,137 
or 1,005 passing HWP filters) used in the analysis (Figures 3 and S2). 
We initially used all available 1,137 loci to assign 232 individuals to 
populations. We did this to avoid prematurely removing loci poten-
tially contributing to population structure. We then removed 132 
loci not in HWP and performed an additional STRUCTURE analy-
sis using the 1,005 loci that passed HWP filters, as is more typical 
of population assignment analyses. Even though K = 2 using the 
full dataset of 1,137 loci and the subset of 1,005 loci that passed 
HWP filters, we interpreted these STRUCTURE analyses as a lack 
of population structure in summer flounder because individuals did 
not group into separate populations, but were instead admixed at 
approximately the same proportions.

Geneland analysis using the uncorrelated frequency model indi-
cated greatest posterior density at one cluster (K = 1). The correlated 
frequency model in Geneland is better at detecting subtle population 
structure, but is more prone to instability and sensitive to departure 
from model assumptions. The correlated frequency model had great-
est posterior density at K = 10, but clustering was not geographically 
related. In comparison with the uncorrelated frequency model, we 
interpreted the correlated frequency model results as model overfit-
ting due to the limitations of the correlated frequency model. Thus, 
we conclude that Geneland analyses also suggest a single population 
in summer flounder (Figure S3).

3.3 | Isolation by distance

We found no detectable relationship between geographic distance 
and genetic distance, as measured by Rousset’s distance (ar), across 
232 individuals genotyped at 1,137 loci (r = 0.026; Mantel test 
p > 0.86; Figure 4). Distant summer flounder were as genetically 
similar as those nearby to each other.

3.4 | Estimating dispersal

Approximate Bayesian Computation analysis revealed that effective 
population size both north and south of Cape Hatteras (POPONE & 
POPTWO) and the dispersal rate between these two groups (DISP) 
are unlikely to be small (Figure 5 and Table 2). The 95% credible inter-
val bounds for effective population size north of Cape Hatteras were 
935 and 95,126 individuals, while those south of Cape Hatteras were 
1,056 and 92,491 individuals. The 95% credible interval bounds for 
the dispersal rate across Cape Hatteras were 0.071 and 0.496. Given 

the observed data, there is a 95% probability that the true dispersal 
rate is greater than 0.071.

3.5 | Environmental associations

Our summer flounder samples were distributed over a wide geo-
graphic area, characterized by gradients of environmental variables 
(Figures S4 and S5). BayEnv 2.0 analyses revealed that 14 of 1,137 
loci (Table 3; Figure S6) had strong positive associations with at least 
one environmental variable (median BF > 3). In total, bottom tem-
perature was correlated with 10 loci, the greatest number for any 
environmental variable tested. Distance along the coast was corre-
lated with nine loci, and both depth and bottom salinity with six loci. 
Analysis of randomized environmental data in BayEnv 2.0 identified 
that our null expectation should be five loci associated with depth, 
four with bottom salinity, two with bottom temperature, and one with 
distance. For each environmental variable, we found the empirical 
cumulative observed distribution of BFs to be significantly different 
than the permuted distribution (two-sample K-S test; p < 0.00001; 
Figure S7). We also binned BFs to determine if the observed number 
of BFs > 3 was greater than would be predicted by chance alone 
for each environmental variable (Figure S8). There were significant 
differences between the number of BFs > 3 for distance and for bot-
tom temperature (binomial exact test, p < 0.0001), but no significant 
differences for depth or for salinity (binomial exact test, p > 0.05). 
Regarding these differences, there were both a greater number of 
high locus–environment R2 values and a greater proportion of sig-
nificant BFs by chance for some environmental variables, and this 
tended to occur for environmental variables with fewer unique val-
ues (depth and bottom salinity). The standard error of the expected 
proportion of significant BFs decreased with increasing number of 
unique environmental values, resulting in greater power to detect 
nonrandom locus–environment associations for variables with larger 

F IGURE  4  Isolation by distance of 232 individuals using 
Rousset’s distance for genetic distance and least cost path analysis 
constrained to the continental shelf for geographic distance. 
Pairwise comparisons of individuals captured in the same tow have 
geographic distances of zero
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numbers of unique values (distance and bottom temperature; Figure 
S9).

RDA identified 23 outlier loci, of which four were significantly 
(p < 0.001) associated with one or more environmental variables 
(Figure 6 and Table 4). Five locus–environment associations were 
detected: bottom salinity was correlated with two loci, and bottom 

temperature, distance and depth were each associated with one. 
The GAMs identified the same five locus–environment associa-
tions (Figure S10). Three of the four spatially divergent RDA can-
didate loci also emerged as candidates in the BayEnv 2.0 analysis 
(contigs 8420, 35399 and 54409). Although the total number of 
RDA outliers we identified was to be expected under a null model 
(p = 0.362; Figure S11A), the number significantly associated with 
an environmental variable was not. We identified five significant 
locus–environment associations using RDA and regression, and 

this was unlikely to occur under a null model (p = 0.044; Figure 
S11B).

Using BayEnv 2.0 and RDA, we identified a total of 15 loci 
whose allele frequencies were regionally differentiated and 
strongly associated with environmental variables (Table S4). 
BLAST annotation of these 15 candidate loci using the megablast 

F IGURE  5 Posterior probability distributions of (a) effective population size north of Cape Hatteras (POPONE), (b) effective population 
size south of Cape Hatteras (POPTWO), and (c) dispersal rate between north and south of Cape Hatteras (DISP). Prior distributions (gray 
dashed lines) and posterior distributions (solid black lines) demonstrate that the summary statistics were relevant to parameter estimation. 
Effective population size estimates are in log10 and vertical black lines indicate posterior modes

TABLE  2 Prior and posterior distributions of parameters 
estimated using ABC analysis

Parameter Prior Mode 95% CI

Ne north of Cape 
Hatteras: POPONE

logunif (10, 
100,000)

29,888 935–95,126

Ne south of Cape 
Hatteras: POPTWO

logunif (10, 
100,000)

40,710 1056–92,491

Dispersal rate between 
populations: DISP

unif (0, 0.5) 0.43 0.071–0.496

TABLE  3 Median Bayes factors (BF) for locus–environment associations suggestive of local adaptation (BF > 3) after ten independent 
BayEnv 2.0 runs. BF values are printed

Environmental variables

Contig number Variant BP Distance along the coast Depth Bottom temperature Bottom salinity

2558 83 3.84

8420 14 8.85 6.85 6.9

15075 20 8.75 6.41 10.59

27738 24 3.49 3.65 3.41

31661 32 4.58 5.04

35399 131 3.11 3.82

37577 42 3.25

38595 30 3.68

42485 39 4.16 3.35 3.21

42614 134 6.84 4.79 4.44 9.6

54409 32 3.25 9.86

61273 27 4.09 5.09 3.13

69416 44 3.14 5.11

75053 12 3.18
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and blastx algorithms revealed several strong matches (e-value 
≤ 1E-4) with fish species (Table S5). Six of the candidate loci 
with strong matches aligned closely with the olive flounder 
(Paralichthys olivaceus) genome and have putative functions asso-
ciated with calcium binding, metal binding, demethylation, tran-
scription, and transmembrane proteins. BLAST annotation against 
the Paralichthys olivaceus genome also returned many annotated 
genes that were either embedded within or adjacent to candidate 
loci (Table S5).

4  | DISCUSSION

Marine populations were often assumed to be homogenous be-
cause there are few apparent barriers to dispersal, but recent evi-
dence instead suggests that dispersal is often highly constrained. 
Using 1,137 loci genotyped in 232 adult summer flounder along 
nearly the entire U.S. east coast, we found that these fish com-
prise a single ecological population with no indication of isolation 
by distance. However, summer flounder reside across wide envi-
ronmental gradients, and we also found genomic signatures sug-
gestive of divergent environmental selection on regional scales, 
despite sequencing only a small part of the genome. In particular, 
we found 15 loci whose allele frequencies were associated with at 
least one environmental variable, and 11 (73%) of them were cor-
related with bottom temperature.

4.1 | Population differentiation

Renewed interest in understanding summer flounder population bi-
ology in light of shifts in biomass (Bell et al., 2014; Nye et al., 2009; 
Pinsky & Fogarty, 2012) provides strong motivation for the appli-
cation of molecular techniques to fisheries-relevant research. From 
PCA, STRUCTURE, and Geneland analyses, we conclude that summer 
flounder are a genetically homogenous population across much of 
the genome. Even if some of our sampled individuals were immature, 
we expect population structure would be detected because juve-
niles and adults move offshore together during the spawning sea-
son (Packer et al., 1999). A naïve interpretation of our STRUCTURE 
analyses would suggest multiple populations, but inconsistencies 
in the number of clusters inferred by different programs can occur 
(Frantz et al., 2009) and it is important to interpret results with bio-
logical relevance in mind (Meirmans, 2015). In addition, while the 
correlated allele frequency models implemented in STRUCTURE and 
Geneland can help distinguish between closely related populations, 
this also makes them more prone to overestimating K (Falush et al., 
2003; Pritchard et al., 2000). Using ABC analysis to examine popu-
lation differentiation from another perspective, we estimated the 
dispersal rate across Cape Hatteras, North Carolina. Cape Hatteras 
has been suggested as an important dispersal barrier in this species 
(Able et al., 2011; Burke et al., 2000; Kraus & Musick, 2000; Van 
Housen, 1984). However, the ABC analysis suggested that the prob-
ability of an individual dispersing across this putative barrier was not 

F IGURE  6 Ordination plots for RDA. 
Plots show the distribution of loci (gray 
pluses) and genotypes of individuals (gray 
open circles). The black vectors indicate 
correlations between the constraining 
axes and the predictor (environmental) 
variables. The loci (variant bp contained 
on a contig) whose allele frequencies 
are significantly (p < 0.001) associated 
with one or more predictor variables are 
plotted on (a) axis 1 vs. 2 and (b) axis 1 
vs. 3

TABLE  4 P-values of locus–environment associations suggestive of local adaptation from redundancy analysis and regression  
(p-value <0.001)

Environmental variables

Contig number Variant BP Distance along the coast Depth Bottom temperature Bottom salinity

8420 14 1.49 × 10−4

19728 116 2.77 × 10−5 2.62 × 10−5

35399 131 5.98 × 10−04

54409 32 6.09 × 10−4
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low, and in fact, was likely quite high (7% to 50% probability per 
generation). Dispersal rates of ~10% or greater are often suggested 
as sufficient to synchronize population dynamics (Hastings, 1993), 
and a population can be defined under an ecological paradigm by 
focusing on demographic connectivity (Waples & Gaggiotti, 2006). 
Thus, the dispersal rates that we estimated would imply that summer 
flounder north and south of Cape Hatteras comprise one population 
from an ecological and population dynamics perspective.

Previous studies investigating population structure in summer 
flounder using genetic techniques (Jones & Quattro, 1999; Van 
Housen, 1984) or phenotypic traits (Able et al., 1990, 2011; Burke 
et al., 2000; Kraus & Musick, 2000) have disagreed on the existence 
of subpopulations. Our genetic analyses with 1,137 SNPs had higher 
statistical power than earlier mtDNA analyses (Jones & Quattro), 
but reached the same general conclusion that summer flounder ex-
hibit extensive gene flow across the entire U.S. east coast. Earlier 
observations of differences in the timing of larval ingress (Able et al., 
2011), morphology, and meristics (Burke et al., 2000) suggest that 
summer flounder may respond plastically to environmental differ-
ences across the species range, resulting in differences in phenotype 
despite extensive gene flow. An alternative hypothesis is that differ-
ences in phenotype are controlled or linked to loci under selection, 
potentially some of the loci identified by this study that were associ-
ated with an environmental variable. A productive avenue for future 
research would be to employ common garden studies to determine 
the underlying basis of phenotypic variation in this species.

4.2 | Evidence for spatially divergent selection

Despite technological advances in an era of genomics, identify-
ing adaptive divergence in natural populations is still challenging 
(Bernatchez, 2016). Yet, reduced genome representation techniques 
like ddRAD sequencing can facilitate insight into the demographic 
and evolutionary processes that shape the genomes of nonmodel 
organisms (McKinney, Larson, Seeb, & Seeb, 2017). Given that this 
study surveyed ~ 0.04% of the summer flounder genome (based on 
the 546 Mb olive flounder genome; Shao et al., 2017), it may have 
missed many adaptive polymorphisms (Lowry et al., 2017). In ad-
dition, recent research suggests that environmental adaptation 
affects a small fraction of the genome (Bay et al., 2017), and that 
adaptive traits are often controlled by many loci of small effect (Le 
Corre & Kremer, 2012; Pritchard & Di Rienzo, 2010; Rockman, 2012; 
Yeaman, 2015). These two factors can further complicate the identi-
fication of loci involved in adaptation. However, despite limited abil-
ity to detect polygenic adaptation and loci with small effect sizes, 
locus–environment associations are still useful for uncovering candi-
date loci of relatively large effect. Our study likely missed adaptive 
polymorphisms due to limited genome sampling and limited power 
to detect small effect loci, but we still detected a number of impor-
tant candidate loci that appear to be affected by spatially varying 
natural selection. Furthermore, the lack of overall genetic popula-
tion structure suggests that the species is locally divergent only at 
particular loci and that our environmentally associated loci are not 

the result of underlying neutral population structure. Our findings, 
which are suggestive of adaptive divergence in summer flounder, are 
consistent with a growing number of other studies in marine species 
that have documented adaptive polymorphisms across the species 
range despite high gene flow (De Wit & Palumbi, 2013; Gagnaire, 
Normandeau, Côté, Hansen, & Bernatchez, 2012; Gleason & Burton, 
2016; Pespeni, Chan, Menge, & Palumbi, 2013; Pespeni & Palumbi, 
2013; Sandoval-Castillo, Robinson, Hart, Strain, & Beheregaray, 
2018; Schmidt & Rand, 1999; Therkildsen et al., 2013).

Even though high gene flow can introduce maladaptive alleles 
to local populations and reduce the degree to which they can lo-
cally adapt, genetic differentiation at particular loci can still arise 
if selection is strong enough (Hedgecock, 1986; Marshall, Monro, 
Bode, Keough, & Swearer, 2010; Slatkin, 1987). Selection can more 
effectively filter out maladaptive alleles or increase the frequency of 
beneficial alleles when the effective population size is large and thus 
genetic drift is weaker (Lanfear, Kokko, & Eyre-Walker, 2014; Ohta, 
1992), as was suggested for summer flounder by our ABC analysis. 
The process of strong selection on a local scale following widespread 
dispersal can result in the maintenance of adaptive polymorphisms. 
These polymorphisms are maintained through spatial balancing (also 
called spatially varying) selection and have been termed spatially 
balanced polymorphisms (Sotka, 2005, 2012). In an alternative way, 
low dispersal or active habitat selection can also drive genetic dif-
ferentiation across space (Kawecki & Ebert, 2004), which is often 
known as local adaptation. Although the scale of gene flow and se-
lection differ between local adaptation and spatial balancing selec-
tion, they lie on a continuum and both result in genetic differences 
between local sites (Sanford & Kelly, 2011). In the case of summer 
flounder, selection following dispersal in each generation appears to 
be the most likely process maintaining genetic differentiation at cer-
tain loci. Evidence for locally adapted polymorphisms maintained by 
spatial balancing selection in summer flounder can be strengthened 
by comparing allele frequencies in larvae to those in adults, which 
provides a promising avenue for future research. If allele frequencies 
at a set of loci are homogenous in larvae, but divergent in adults, this 
would suggest that genetic differentiation in adults is maintained by 
spatial balancing selection.

Processes other than spatial balancing selection could result 
in polymorphisms throughout the genome, but we believe these 
are less likely in the summer flounder system. One factor that can 
drive differentiation at particular loci is sex-specific genetic mark-
ers. Phenotypic sex in summer flounder is genetically determined 
through male heterogamety, or a XX/XY sex-determining system 
(Colburn, 2008). We did not find any SNPs in our dataset that were 
present in all males and completely absent in females, as would be 
expected of male-specific markers in a male heterogeneous spe-
cies. However, our ability to identify such markers in our dataset is 
somewhat limited. Studies explicitly seeking to identify sex-specific 
genetic markers typically aim to understand genetic sex determi-
nation and the evolution of sex-determining systems (Carmichael 
et al., 2013; Fowler & Buonaccorsi, 2016; Gamble & Zarkower, 
2014). As a result, these studies undertake bioinformatics steps to 
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limit RAD tags to those found in only one phenotypic sex and not 
the other (which we did not do). In addition, ~20% of individuals 
were not confidently sexed in our dataset, and we did not aim to ex-
plicitly identify sex-linked markers. Despite these caveats, it seems 
unlikely that any sex-linked markers were retained in our final data-
set. Demographic processes like range expansion and reproduc-
tive sweepstakes can also result in spatial differences at a few loci. 
Recent range expansion can bring alleles into newly colonized areas, 
resulting in allele frequency gradients due to genetic drift as the 
expansion front moves across the landscape. This process is termed 
allelic surfing and can result in patterns at neutral loci that resemble 
signatures of selection (Excoffier & Ray, 2008; Hallatschek, Hersen, 
Ramanathan, & Nelson, 2007). However, allelic surfing is more likely 
to happen with low gene flow (Excoffier & Ray, 2008; Klopfstein, 
Currat, & Excoffier, 2006), which makes it unlikely in summer floun-
der because of high dispersal estimates and no recent history of 
range expansion. High reproductive variability in broadcast spawn-
ers, such as summer flounder, can also create temporal patterns of 
genetic differentiation (Hedgecock & Pudovkin, 2011). This process 
is mostly applicable to benthic adult populations and can result in 
transient “chaotic patchiness,” or chaotic patterns of genetic diver-
gence across space in each time step. While adult summer floun-
der are capable of movement, our candidate loci were associated 
with environmental gradients rather than exhibiting chaotic pat-
terns typical of sweepstakes reproduction. Instead, we suggest 
that spatially varying selection due to environmental heterogeneity 
along the coastline is maintaining adaptive divergence at particular 
loci in summer flounder, but further investigation is necessary to 
strengthen the evidence for this.

Environmental conditions can be important selective agents 
that shape the genotypic and phenotypic composition of local 
populations (Sanford & Kelly, 2011). Water temperature is perhaps 
the most important abiotic factor defining a marine organism’s 
habitat (Angilletta, 2009). For many ectotherms, the temperature 
of their surrounding environment controls a variety of physiolog-
ical processes, including aerobic scope (Pörtner & Knust, 2007) 
and developmental (O’Connor et al., 2007) and metabolic rates 
(Johnston & Dunn, 1987), which in turn can affect growth and sur-
vival. In a classic example, Powers and Schulte (1998) summarize 
the genomic and phenotypic evidence for thermal adaptation in 
the mummichog Fundulus heteroclitus along the Atlantic coast of 
North America. In particular, the steep thermal cline associated 
with latitude was tightly linked with the frequency of lactate dehy-
drogenase allozymes. In turn, the frequency of lactate dehydroge-
nase allozymes was correlated with ATP concentration and oxygen 
affinity in red blood cells, which affected swimming performance 
at cool temperatures. In the context of summer flounder, an im-
proved understanding for why certain loci are associated with 
environmental variables, such as identifying functional relation-
ships between environmental selective agents and locus-specific 
selection, will strengthen the evidence for spatially divergent se-
lection. While some of our BLAST searches returned orthologous 
matches with other fish species, summer flounder is a nonmodel 

organism and it was challenging to draw robust conclusions about 
gene function with the available resources. However, whole-
genome sequencing of a closely related species, the olive floun-
der, or Japanese flounder (Paralichthys olivaceus), was recently 
completed (Shao et al., 2017) as part of the 1,000 Plant & Animal 
Reference Genomes Project, and several linkage maps using nu-
clear markers are available (Castaño-Sánchez et al., 2010; Kang, 
Kim, & Lee, 2008; Shao et al., 2015). Our candidate loci could 
have important gene functions that have yet to be annotated, or 
they may be physically linked to other selected loci that we did 
not sample. Regardless, further annotation of the olive flounder 
genome, as well as those of other fish species, would allow for a 
more complete understanding of linkage, gene function, and why 
our candidate loci may be important indicators of selection in sum-
mer flounder.

4.3 | Potential for adaptation in a changing world

Within the context of global environmental change, spatial balanc-
ing selection can allow for all phenotypes and their correspond-
ing genotypes to be present in populations across the species 
range. Selection acts on the local scale to filter for phenotypes and 
genotypes that are best suited to local conditions. As local condi-
tions shift over time, different phenotypes and their underlying 
genotypes may become more or less favorable depending on cur-
rent conditions. The ability of selection to match phenotype with 
the current environmental conditions results in a high potential for 
adaptation as the environment changes (Sanford & Kelly, 2011). Of 
course, adaptive potential also depends on the underlying genetic 
variation in a species. Historical studies of exploited fish stocks 
have shown that fishery-induced population declines can lower ef-
fective population size (Ne) and erode standing genetic variation 
(Hauser, Adcock, Smith, Ramiréz, & Carvalho, 2002; Hutchinson, van 
Oosterhout, Rogers, & Carvalho, 2003; Pinsky & Palumbi, 2014). If 
existing genetic variation and effective population size are low in 
summer flounder due to historical fishing pressure, adaptive evolu-
tion in response to changing environments may be limited. Future 
studies investigating the relationship between standing genetic di-
versity and the effectiveness of selection at matching phenotypes 
and genotypes to local environmental conditions would contribute 
toward a better understanding of evolutionary potential in response 
to environmental change.

In conclusion, summer flounder from Massachusetts to Florida 
comprise an effectively panmictic population across much of their 
genome. We detected genomic signatures suggestive of spatially 
divergent environmental selection at a few select loci, with many 
of these divergent loci associated with bottom temperature. These 
loci are good candidates for further investigation into their func-
tional role in adaptation to changing environmental conditions, and 
they appear to be maintained by selection rather than limited gene 
flow. Understanding the relevance and balance between dispersal 
potential, the strength of selection, and the scale of environmental 
heterogeneity can help us to understand the adaptive potential and 
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persistence of summer flounder and other important exploited spe-
cies under future climate conditions.
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