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Novel use of online optimization 
in a mathematical model 
of COVID‑19 to guide the relaxation 
of pandemic mitigation measures
Gianluca Bianchin1*, Emiliano Dall’Anese1, Jorge I. Poveda1, David Jacobson2, 
Elizabeth J. Carlton3 & Andrea G. Buchwald4

Since early 2020, non-pharmaceutical interventions (NPIs)—implemented at varying levels of severity 
and based on widely-divergent perspectives of risk tolerance—have been the primary means to control 
SARS-CoV-2 transmission. This paper aims to identify how risk tolerance and vaccination rates impact 
the rate at which a population can return to pre-pandemic contact behavior. To this end, we developed 
a novel mathematical model and we used techniques from feedback control to inform data-driven 
decision-making. We use this model to identify optimal levels of NPIs across geographical regions 
in order to guarantee that hospitalizations will not exceed given risk tolerance thresholds. Results 
are shown for the state of Colorado, United States, and they suggest that: coordination in decision-
making across regions is essential to maintain the daily number of hospitalizations below the desired 
limits; increasing risk tolerance can decrease the number of days required to discontinue NPIs, at the 
cost of an increased number of deaths; and if vaccination uptake is less than 70%, at most levels of 
risk tolerance, return to pre-pandemic contact behaviors before the early months of 2022 may newly 
jeopardize the healthcare system. The sooner we can acquire population-level vaccination of greater 
than 70%, the sooner we can safely return to pre-pandemic behaviors.

The primary strategy for mitigating the spread of SARS-CoV-2, to date, has relied on the use of non-pharma-
ceutical interventions (NPIs). Common NPIs include, at various levels of severity, lockdowns, travel restrictions, 
contact tracing, mask-wearing, and individual behavioral change. These policy-based restrictions and individ-
ual behavior changes have had wide-ranging social consequences, including disruptive impacts on economies, 
and they have severely affected the well-being of families and children due to confinement stress and social 
disruptions1,2. On December 14, 2020, a mass vaccination campaign was initiated in the United States and, as the 
spread of the SARS-CoV-2 virus slowed, individuals and policy-makers alike are planning a “return to normality”, 
where policy-makers begin to lift NPIs and individual social behaviors are tentatively resumed. The individual 
and policy-level decisions to lift NPIs and “return to normal” depend on two main factors: (i) the trajectory of 
the SARS-CoV-2 states once the NPIs are lifted, and (ii) the risk tolerance policy-makers and individuals are 
willing to tolerate. Hence, whether or not this return to normal is safe is a question of (i) population-level immu-
nity (are immunity levels—either due to previous infection or vaccination—sufficient to prevent future waves 
of infection?) and (ii) risk tolerance (what is the largest number of cases, hospitalizations, or deaths individuals 
and policy-makers altogether are willing to accept?).

Predicting the minimum level of immunity that is needed to remove all NPIs and return to normal behavior 
remains an open research question, especially in the presence of regional discrepancies in risk tolerance and vac-
cination rates. Tolerable levels of transmission risk have been a controversial topic throughout the evolution of 
the SARS-CoV-2 pandemic and could be defined based on number of cases, hospitalizations, or deaths. We chose 
hospitalizations for this analysis because they are a marker of severe COVID-19 disease and are less lagged than 
deaths. In these scenarios, we are not pursuing a goal of elimination of cases—which, with evidence of waning 
immunity and continued global import, is improbable in the near term. Instead, we focus on maintaining the 
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number of cases below a tolerable level of endemic disease burden. Defining the tolerable risk level is outside 
the scope of this paper—but may be based on infrastructure limits such as hospital capacity, as well as societal 
values including equity, a desire to minimize the risk of death or severe disease, or a desire to minimize disrup-
tion (e.g., school closures). Here we examine a range of possible risk tolerance thresholds as a demonstration.

In this work, we aim to answer the following questions: given the ongoing vaccination campaigns and a 
range of levels of risk tolerance, when can most NPIs be relaxed (we use the term NPIs to encompass all policy 
restrictions as well as individual-level behavior change) and life return to normal? How is this return to normal 
impacted by variations in vaccination rates and risk tolerance? And, how does mobility between regions (coun-
ties, states, etc) impact the return to normal, and how to coordinate NPIs across regions?

To answer these questions, we adopt a novel approach for data-driven policy-making using multidisciplinary 
methods pulling from transmission modeling3–6, online optimization of dynamical systems7–10, and feedback 
control11. We develop a method that allows us to identify maximum contact levels across geographical regions 
that guarantee hospitalizations will not exceed a given threshold, while minimizing the economic and social 
impacts (see “Discussion” section). This aspect is of utmost importance to ensure that future waves of infections 
do not threaten the stability of public health infrastructures. The operating principles of the proposed method 
depart from standard approaches in epidemic control that may be based on specific models for the evolution 
of the epidemic, and may rely on ad hoc decision rules; the proposed controller operates in closed-loop, in 
the sense that it suggests whether the level of NPIs should increase (or can be decreased) to meet predefined 
economic objectives and risk tolerance metrics based on the current level of infections and a prediction of the 
peak of hospitalizations.

The approach is widely applicable and can be implemented at various geographical granularities and to other 
disease systems. As a test case, we considered the state of Colorado, USA. We calibrated our models using real-
world data, and we evaluated the number of days that are required before all NPIs can be relaxed in relation to: 
(i) risk tolerance; (ii) maximum vaccination uptake; and (iii) daily vaccination rate. We additionally examine the 
way the introduction of new variants alters these findings. We uncover important aspects related to the timing 
and coordination of the NPIs in the various regions based on travel patterns.

Results
Controlling hospitalizations during pandemic outbreaks.  We aim to address the following ques-
tion: “What is the least restrictive level of NPIs that guarantees that the number of hospitalized individuals on 
each day do not exceed a pre-specified limit and simultaneously accounts for the economic implications of the 
NPIs?”. The hospitalization limit models the level of risk tolerance in a population or the level of stress tolerated 
by the healthcare system in a given region. We answer this question by formulating a constrained optimization 
problem, which uses a compartmental model of epidemic transmission to predict the epidemic state (see “Meth-
ods” section). The intensity of NPIs is represented by a parameter u ∈ [0, 1] that describes the level of permitted 
transmission-relevant contacts, where u = 0 corresponds to zero contacts (full lockdown, 0% contact levels) 
and u = 1 corresponds to pre-pandemic contact levels (zero NPIs, 100% contact levels) (see Figs. 1a,b,  2a). An 
optimization problem is used to derive a feedback law that uses the instantaneous epidemic state to systemati-
cally select a level of transmission-relevant contacts that balance between the economic impact of the imposed 
restrictions and the number of infectious individuals, while simultaneously guaranteeing that the number of 
daily hospitalizations does not exceed the specified hospitalization limit (Fig. 1c,d), denoted by hlim . Here, hlim 
models the maximum allowable number of hospitalized individuals on each day. The parameters of our model 
are fitted to official data from the state of Colorado, USA12,13. Given the emergence of new, highly transmissible 
variants, we conducted a sensitivity analysis to examine the impact of these variants on our results (Fig. 2), 
simulated by assuming doubling transmission rates, akin to what has been seen with the Delta and Omicron 
variants. Note that in the absence of new variants, our model predicts that u will gradually return to 100%. If we 
assume the repeated introduction of new variants, u has to repeatedly reset to a lower level, delaying its approach 
to 100%. This would result in temporary states where returns to high contact levels is intermittently safe, but also 
suggesting contact levels have to be repeatedly reduced, as has been seen in actuality.

When can we safely return to normal?  To address this question, we used the feedback optimization 
framework to determine the highest allowable level of contacts (on each day) that ensures that the daily num-
ber of hospitalized individuals does not exceed (and remains close to) the pre-specified limit hlim . In a single 
simulation (Fig. 1) it can be seen that as the fraction of vaccinated individuals in the population increases, the 
allowable contact levels selected by the feedback law can also gradually increase while ensuring that the number 
of hospitalizations remains below the predefined limit; the infection rate is similarly constrained. Accordingly, 
our framework allows us to characterize a lower bound on the number of days required before a full return to 
normality can safely occur.

Return to normality refers to a condition where all NPIs can be repealed and the societal behavior can return 
to pre-pandemic contact levels (i.e. u = 1 ). We found that the parameter that most consistently impacted the 
number of days to normality is the vaccination uptake in the population (see Fig. 3 where the number of days to 
normality is counted beginning 03/01/21). This finding follows from three main observations. First, our results 
show that any vaccination uptake of 50% or less will require more than 2 years (730 days) to return to normal 
behavior for any of the examined vaccination rates if we expect to keep the number of hospitalizations below 8 
individuals/day per 100 K inhabitants. Second, the number of days to normality reduces by a factor of at least 2.5 
as the vaccination uptake is increased from 50 to 60% (for instance, with a vaccination rate of 25,000 vax/day and 
hospitalization limit hlim = 8 , the number of days to u = 1 decreases from 777 to 314 as the vaccination uptake is 
varied from 50 to 60%). Third, our results suggest that vaccination uptakes larger than 70% will not decrease the 
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time before all NPIs can be safely lifted. This is likely a factor of the current level of infection-derived immunity in 
the population, such that 70% vaccine uptake is sufficient to reach a threshold where infections decline, regardless 
of contact levels. A second parameter that consistently affects the time to normality is the level of risk tolerance 
hlim , i.e., the number of hospitalizations tolerated during the outbreak. Precisely, allowing more hospitalizations to 
occur (increasing hlim ) reduces the number of days to normality. Decreased risk tolerance leads to a lower infec-
tion rate and decreases the rate of naturally-acquired immunity, thus increasing the time required for a return 
to normality. For instance, with a vaccination rate of 15,000 individuals/day, when vaccination uptake is at least 
70%, the number of days to u = 1 reduces from over 1 year (383 days) to about 6 months (189 days) when the 
hospitalization limit is increased from 6 to 20 individuals/day. Unfortunately, although a higher hospitalization 
limit reduces the time to normality thanks to naturally-acquired immunity, it also results in a higher number of 
deaths (Fig. 3 bottom panel). Our simulation outcomes also suggest that the vaccination uptake does not affect 
the number of deaths in the considered time interval (this fact emerges because the number of deaths is counted 
until August 1, which occurs before the vaccination uptake threshold is reached).

Our results suggest that to return to normal behavior (pre-pandemic contact rates) on 10/01/21 (153 days 
beginning 03/01/21), there is likely to be stress on the healthcare system (i.e. the number of hospitalizations will 
exceed the pre-defined limit), the level of which will depend on vaccine uptake. If vaccine uptake is as low as 40%, 

Figure 1.   Model behavior when the feedback law is designed to simultaneously maximize contact levels and 
maintain hospitalizations below the threshold hlim . (a,b) Level of transmission-relevant contacts with respect 
to pre-pandemic behavior, as selected by the feedback controller. All simulations are conducted by using a 
single region model that is fitted using data from the state of Colorado, USA (see “Methods” section). Results 
are averaged over 10,000 simulations with parameters sampled using a Latin Hypercube technique within 15% 
of their nominal values. Continuous line shows mean of the trajectory and shaded area show 99.73% confidence 
intervals. This figure shows an ideal situation where vaccination uptake can reach a level of 100%.

Figure 2.   Model and controller behavior without variant (purple and blue lines) and with a more infectious 
variant (green and blue lines). The effect of the variant is modeled by doubling the transmission rate on 
12/21/21. The feedback law is designed to simultaneously maximize contact levels and maintain hospitalizations 
below the threshold hlim . All simulations are conducted by using a single-compartment model that is fitted using 
data from the state of Colorado, USA (see “Methods” section). Results are averaged over 10,000 simulations with 
parameters sampled using a Latin Hypercube technique within 15% of their nominal values. Continuous line 
shows mean of the trajectory and shaded area show 99.73% confidence intervals.
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we may not remain below 20 hospitalizations/day per 100 K inhabitants. However, with a vaccination uptake of 
60% we could return to normal and keep hospitalizations below 16 hospitalizations/day per 100 K inhabitants.

In practice, we expect that contact behaviors will vary widely across individuals and that, even when all gov-
ernment policies will be repealed, many individuals will likely continue to practice NPIs, such as mask-wearing 
and social distancing. Thus, although u = 1 may be an unlikely scenario in the near future, individuals may 
quickly resume a behavior of “almost normality”, where contacts are restored to 80% of pre-pandemic levels 
(i.e., u = 0.8).

Following that, in order to safely return to u = 0.8 on 10/01/21, if vaccine uptake is as low as 50%, we may 
not remain below 14 hospitalizations/day per 100 K inhabitants. However, with vaccine uptake of 70% we could 
return to normal and keep hospitalizations below 12 hospitalizations/day per 100 K inhabitants (see Fig. 3 center 
row).

Effects of regional heterogeneities and mobility patterns.  Heterogeneities in policies and behavio-
ral responses to an ongoing epidemic between regions motivate the use of higher-resolution models and control 
techniques that can adequately capture this diversity. In this context, a crucial open question concerns how 
local authorities can identify region-dependent levels of NPIs that guarantee that local hospitalization limits are 
met, and to what extent inter-regional decision-making can be coordinated to achieve this objective. To address 
these questions, we generalized the transmission model and feedback control framework to a network setting 
(see “Methods” section), and we used publicly-available mobility data from cell phone usage to estimate inter-
regional couplings (Fig. 4 illustrates regional connectivity patterns for the state of Colorado, USA. Note that the 
Metro region comprises the majority of the state’s population and contributes to a large fraction of economic 
activity statewide. The model is organized into eleven regions, each describing a Local Public Health Agency 
(LPHA) region in Colorado, USA13, and transmission levels are fitted to regional hospitalization data from the 
period 01/01/21–02/28/21.

Local levels of NPIs in each region i are represented by a parameter ui ∈ [0, 1] , describing the level of per-
mitted transmission-relevant contacts (or NPIs) in the region. By using the feedback-optimizing control law 
(see “Methods” section), we derived region-dependent daily levels of NPIs that guarantee that the number of 
hospitalized individuals in each region i does not exceed a region-dependent hospitalization limit hlim,i . Figure 5 
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Figure 3.   Number of days needed before a return to normal can be implemented without exceeding predefined 
hospitalization limits. The number of days is counted beginning 03/01/21. Continuous lines illustrate counts 
when models are not affected by variants. Dashed lines illustrate counts when models are affected by a variant 
whose effect is to double the transmission rate on 12/21/21. (Top row) Number of days to u = 1 . (Center row:) 
Number of days to u = 0.8 . (Bottom row) Estimated number of deaths between 03/01/21, and 08/01/2021. All 
simulations are conducted by using a single-compartment model fitted using data from the state of Colorado, 
USA (see “Methods” section). Any vaccination uptake of 70% or larger yields an identical (dark green) curve.
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illustrates the number of hospitalized individuals in the time-interval 03/01/21–03/01/22, together with the 
contact levels ui , as selected by the controller. By comparing the simulation outcomes across the various regions, 
our model and control methods suggest that heterogeneities among the regions can be exploited by the feedback 
controller, which is capable of meeting hospitalization limits in all regions by devising levels of NPIs that are 
region-specific. After the initial phase, uniform levels of NPIs among the regions can be used provided that all 
regions have homogeneous hospitalization limits. Together, our results indicate that regional heterogeneities 
can be used by the feedback controller, especially when the epidemic state varies widely across the regions. Note 
that control levels and epidemic curves varied drastically between regions throughout the pandemic, indicat-
ing, among other heterogeneities, the difficulty in agreeing upon tolerable risk levels in a heterogeneous region.

The value of coordination.  Figure 6 considers a scenario where regions with a population of 150,000 peo-
ple or less (i.e., East Central, San Luis Valley, Southeast, Southwest, and the West Central Partnership regions) 
drop most NPIs as of 05/01/21, returning to 80% contact levels ( u = 0.8 ). On this date, the average fraction of 
fully vaccinated individuals across the state is 21.29%. As illustrated by the simulation, such policy will result 
in a substantial violation of the hospitalization limit in all of the five regions that drop the NPIs. Not surpris-
ingly, the regions that decrease NPIs on 05/01/21, are also the ones that are affected by the highest number of 
hospitalizations, with peaks of over 140 hospitalizations/day per 100 K inhabitants around 07/01/21. Interest-
ingly, our results suggest that in this case three highly-populated regions (Central Mountains, Northwest, and 
South Central) are required to decrease the fraction of contact-relevant interactions to below 20% in order to not 
exceed the hospitalization limit of 8 individuals/day per 100 K inhabitants. This suggests that high-population 
regions are at high risk of outbreaks as a result of low levels of control in rural regions. Note that without increas-
ing control in, for instance, the Northwest region, in response to low control levels in surrounding rural areas, 
the Northwest region would be at risk of large increases in hospitalizations. Together, our results indicate that 
regional heterogeneities can be exploited by the feedback controller to alleviate the necessary severity of NPIs to 
stay below hospitalization limits in interconnected regions, however, uncoordinated changes of NPIs in some of 
the regions will in general impact the level of NPIs imposed in all the remaining regions.

We conclude by noting that, although our models are fitted to hospitalization data from the state of Colorado, 
and the simulations in Figs. 5 and 6 are performed for this case study, the proposed control framework and feed-
back control law are applicable to any geographical region and can be implemented at a different geographical 
granularity.

Figure 4.   Regional connectivity patterns between the 11 Local Public Health Agency regions in Colorado, USA. 
Each panel illustrates the intensity of contact between residents of the yellow region and individuals traveling 
from the blue regions. Total travel volume is averaged over the time period 01/01/20–12/31/20. Data obtained 
from Safegraph (see Data availability).
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Discussion
Vaccinations effectively help to contain the spread of an epidemic by quickly developing immunity in vaccinated 
individuals, without causing severe illness. Vaccinated individuals are no longer susceptible to infection and, 
as the proportion of the population that is susceptible decreases, the less likely any social contact will lead to a 
viral transmission. With sufficient vaccination rates and high vaccine uptake, NPIs can be gradually lifted and 
social interactions can partially resume in the interest of re-establishing economic and social activities. Despite 
optimism over widespread vaccination, a safe return to pre-COVID contact behaviors (corresponding to zero 
NPIs), may still be a long way away, dependent on the number of SARS-CoV-2 infections and consequent severe 
COVID-19 cases we are willing to tolerate. Additionally, the likely continued emergence of new variants may 
mean sustained periods of “normal” behavior leads to repeated spikes in hospitalizations and deaths. Indeed, if 
vaccine uptake remains low, policymakers should face the possibility of having to either tolerate a high level of 
NPIs, or a high number of severe COVID-19 hospitalizations in the foreseeable future. Alternately, higher vac-
cination rates, if they can be achieved, could lead to a quicker return to normal activities.

We examined the conditions under which all NPIs can be safely reverted and individuals can resume pre-
pandemic contact behaviors. We successfully showed that the adopted control method can be used to identify 
necessary increases or decreases in NPIs based on the level of community risk tolerance or how severe the 
hospitalization burden can be tolerated before governments or individuals will act to impose restrictions or 
change their behaviors.

Control of epidemics is a research area with extensive prior works (see, e.g.14–20 and pertinent references 
therein), which include a variety of methodologies that build on model predictive control, model-based optimal 
control, periodic lock-downs, etc, or simply heuristics driven by conventional wisdom. Here, we take a novel 
approach based on online optimization methods for dynamical systems8,9,21. Online optimization provides pow-
erful tools to simultaneously control a dynamical system and steer it to an optimal state configuration, where 
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Figure 5.   Hospitalizations and controller level over time when a group of regional controllers are used to 
guarantee that pre-specified region-dependent hospitalization limits are not violated. Each of the 11 panels 
shows the evolution in a different LPHA region (see Fig. 4 for an illustration of the connectivity graph). 
Simulation are conducted with a state-wide vaccination rate of 20,000 vax/day, to a maximum vaccine update of 
70%. Solid green lines illustrate the evolution of the hospitalized state, light purple lines show the pre-specified 
hospitalization limit. Heat maps illustrate the required level of NPIs ui , as determined by the controller.
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optimality is quantified according to a pre-specified cost function and constraints that embed economic and risk 
tolerance metrics. Model uncertainties constitute the major complexity of the control task at hand and call for 
the development of novel control tools that can determine how NPIs can be updated over time under limited 
model knowledge. The online optimization methods utilized in this work leverages feedback from the system 
to adaptively update the control variables in the face of possible model uncertainties and externalities. Here, 
the evolution of the pandemic is controlled based on objectives embedded in the optimization problems and 
by relying on the current number of infectious individuals and a prediction of the function that maps contact 
levels into the number of hospitalizations. The latter can be obtained from data generated by using a transmis-
sion model (the approach taken in this paper) or using machine learning tools. The setting investigated here 
also calls for new theoretical endeavors to uncover the stability properties of networked nonlinear dynamical 
systems modeling the progression of the epidemics and data-driven controllers, especially when the underlying 
transmission model accounts for the loss of immunity.

In this work, we use a limit on hospitalizations, representing plausible risk tolerance thresholds and stress 
of the healthcare system, to examine the role of vaccination rate and vaccine uptake on minimum necessary 
levels of contact. If we assume a low risk-tolerance of no more than 8 individuals hospitalized/day per 100K 
inhabitants, our results suggest the intriguing possibility that the number of days to normality decreased by a 
factor of two as vaccination uptake in the population is increased from 50 to 60%. While increasing vaccination 
rates will lead to a decreased “time to normal”, under conservative levels of risk tolerance, safe return to normal 
may not occur until early 2022. Allowing for increased burden of hospitalizations decreases the time to a safe 
return to normal behavior, but with serious consequences in the form of increased morbidity and mortality, even 
under scenarios with high vaccination rates. Vaccine uptake is a key factor for the return to normal. Figure 3 
illustrates the number of days before all NPIs can be lifted in relation to different levels of hospitalization limits, 
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Figure 6.   Hospitalizations and controller level over time when regions with a population of 150,000 people 
or less (i.e., East Central, San Luis Valley, Southeast, Southwest, West Central Partnership) drop all NPIs 
on 05/01/21. Simulation conducted with vaccination rate y = 20, 000 vax/day. Each of the 11 panels shows 
the evolution in time in a different LPHA region (see Fig. 4 for an illustration of the connectivity graph). 
Solid magenta lines illustrate the evolution of the hospitalized state, light purple lines show the pre-specified 
hospitalization limit. Heat maps illustrate the required level of NPIs ui , as determined by the controller. Note 
that y-scale differs between panels.
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daily vaccination rate, and maximum vaccine uptake. Our results suggest that when the hospitalization limit 
is maintained below 10 individuals/day every 100 K inhabitants, at least 300 days are necessary to lift all NPIs 
(given a vaccination rate of 15,000 vaccines/day). When the vaccination uptake is as low as 40% , this prediction 
increases to about 700 days. Figure 3c illustrates the cumulative number of deaths from 03/01/21 for different 
levels of allowed hospitalizations and vaccination rates. Our results suggest that the number of deaths grows 
linearly with the number of allowed hospitalizations, independent of the rate or uptake of vaccinations. This 
behavior is due to model assumptions, such that the number of deaths is proportional to the number of infections 
and hospitalized individuals, which are maintained constant over time by the control method. In practice, this 
assumption does not hold as vaccinations decrease the death rate among hospitalized individuals proportional 
to the high-risk population vaccinated. Likewise, new variants have been less virulent and may continue to have 
lower hospitalization rates, but this model does not account for this heterogeneity.

Regional heterogeneity complicates this picture. Even when only low-population regions with relatively low 
contact rates may begin to return to relative normality far more quickly, mobility across regions plays a key role. 
Due to people moving and interacting across regions, removing NPIs too quickly even in regions of low popu-
lation density can still lead to dire consequences in nearby high-density regions. In our interconnected world, 
these findings can be generalized to both smaller and greater spatial scales; the application of our method can 
unveil important intrinsic dependencies that should be fully taken into account to effectively control the spread 
of the infection.

We acknowledge that our findings come with some relevant limitations. First, the outcomes are dependent 
on numerous assumptions about baseline transmission rate, probability of hospitalization, and parameter values 
estimated from previous modeling studies that are specific for the state of Colorado and that may impact our 
results. Second, we chose not to account for age or the differences between asymptomatic and symptomatic 
transmission for simplicity. Third, despite accounting for regional heterogeneity in contact rates and baseline 
transmission, superspreader events and smaller non-homogeneous spatial units play a large role at this stage 
in the pandemic. Compounding this, vaccine distribution is occurring in a manner that reinforces pre-existing 
health disparities, due to issues of both access and hesitancy22. This creates pockets of high-risk unvaccinated 
populations, which are sufficient to sustain transmission, even with high vaccination rates overall. Our model 
cannot account for this type of clustering of behavior or risk, which is important in understanding the probability 
of achieving sufficiently low levels of SARS-CoV-2 transmission. Fourth, while we ran a single sensitivity analysis 
to see the impact of increasing transmission rates of new variants, we do not account for the recent introduction 
and proliferation of numerous variant strains which have the potential to substantially alter transmission dynam-
ics, hospitalization rates, and vaccine efficacy23; future work will better account for variants and include them in 
the proposed methodology. Over time, current vaccines may be less effective at preventing infection due to new 
circulating variants, preventing the attainment of herd immunity even with high rates of vaccination uptake. 
Similarly, for this study, we assumed a duration of vaccine effectiveness of two years. Since beginning this work, 
we have learned the duration of immunity against infection is relatively shorter, however, vaccines do appear 
to provide long-lasting immunity against SARS-CoV-2 related hospitalization and death, particularly if regular 
booster shots are provided. If new variants lead to a shorter duration of vaccine-derived immunity, given feasible 
vaccination rates, complete relaxation of NPIs might never be attainable24. When better data on the duration of 
immunity become available, the model utilized here can be modified accordingly. Fifth, we also acknowledge 
that it is challenging to translate our control variable into precise NPI policies, such as mask mandates, school 
closures, business capacity limits, and especially personal decisions. However, ongoing research is evaluating the 
effects of several (past) interventions on the reproduction number25,26, and thus we envision that desired levels of 
NPIS can be modeled with increasing accuracy shortly. Finally, recently emerged SARS-CoV-2 variants have had 
higher transmission rates than estimated early in the pandemic. Higher transmission rates will require higher 
levels of population-level immunity to prevent future outbreaks, and the 70% threshold estimated here may be 
a severe underestimate of necessary vaccination rates.

Our findings are in agreement with previous modeling studies which have stressed the need to maintain 
current levels of NPIs and decreased contact for the near future, even in the context of current vaccination 
strategies6,27,28. Several recent studies have also questioned whether herd immunity through vaccination is achiev-
able at all, given the current vaccines available and the high prevalence of vaccine hesitancy29. Given these fac-
tors, the possibility has been raised that SARS-CoV-2 will become an endemic virus circulating regularly in the 
population30 and our concept of a “return to normal” will have to be reframed. Although herd immunity may 
not be achievable, our findings suggest that a sufficiently-high vaccination uptake may be sufficient to return to 
pre-pandemic social behavior. Currently (11/05/21), in the state of Colorado, transmission is rising rapidly, with 
approximately 1300 individuals currently hospitalized. Vaccination rates are dropping rapidly and whether or 
not we can reach 70% vaccine uptake is uncertain.

Methods
The evolution of the epidemic is modeled by using a Susceptible-Exposed-Infectious-Hospitalized-Recovered-
Vaccinated-Susceptible (SEIHRVS) compartmental model. We begin by illustrating the single-region model, 
we then extend the model to account for regional heterogeneities, and lastly, we illustrate the control method.

Single‑region modeling.  We utilize a variation of the Susceptible-Exposed-Infectious-Recovered (SEIR) 
model31 that accounts for hospitalizations, vaccinations, and loss of immunity. In particular, we consider a trans-
mission model with states: Susceptible (s), Exposed (e) Infectious ( ı ), Hospitalized (h), Recovered (r), Vaccinated 
(v), and Deceased (d). Infectious individuals can infect susceptible ones with a transmission rate β > 0 . To 
model NPIs, we let u ∈ [0, 1] be a scalar parameter that specifies the level of permitted social activity (or contact 
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levels) within the region. The special case u = 0 models a full lock-down, while u = 1 corresponds to “zero” 
NPIs (and hence, a return to pre-pandemic contact levels). Noticing that different levels of NPIs result in differ-
ent transmission-relevant contact levels, the overall model of epidemic transmission is given by the following 
differential equations:

where we use ẋ := d
dt x(t) to denote the time-derivative of a scalar-valued variable x(t) that is a function of time 

t. In (1), whenever u ∈ [0, 1) , the effective transmission rate is reduced from β to βu according to the imposed 
NPIs. Individuals become infectious after an incubation period 1/ǫ > 0 , and they recover at a rate γ > 0 . After 
being infectious, a fraction of individuals κ ı→d ∈ [0, 1] dies, and a fraction κ ı→h ∈ [0, 1] is hospitalized. The 
fraction 1− κ ı→d − κ ı→h quantifies the individuals who recover without hospitalization. Hospitalized individu-
als recover at rate ρ > 0 . After being hospitalized, a fraction κh→d ∈ [0, 1] of individuals die, while 1− κh→d 
recover. Recovered individuals lose immunity at a rate σ > 0 , thus returning in the susceptible compartment. 
We denote by y > 0 the vaccination rate and by ν ∈ [0, 1] the vaccination efficacy. Individuals are vaccinated 
regardless of their prior infection history and we let θ ∈ [0, 1] be the fraction of vaccines that is administered to 
individuals in the s compartment, while (1− θ) vaccines are administered to individuals in the r compartment. 
Finally, δ > 0 describes the population birth/death rate. The compartmental model corresponding to the dif-
ferential equations (1) is illustrated in Fig. 7.

Multi‑region and mobility modeling.  We consider a model of disease transmission that is organized 
into a group of geographical subregions, where individuals make short-term (e.g. daily) inter-regional move-
ments or transits. The assumption that transits are short-term models scenarios where individuals return to the 
corresponding region of residence immediately after, eventually, being infected. Figure 4 illustrates the partition-
ing of the state of Colorado according to Local Public Health Agency (LPHA) regions, and illustrates the flow of 
mobility between regions.

To model contact-relevant interactions among residents of different regions, we adopt a graph G = (V ,E ) 
where V = {1, . . . ,N} denotes the set of nodes (regions), and E ⊆ V ×V denotes the set of edges (links 
between regions). We model the coupling between regions by assuming that a fraction aij ∈ [0, 1] of residents 
of region j travel to region i and interact with its residents, with 

∑

j aij = 1 Equivalently, aij is a normalized 
parameter that models the intensity of infections due to interactions between infected individuals from region 
j and susceptible individuals from the region i. To model the epidemic spread in the regions, we assume that 
each individual that is a resident of region i is categorized into one of the seven compartments si , ei , ıi , hi , ri , vi , 
di (where the subscript i denotes the index of the region). Similarly to (1), each state of (2) represents the frac-
tion of individuals in the corresponding compartment, with si + ei + ıi + ri + hi + vi + di = 1 at all times. The 
extension of (1) to a multi-region setting is given by:

(1)

ṡ = −βusı − θνy − δs + δ + σ r + ηv,

ė = −ǫe − δe + βusı ,

ı̇ = −γ ı − δı + ǫe,

ḣ = −ρh+ κ ı→hγ ı ,

ṙ = −σ r − δr − (1− θ)νy + (1− κ ı→h − κ ı→d)γ ı + (1− κh→d)ρh,

v̇ = −ηv − δv + νy,

ḋ = κ ı→dγ ı + κh→dρh,

s e ı h

r

v

d

βuı κı→hγ
κı→dγ

κh→dρ

(1− κh→d)ρ

θνy (1− θ)νy

δ

ε

δ

δ δδ

σ

(1− κı→h − κı→d)γ

δ

η

Figure 7.   Block diagram of the compartmental model adopted to generate data. The illustrated model is used to 
describe a single-region. Model equations and extensions to the multi-region model are discussed in “Methods” 
section.
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We note that (2) allows for different levels of NPIs across the regions, where the variable ui ∈ [0, 1] describes 
the permitted level of transmission-relevant contacts within region i. This model is motivated by recent works 
that found the regional progress of influenza much more correlated with the movement of individuals rather 
than geographic distances32. For these reasons, network models are widely used in the literature to take into 
account spatial propagation effects31,33–37.

Defining a metric for control.  For the purpose of this study, we utilize a single control variable per region 
to encompass all policy measures and behavioral changes in a region that decrease transmission of SARS-CoV-2. 
This variable captures the impact of several policy measures: including mask mandates, school closures, business 
capacity limits, as well as personal decisions such as hand-washing, mask-wearing, and moving socialization 
outside that otherwise would have occurred inside. At present, it is practically intractable to disentangle the 
specific impact that individual interventions have, as multiple complex interventions are introduced simultane-
ously and the population is reacting continuously to changing risk perception influenced by divergent policy 
and messaging at the local, state, and federal level38. While NPIs implemented by policy-makers are important, a 
large portion of transmission reducing behaviors is a result of individual-level risk assessment and behaviors, in 
response to perceived community transmission39. Thus, even as policymakers begin to relax NPIs at the state and 
regional levels, individuals will continue to make decisions based on their perceptions of risk, which are directly 
impacted by hospitalization and infection levels in the community. As a result of these effects, we recognize that 
an actual implementation of various NPIs may have a high variance. For example, even if all policy measures are 
lifted, as prevalence remains high, it might be unlikely that some individuals will return to pre-pandemic contact 
behavior. Likewise, even at the height of restrictions, when stay at home orders were in place, it may not be pos-
sible to control transmission entirely given the necessity of ongoing essential work, grocery shopping, etc (there-
fore, u can approach 0, but cannot be set to u = 0 in practice), or because of possible violations of restrictions.

Feedback optimization theory for NPI.  For the design of feedback controllers, we take an approach 
inspired by recent advances in feedback optimization of dynamical systems7–10,21 and, in particular, we develop 
a new data-driven optimization approach based on the analytical framework9.

Formalizing risk tolerance and social objectives.  The proposed technical approach builds upon formulating 
an optimization problem that captures the desired social and economic metrics and incorporates constraints 
related to risk tolerance.

To this end, let hlim,i denote the maximum allowable number of daily hospitalized individuals in the region 
i, and let φi : [0, 1] → R≥0 be a function of the decision variable ui that models the societal impact induced by 
the introduction of NPIs in the region i36; this includes the economic impact of the raised control measures, 
and/or the societal response to restriction orders. Similarly, let ψi : [0, 1] → R≥0 be a function of the number 
of infectious individuals ıi that models the societal losses due to a high number of infections in the region i; this 
includes e.g. the cost of hospitalizations. Mathematically, we assume that u  → φi(u) is a differentiable function40 
(see Supplementary Information). Since societal losses, in general, do not increase as NPIs are lifted, we also 
assume that u  → φi(u) is a non-increasing function in its domain. For additional remarks on the cost of NPIs 
we refer the reader to, e.g.36,41,42. To capture the relationship between NPI variables u = (u1, u2 . . . , nN ) and 
the number of infectious individuals at the endemic equilibrium (i.e. when t = ∞ ), we denote by u  → Fi(u) 
the function that maps the instantaneous values of NPIs u to the fraction of infections in the i-th region at the 
endemic equilibrium. Hospitalizations can be naturally related to the instantaneous level of NPIs as well as to 
the current state of the pandemic. To this end, we let xi := (si , ei , ıi , hi , ri , vi , di) denote the joint epidemic state 
in region i, and x := (x1, x2, . . . , xN ) denote the joint epidemic state of the network. We denote by u  → Hi(u; x) 
the function that maps the instantaneous level of NPIs u into the peak of hospitalizations in  region i, given the 
current state x of the model.

With these definitions in place, we formulate the problem of optimizing the choice of NPIs while guaranteeing 
that the number of hospitalizations remains below the pre-specified limit at all times as follows:

(2)

ṡi = −

N
∑

j=1

βuiaijsiıj − θiνiyi − δisi + δi + σiri + ηivi ,

ėi = −ǫiei − δiei +

N
∑

j=1

βuiaijsiıj ,

ı̇i = −γiıi − δiıi + ǫiei ,

ḣi = −ρihi + κ ı→h
i γiıi ,

ṙi = −σiri − δiri − (1− θi)νiyi + (1− κ ı→h
i − κ ı→d

i )γiıi + (1− κh→d
i )ρihi ,

v̇i = −ηivi − δivi + νiyi ,

ḋi = κ ı→d
i γiıi + κh→d

i ρihi .

(3)

min{u1,...,uN }
∑N

i=1 φi(ui)+ ψi(Fi(u)) (cost depends on NPI policy and infections in each area)
s.t. Hi(u; x) ≤ hlim,i , i = 1, . . . ,N , (maximum allowable hospitalizations in area i)

ui ∈ [0, 1], i = 1, . . . ,N . (feasible NPI policy for area i).
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Solutions u∗ of the above optimization problem, describe a level of NPIs that balances economic and social 
costs while ensuring that hospitalizations limits are not exceeded in each region. In the following, we develop an 
optimization-based feedback control method to continuously calibrate the permitted level of social interactions 
u to meet the criteria outlined in the optimization problem (3). We also remark that (3) includes a single-region 
model as a subcase (see Supplementary Information).

Feedback controller design for NPIs.  We begin by defining the set of feasible NPIs, as described in the optimiza-
tion problem (3). For a fixed epidemic state x, the feasible region of (3) is given by:

We note that, because the input-to-peak of hospitalization map H(u; x) is parametrized by the instantaneous 
state of the system x, the set Ux is also parametrized by x. When the set Ux is non-convex, we consider a convex 
approximation Ûx as explained in the “Data-driven implementation” section. With this definition, a function 
t  → u(t) for the NPIs can be obtained as a solution of the following dynamical system:

where φ(u) :=
∑N

i=1 φi(ui) and ψ(i) :=
∑N

i=1 ψi(ii) for brevity, J(u) is the Jacobian matrix collecting 
{∂uFi(u)}

N
i=1 (the notation ∂uFi(u) denotes the gradient of the function Fi(·) ), η > 0 is a tunable parameter 

of the controller, and PUx denotes the Euclidean projection operator; namely, given z ∈ R
n and a convex set 

U ⊆ R
n,

We note that the optimization-based controller (4) leverages two types of feedback: (i) it uses the instantane-
ous fraction of infectious individuals ı , and (ii) it relies on a projection onto the set Ûx , which is parametrized 
by the instantaneous state of the system. For these reasons, the control dynamics (4) describe a dynamic state-
feedback controller for the NPIs. Critically, the controller relies on the knowledge of the maps u  → Fi(u) and 
u  → Hi(u; x) . These maps are estimated from data, as explained in “Data-driven implementation” section. An 
illustrative example of the implementation of the controllers (4) is provided in Fig. 8.

Local implementation.  Due to the coupling introduced by the dependence of functions Hi and Fi on the 
(entire) vector of control variables u, the implementation of the optimization-based feedback controller (4) 
critically requires full knowledge of the state, control vector u, and of the (gradients of) the cost functions 
φ1, . . . φN ,ψ1, . . . ,ψN . Therefore, it requires a centralized implementation (for example, at the state level in the 
example in Fig. 4). When this implementation is not feasible, we consider an approximation of the functions Hi 
that accounts only for the effects of the local NPI policies in area i, namely, we approximate the value of the peak 
of hospitalizations Hi(u; x) by H̃i(ui; u−i , x) , where u−i = {u1, . . . , ui−1, ui+1, . . . , uN } is treated as a constant 
parameter. By using this approximation, we redefine the set of feasible NPI policies in subregion i as:

where the map H̃i is obtained numerically. By using this approximation, the distributed controller reads as:

Ux := {u = (u1, . . . un) : ui ∈ [0, 1],Hi(u; x)− hlim,i ≤ 0, for all i = 1, . . .N}.

(4)u̇ = P
Ûx

(

u− η(∇φ(u)+ J(u)⊤∇ψ(ı))
)

− u,

PU (z) = arg min
w∈U

�w − z�.

Ûx,i := {u : ui ∈ [0, 1] and H̃i(ui; u−i , x)− hlim,i ≤ 0},

u̇ = PÛx
u− η(∇φ(u) + J(u) ∇ψ(ı)) − u

Ûx, {Fi}

ı

x

NPI controller

Learning

Epidemics and social dynamics

Figure 8.   Implementation of the NPI controller. The example refers to the state of Colorado, where each region 
represents a Local Public Health Agency.
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Each region i can update its NPI policy ui locally by only relying on the knowledge of: (i) the current fraction 
of infectious individual ıi in region i, (ii) the current value of NPI in the network u−i , (iii) an estimate of the 
partial derivative ∂uiFi(u) , which can be estimated locally at each region by simulating the model (2), and (iv) 
the feasible set Ux,i . We note that, although the controllers are implemented locally in each region, coordination 
between regions naturally emerges because of the connectivity in the SEIHRVS model.

Data‑driven implementation.  The maps Hi and Fi can be estimated from data using function estimation 
methods. In particular, to estimate these maps we simulated the dynamics (1) with initial conditions set equal 
to the instantaneous state of the model, and for different values of the control parameters, chosen in a neighbor-
hood of the current value of u. For a set of fixed values for the control parameters, we simulated the dynamics 
(1) and obtained the values of the peak hospitalizations and the infections at steady state. With these values, we 
utilized function estimation methods to obtain the maps Hi and Fi (see Supplementary Information). We note 
that the estimated map Ĥi is required to be convex to build a feasibility set Ûx that is convex (which is important 
in order to have a well-defined projection in our controller)40,43.

Model fitting and data acquisition.  Model fitting from data.  We organized the model-fitting phase into 
two main stages. First, we fitted the SEIHRVS model by combining model parameters from Ref.12 with hospi-
talization data, and we used a prediction–correction algorithm to minimize the fitting error. The fitted model 
parameters used in our simulations are reported in Table 1. Second, we used cell-phone usage from SafeGraph 
(https://​docs.​safeg​raph.​com) to estimate the interaction matrix of the network. The travel volume from an origin 
region to destination region on a given date is calculated using the Destination Census Block Groups (CBGs) 
metric in the social distancing data provided by the Safegraph COVID-19 Data Consortium (https://​docs.​safeg​
raph.​com/​docs/​social-​dista​ncing-​metri​cs). The destination CBGs metric is defined as: The number of devices 
with a home in [a CBG in origin region] that stopped in [a CBG in destination region] for > 1 min [on a given 
day]. The “home” of the device refers to the most common nighttime location for the device over the prior 6 
weeks. The share activity in the region j coming from region i, used in this analysis, is the activity in j from i 
divided by the total activity in j across all origins—where “activity in j from i” is the sum of the destination CBGs 
metric for all origin CBGs in i and all destination CBGs in j”. The summation across CBGs does not perform 
any deduplication, and so the total activity does not represent unique devices on a given day. Instead, it can be 

(5)

u̇1 = P
Ûx,1

[u1 − η(∂φ1(u1)+ ∂u1F1(u)∂ψ1(ı1))] − u1,

u̇2 = P
Ûx,2

[u2 − η(∂φ2(u2)+ ∂u2F2(u)∂ψ2(ı2))] − u2,

...
...

u̇N = P
Ûx,N

[uN − η(∂φN (uN )+ ∂uNFN (u)∂ψN (ıN ))] − uN .

Table 1.   Model parameters resulting from the model fitting phase.

Symbol Value Description Source

β 0.58 Transmission rate Fitted

θ 0.77 Probability of vaccinating an individual in compartment s 12

δ 0.02965/365 Daily death/birth rate 12

σ 1/365 1/Duration of natural immunity 12

η 1/730 1/Duration of vaccine immunity 12

ǫ 1/4.2 1/Latency period 12

γ 1/9 Rate of recovery 12

κ i→h 0.0143762 Probability of hospitalization after infection Fitted

κ i→d 0.00262289 Probability of death after infection 12

κh→d 0.099204 Probability of death after hospitalization 12

ρ 1/7.489 1/Hospitalization period 12

y 15,000–25,000 Vaccination rate

ν 0.81 Vaccination efficacy 12

Npop 5,840,795 State population size, CO, USA

s(0) 1/1.47 Fraction of Susceptible on 03/01/21 44

e(0) 1/546 Fraction of exposed on 03/01/21 44

ı(0) 1/216 Fraction of infectious on 03/01/21 44

h(0) 1/15936 Fraction of hospitalized on 03/01/21 44

r(0) 1/4.2136 fraction of recovered on 03/01/21 44

v(0) 1/13.1 Fraction of vaccinated on 03/01/21 44

u(0) 0.21 Level of lockdown on 03/01/21 12

https://docs.safegraph.com
https://docs.safegraph.com/docs/social-distancing-metrics
https://docs.safegraph.com/docs/social-distancing-metrics
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interpreted as the total visits to CBGs in the destination region by devices from the origin region, counting a 
device that stopped for at least a minute in two different CBGs as two visits. This approach has advantages and 
disadvantages. It may weigh visitors who stay longer and move around during their visit—going to restaurants, 
parks, and other locales that are not within the same CBG as their hotels—more heavily than visitors whose stay 
is brief or who limit their movement to a small area. The advantage is that longer stays and more movement tend 
to carry more risk of COVID-19 transmission, and so it helps us capture the impact of restrictions on travel-
induced COVID risk. Additional information on the data is provided in the Supplementary Information.

Data availability
Mobility data was obtained from Safegraph, publicly available at the website: https://​docs.​safeg​raph.​com/​docs/​
social-​dista​ncing-​metri​cs. Hospitalization data were obtained from the Colorado Department of Public Health 
and Environment. Colorado state-wide daily hospitalization was obtained from EMResources, publicly available 
at https://​covid​19.​color​ado.​gov/​data. Regional-level daily hospitalization census data was obtained from Covid 
Patient Hospitalization Surveillance, posted publicly at https://​github.​com/​agb85/​covid-​19/​tree/​master/​Regio​
nal%​20Mod​els Parameter Values were obtained from previous modeling works12,13 and are reported in Table 1 
and Supplementary Information.

Code availability
Software that was custom-developed as part of our methods is available at the repository: https://​github.​com/​
gianl​ucaBi/​safe_​levels_​NPIs.
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