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Abstract

Protein secondary structure prediction remains a vital topic with broad applications. Due to

lack of a widely accepted standard in secondary structure predictor evaluation, a fair com-

parison of predictors is challenging. A detailed examination of factors that contribute to

higher accuracy is also lacking. In this paper, we present: (1) new test sets, Test2018,

Test2019, and Test2018-2019, consisting of proteins from structures released in 2018 and

2019 with less than 25% identity to any protein published before 2018; (2) a 4-layer convolu-

tional neural network, SecNet, with an input window of ±14 amino acids which was trained

on proteins�25% identical to proteins in Test2018 and the commonly used CB513 test set;

(3) an additional test set that shares no homologous domains with the training set proteins,

according to the Evolutionary Classification of Proteins (ECOD) database; (4) a detailed

ablation study where we reverse one algorithmic choice at a time in SecNet and evaluate

the effect on the prediction accuracy; (5) new 4- and 5-label prediction alphabets that may

be more practical for tertiary structure prediction methods. The 3-label accuracy (helix,

sheet, coil) of the leading predictors on both Test2018 and CB513 is 81–82%, while Sec-

Net’s accuracy is 84% for both sets. Accuracy on the non-homologous ECOD set is only 0.6

points (83.9%) lower than the results on the Test2018-2019 set (84.5%). The ablation study

of features, neural network architecture, and training hyper-parameters suggests the best

accuracy results are achieved with good choices for each of them while the neural network

architecture is not as critical as long as it is not too simple. Protocols for generating and

using unbiased test, validation, and training sets are provided. Our data sets, including input

features and assigned labels, and SecNet software including third-party dependencies and

databases, are downloadable from dunbrack.fccc.edu/ss and github.com/sh-maxim/ss.

Introduction

The prediction of secondary structure—alpha helices, beta sheet strands, and coil regions—is a

long-standing problem in computational biology [1]. Given an amino-acid sequence, the task

is to predict a sequence of the same length that designates the secondary structure defined by
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an alphabet of a certain size. The commonly used DSSP program [2] designates the secondary

structure of experimental structures with an 8-letter alphabet (H, B, E, G, I, T, S), which can be

reduced to a smaller alphabet (commonly H, E, C) according to defined rules. The results of

secondary structure prediction have often been used as inputs to tertiary structure prediction

methods [3–9], estimation of folding rates [10], prediction of solvent exposure of amino-acid

residues [11–13], prediction of beta-turn locations and types [14–16], discrimination of intrin-

sically disordered regions [17, 18], accurate multiple sequence alignment [19–22], protein

function prediction [23, 24], and prediction of missense mutation phenotypes [25].

The problem of predicting secondary structure from sequence has a long history, starting in

1965 [26]. Over a period of more than 50 years, the accuracy has gradually increased due to an

increase in the number of experimentally determined structures in the Protein Data Bank

(PDB), the amount of sequence information available for the determination of features derived

from multiple sequence alignments, computational power, and the evolution of machine

learning algorithms. Structures in the PDB provide information for deriving the ground-truth

secondary structure labels used for training and testing of predictive models. It currently con-

tains more than 150 thousand experimental structures and about 15 thousand non-redundant

proteins (with <25% mutual sequence identity) [27]. The number of available protein

sequences in sequence databases has dramatically increased from 5 million in 1999 when the

widely-used PSIPRED was published [28] to 168 million today.

Secondary structure prediction methods and our ability to benchmark them have been

evolving and improving too. Several reviews [1, 19, 29–33] provide an excellent source of the

history of improvements in prediction methods. These methods have been divided into a set of

four generations of methods covering the 50-year time period from 1960 to 2010 [1, 30, 34]; we

also suggest a new fifth generation from the 2010s until today and describe it in more detail.

The first generation of methods—such as C+F [35], Lim [36], and GORI [37]—from the

1960s and 70s relied on single amino-acid preferences for theH, E, and C secondary structure

types. In 1983 the original accuracy of 65–70% reported by the first-generation methods was

revised downwards to 48–56% [38]. Dickerson et al. were the first to demonstrate that evolu-

tionary information was helpful for secondary structure prediction [39]. However, the evolu-

tionary approach during this period was limited by the small number of homologous protein

sequences available for any target.

The second-generationmethods from the 1980s and early 1990s—such as Schneider [40],

ALB [41], GORIII [42], COMBINE [43], and S83 [44]—utilized statistical analysis of a stretch

of adjacent residues to predict secondary structure of a central residue [30, 34]. These were

based on statistical information, sequence patterns, physiochemical properties, neural net-

works (NN), graph theory, multivariate statistics, expert rules, and nearest-neighbor algo-

rithms [34]. The second-generation methods benefited from larger sequence databases and

usage of evolutionary information. For instance, Zvelebil et al. incorporated evolutionary

information in their method by predicting secondary structure for each protein in an align-

ment and then reporting an average prediction [45]. However, the second generation methods

saturated at a low 3-label accuracy of 58–63% and experienced two problems: 1) beta strands

were predicted at very low accuracy levels of 28–48%, marginally better than random; 2) pre-

dicted helices and strands were too short to be practical [34].

The methods of the third generation from the mid-1990s—such as PHD [46], LPAG [47],

SSP [48]—achieved a 10 percentage-point improvement in the 3-label accuracy over second-

generation methods, leading to 68–72% accuracy. Methods from the late 1990s to the early

2000s, including PSIPRED [49], JPred2 [50], SSpro [51], and PROF [52], further reached 75–

77%. The success came from three factors [30, 34]: 1) use of evolutionary information encoded

in a multiple-sequence alignment (MSA) or position specific scoring matrix (PSSM) as direct
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inputs to a prediction program; 2) larger databases than for the second-generation methods;

and 3) more advanced algorithms. The algorithms based on neural networks [30, 46, 49, 53,

54] demonstrated the greatest improvement.

Inspired with evolutionary information features as input in past applications, the fourth-
generationmethods from mid-late 2000s further utilized a variety of additional input features

[33] including penta-peptide statistics [55, 56], conserved domain profiles [57], frequent

amino-acid patterns [58], predicted torsion angles [59, 60], predicted residue contact maps

[61], predicted residue solvent accessibility [62], predicted tertiary structure [62, 63], and pre-

dicted pseudo-energy parameters for helix formation [64]. Most of these individually led to

small improvements. For example, Meiler et al. suggested seven representative amino-acid

properties as input and showed their tenfold cross-validated accuracy increased only by 0.5

percentage points from 77% [65]. The predicted residue solvent accessibility improved the

3-label accuracy by 3 points [66]. The predicted dihedral angles helped by 2 points [67]. How-

ever, these features together did not improve the 3-label accuracy beyond 80% [68]. Some of

the fourth-generation methods—such asHYPROSP [69], PROTEUS [70],MUpred [71], and

DISTILL [72]—took advantage of structural fragments or templates of homologous sequences

to attempt a breakthrough. It only brought a modest 3 percentage-point improvement and did

not raise the 3-label accuracy beyond 80% with or without the additional input features.

We have identified 69 papers published in the last 10 years about secondary-structure predic-

tion methods. Some of these methods we assign to a new fifth-generation if they have been devel-

oped with more sophisticated neural network architectures, such as deep convolutional neural

networks (CNN), bidirectional recurrent NNs such as long short-term memory, and residual

NNs and their combinations, [73–82] and/or incorporated more advanced evolutionary input

features such as pairwise co-evolutionary models [74, 76–78, 82]. Some of them also revisited the

template-based approach [73, 83] or employed an ensemble of models with an average vote [73,

74, 78, 80, 82, 84] or were trained on predicted residue contacts, residue surface accessibility, Cα-

atom exposure, backbone torsion angles, and 3-label secondary structure predictions from other

programs [82]. The template-free [74–81, 83, 84] methods reported accuracies from 82 to 87%, a

substantial improvement over the fourth-generation accuracy of 80%. The theoretical 3-label

accuracy limit is 90–95% [1, 30, 72, 82, 85, 86], based on the rate at which different programs

such asDSSP and Stride [87] assign the same secondary structure to experimental coordinates.

In 2015, the fifth-generation method SPIDER2 [81, 88] utilized three iteratively connected

CNNs, each consisting of three hidden layers, achieving a 3-label accuracy of 82%. Jpred4 [74]

had 82% accuracy again in the same year by combining several CNNs trained on the same

multiple sequence alignments presented to the networks in different ways. One year later in

2016, DeepCNF [75] achieved a 2 percentage-point accuracy improvement to 84% by combin-

ing a 5–7 layer CNN with conditional random field as an additional layer. The CNN was con-

structed in a funnel style by enforcing the same weights in neighboring input and hidden

nodes and thus limiting the total number of parameters to train and allowing for longer-range

sequence information. The final conditional random field layer was used to account for corre-

lation of adjacent residues. In 2017, the authors of SPIDER2 upgraded their previous method

to a new NN architecture in SPIDER3 [76], relying on four hidden layers with the first two

bidirectional recurrent NN (BRNN) layers followed by two fully connected layers, and report-

ing an 84% 3-label accuracy, an improvement of 2 percentage points over SPIDER2. Also in

2017, FSVM [83] was reported with an 83% template-free accuracy achieved with a fuzzy sup-

port vector machine. In 2018,MUFOLD-SS [77] reported a 3-label accuracy of 84% with a neu-

ral network relying on nested inception models which are nested networks of several parallel

CNNs that proved to be state-of-the-art in image recognition. At the same time, PORTER5
[78] achieved 84% accuracy again by employing an ensemble of BRNNs. In 2018, another
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method, PSRSM [84] reported an improvement of 1–2 points to 85-86% accuracy; however, in

an independent study the reported accuracy was revised downward to 82% [82]. The PSRSM
publication does not mention a sequence similarity exclusion between training and test sets,

which could be a cause for this overestimation. The 2018 method, CNNH_PSS (a 5-layer multi-

scale CNN with highways between neighboring layers), was only trained for 8 labels and

reported 70% accuracy [79]. Another 2018 method, eCRRNN, an ensemble of 10 networks

based on a combination of convolutional, residual, and bidirectional recurrent NNs), claimed

the highest 8-label and 3-label accuracies to-date of 74% and 87% respectively [80].

The fifth-generation methods [73–84] all depend on multiple sequence alignments of the

target sequences, while several of these methods also rely on templates [73, 83], i.e., real protein

structures from a training set consisting of experimental coordinates of protein fragments.

These “template-based” methods can achieve higher accuracies, in the range 86–93%, than

template-free methods. However, homologous structures are not available for many proteins

that would be targets of secondary structure prediction, and such methods are not solutions to

the general secondary structure prediction problem. The accuracy of the template-based meth-

ods drops from 86–93% to 80–83% without templates and further down to 74–77% without

homologous sequences [73, 82, 83]. Similarly, the accuracies of the template-free MSA-based

methods drop from 82–84% to 73–75% without the use of homologous sequences [75].

The template-based SSpro5 from 2014 [73] utilizes a BLAST [89] search of the PDB to find

similar sequence fragments of at least length 10 to a target sequence and reports the most com-

mon DSSP-assigned class in the set of proteins selected for a given position. When no similar

sequences or no dominant DSSP class in the similar sequences are found, secondary structure

prediction is based on an ensemble of 100 BRNNs trained on the data set. With templates,

SSpro5 achieves 93% 3-label accuracy; without templates SSpro5 has only 79–80% accuracy.

FSVM [83] described above can also run in a template-based mode by using the same

sequence-based structural similarity concept as in SSpro5. In this mode, FSVM’s 3-label accu-

racy increases from 83% to 93%.

One common issue that has recurred repeatedly during the history of secondary structure

prediction is that reported accuracies have not always been upheld when methods were applied

to new benchmark test sets [30, 34, 38, 46, 82, 90]. Rost and Sander [34] state that overoptimis-

tic claims are caused by inadequate quality and size of test sets not meeting several require-

ments. First, significant pairwise sequence identity cannot be observed between proteins used

for training and test set [90, 91]. For example, in [84] training was performed on a set repre-

senting the entire sequence space of the PDB leading to very similar proteins in training and

testing sets. Second, the size of a test set must be greater than few tens of proteins [46]. Third,

due to varying structural complexity with certain features easier to predict, all available unique

proteins must be used for testing. Inadvertently probing a test set few or several times for

development decisions may also be a source of accuracy overestimation [34]. It is challenging

to compare programs on common benchmark sets because the programs are trained on differ-

ent sets of structures, some of which may be in any particular benchmark. For example, the

CB513 data set [91] has been used repeatedly [75, 77, 79, 80, 83], even though related proteins

may be used in the training data for a new program [73, 76, 78, 82].

In this paper, we investigate factors that contribute to the accuracy of template-free protein

secondary structure with (1) an ensemble of 10 simple traditional 4-layer CNNs and (2) rigor-

ously defined and independent training, validation, and test sets. We developed several test sets

and describe how to benchmark existing or future methods against the new test sets (or simi-

larly constructed test sets in the future) and what mistakes to avoid during training and testing.

Our main test set, Test2018, consists of proteins whose structures were determined in 2018

that do not share more than 25% sequence identity with any structure of any resolution or
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experiment type deposited before January 1, 2018. This enables us to compare our program,

SecNet, with methods that were trained prior to the beginning of 2018. While there has been

only ~5 percentage-point improvement from third-generation methods of the early 2000s, we

demonstrate an accuracy increase of 2–3 percentage points in both the 3- and 8-label accura-

cies compared to two recently developed deep learning models which had reported the highest

accuracy on the popular CB513 data set available since 1999.

The 25–30% sequence identity cutoff between training and testing sets has been common

practice for many years [42, 46, 48, 69, 75, 79, 92]. We developed three additional testing sets

where we enforced stricter criteria that would eliminate most if not all evolutionary relation-

ships between our training/validation set and the testing set. For example, we used ECOD

(Evolutionary Classification of Domains) to develop a test set of proteins that do not share any

homologous domain with a protein in our training set. ECOD clusters domains at the homol-

ogy level (“H level”) even if the domains are very remotely related and have different topolo-

gies (usually sharing a common core and some functional similarity as evidence of a common

ancestor). Our secondary structure prediction accuracy only drops by one percentage point

when these stricter criteria are enforced.

Through an ablation study that followed SecNet development, we investigated factors that

are important for high-accuracy prediction such as method complexity, types of input features,

window size, database source and size, alignment parameters, and training hyper-parameters.

For example, contrary to many methods that use extremely wide sequence windows (as long as

the whole sequence) [75, 76, 80, 93], our results show that CNNs do not benefit in terms of

overall accuracy beyond 15 residues away from a prediction label. We discuss the prediction

practicality of secondary structure labels for protein tertiary structure prediction, and propose

new 4 and 5 prediction label schemes that should be more useful for structural biology.

Results

Data sets for training, validation, and testing secondary structure

prediction methods

We produced separate sets of structures from the PDB for our training, validation, and test

data sets with the protocol shown in Fig 1 and fully described inMethods. Our aim was to

make the protocol reproducible, so that it can be reused for creation of new test sets in the

future. Because we wanted to compare our secondary structure prediction program with the

results in earlier publications, we developed a test set that would not have proteins in the train-

ing and testing data of earlier programs. Similar approaches for deriving test sets have been

used by others [82].

To develop the test set, we placed all 9,810 unique protein chains in PDB entries of any resolu-

tion or experimental type released between January 1 and November 12, 2018 into a starting set.

We filtered the test proteins to satisfy a 2.2 Å resolution threshold, a 0.25 R-factor cutoff consis-

tent with this resolution [94], and a minimal chain length of 40 residues. From this reduced set,

we additionally removed any sequence with more than 25% sequence identity to any of the

95,853 unique sequences in structures released before January 1, 2018 of any resolution, any

experiment type, and any quality-control characteristics. This similarity exclusion took place if

either of two programs,HHblits [95] or Clustal-Omega [96], calculated a pairwise sequence iden-

tity above the 25% cutoff (the exact definition of the sequence identities byHHblits and Clustal-
Omega inMethods). Finally, we applied the same pairwise sequence identity cutoff of 25% accord-

ing to the same two alignment programs within the test set itself. In the last step, when several

similar proteins had to be removed, the algorithm kept proteins with a higher resolution or better

R-factor or more residues with known coordinates in that order [27].
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For the training/validation set, the same resolution, R-factor, length, and sequence identity

criteria were applied to the sequences and structures that were released by the PDB prior to

2018. Chains with sequence identity� 25% with any protein in the popular CB513 data set

were also removed from the set so that CB513 could also be used in testing (see below). The

resulting set was split with a 9:1 ratio to produce the training and validation sets. We applied

Fig 1. Protocol flowchart for preparation of 2018 unbiased test and training sets (Set2018 dataset). Protocol input and output are

shown with gray rounded rectangles. All action processes are in blue rectangles. Green parallelograms represent intermediate input and

output data. The split date for Set2018 training and test sets is Jan 1, 2018. By using two sequence alignment programs, the protocol

removes from the test set any proteins with more than 25% sequence identity to any previously published PDB structure of any

experimental type, resolution, or quality. The test set guarantees unbiased accuracy estimation for our prediction method, SecNet, and

any previous software trained and validated on proteins released before Jan 1, 2018.

https://doi.org/10.1371/journal.pone.0232528.g001
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DSSP to the chains in each data set, producing training, validation, and test sets respectively

that have 7707, 856, and 149 protein chains and 1830, 207, and 38 thousand amino acids of

labeled secondary structure (Table 1 and Table A in S1 File). We refer to the three data sets col-

lectively as Set2018, and the testing set individually as Test2018. We provide Set2018 (S1 Data-

set) including the PDB entry and chain, the full-length original and unmodified sequences

using a standard 21-letter notation (with modified amino acids represented with single letters

of their unmodified counterparts where possible; other non-standard amino acids are repre-

sented by “X”), and the DSSP codes (including the symbol “X” for residues with missing back-

bone coordinates).

SecNet: A 4-layer convolutional neural network for protein secondary

structure prediction

We describe a traditional CNN with only 4 hidden layers (Fig 2), trained on our pre-2018

training set from Set2018. The validation set was used multiple times to try different

Table 1. Statistics for the Set2018 training, validation, and testing data sets.

Set2018 Proteins Perc. of amino acids No of amino acids

All = Train + Valid + Test 8,712 - -

whole sequence - 100.0 2,217,707

with coordinates - 93.5 2,074,301

w/o coordinates - 6.5 143,406

All with coordinates 8,712 100.0 2,074,301

H α-helix - 34.1 707,050

E strand - 22.3 463,310

C coil - 19.4 401,922

T turn - 11.1 229,566

S bend - 8.2 169,326

G 310 helix or helix-3 - 3.9 80,536

B β-bridge - 1.1 22,245

I π-helix or helix-5 - 0.017 346

Training set 90% split of (All–Test) by proteins

Any 7,707 100.0 1,830,092

C coil Rule #1 - 38.6 706,364

H helix - 38.0 695,750

E sheet - 23.4 427,978

Validation set 10% split of (All–Test) by proteins

Any 856 100.0 206,589

C coil Rule #1 - 38.7 79,985

H helix - 37.9 78,261

E sheet - 23.4 48,343

Test set Fixed, 2% of All

Any 149 100.0 37,620

C coil Rule #1 - 38.5 14,465

H helix - 37.0 13,921

E sheet - 24.5 9,234

Protein chain, amino-acid, 8-label, and Rule #1 3-label statistics for Set2018 dataset with resolution of up to 2.2 Å. Training and validation sets were randomly divided

with a 9:1 ratio from (All-Test) as full sequences for 10 cross-validation splits. The validation set statistics are shown for the second random seed split; it was used for

design decisions, hyper-parameter tuning, and selection of the best model.

https://doi.org/10.1371/journal.pone.0232528.t001
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Fig 2. Architecture of SecNet. SecNet is a traditional CNN with an input layer, 4 hidden convolutional layers, and a

dense layer with dropout regularization layers in between. The input layer reads a 29 x 92 matrix representing a

sequence window of 29 amino acids centered on the one subject to prediction and 92 input features for all 29 positions.

92 features = one-hot encoding of 22 amino-acid types + 2 rounds x 20 PSI-BLAST profile values + 30 HMM

alignment parameters. Each box encloses a linear dimensionality and number of features (2nd and 3rd values in
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architectures of convolutional and residual neural networks, to select features having a positive

impact on prediction, and to optimize other hyper-parameters and NN trainable parameters

themselves. (A detailed description of the optimization strategy of hyper-parameters is in

Methods.) After the best model based on the highest validation accuracy during training was

saved, the program was only once benchmarked on our unbiased Test2018 test set. The 92

input features of our template-free method consist of one-hot encoding of an amino-acid

sequence, two PSI-BLAST profiles (after 1 and 2 rounds of search on Uniprot90), and HMM

parameters derived from a multiple sequence alignment of a target sequence and hits from the

Uniprot20 sequence database [95]. We underline that our predictive model is a simple, tradi-

tional CNN, which is in contrast to the recent trend of using more and more complex methods

and NN architectures [73–81]. It employs an input window of only 29 amino acids. Each sam-

ple has a depth of 92 features per amino acid; therefore, the dimensionality of the input to our

NN is (29, 92) or 2,668 values in total to predict a single secondary-structure label of the central

residue. The number of the labeled samples in the 2018 training set is 1,830,092 amino acids. A

detailed description of our CNN and input features is provided inMethods.
We first tested the accuracy of predicting all 8 labels from DSSP (H, E, C, G, I, S, T, B); the

8-label accuracy is 73.0% on Test2018. To develop a program that is trained and tested on three

labels (H, E, C), we need a rule to convert the 8-letter alphabet to the 3 letters. The most com-

mon rule, which we refer to as Rule #1, is (H, G, I)!H, (E, B)! E, (T,S,C)! C [97]. A less

common rule, which we refer to as Rule #2, has a simpler definition: (H)!H, (E)! E, (G,I,B,

T,S,C)! C has been used in some programs [53, 74, 80, 98–101]. Several published methods

did not clearly define which 3-label rule was used [77, 78, 81, 83]. If we use Rule #1 on the train-

ing, validation, and testing data, we achieve a 3-label accuracy of 84.0% on Test2018. The confu-

sion matrices, true positive rates (recalls), positive predictive values (precisions), false negative

rates, and false discovery rates for the 8-label and 3-label Rule #1 predictions are presented in

Tables 2 and 3 respectively. When SecNet is trained, validated, and tested on data derived using

Rule #2, which is easier to predict [28, 91], it has a higher accuracy of 86.0%.

We also tested SecNet with the popular CB513 test set derived by Cuff and Barton in 1999

for benchmarking of competing secondary structure prediction software [91] and adopted for

accuracy assessment many times [75, 77, 79, 80, 83]. CB513 has several deficiencies. First, dis-

ordered residues that have no atoms present in the coordinates are deleted from the sequences

and the DSSP strings altogether. This means that sequence profiles and HMMs will be dis-

torted since proteins in the sequence database will seem to have insertions relative to the query

protein even when they do not. Second, it has relatively poor average and maximal resolutions

(2.11 Å and 3.5 Å) compared to sets that can be derived from the PDB today (e.g., the Test2018
test set has average and maximal resolutions of 1.83 Å and 2.2 Å). The CB513 data set protocol

initially required� 2.5 Å resolution; however, 5% of its entries have resolution between 2.5

and 3.5 Å resolution. Moreover, 32% of CB513 entries have free R-factor in the worst 25th per-

centile of the deposited structures in the PDB. Such models raise doubts about the quality of

the refined structures [94]. Third, CB513 has sequences of PDB chains that are fragmented

into domains, which results in sequences 2.2 times shorter on average than their full PDB

chains. CB513 has sequences as short as 20 amino-acid residues; 5% and 20% of chains in

CB513 are shorter than 40 and 80 residues respectively. Finally, secondary structure labels

were generated with an obsolete version of DSSP that was available in 1998.

parentheses) in input and output of each layer. The total number of parameters to train is about 2 million. The

activation layer returns 3 probabilities for the 3 labels:H, E, and C of the central amino acid which are calculated with a

softmax activation function. The label with the highest estimated probability is the predicted label.

https://doi.org/10.1371/journal.pone.0232528.g002
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Nevertheless, because we eliminated proteins from our training and validation sets with

more than 25% sequence identity with any chain in CB513 (Fig 1), we can fairly compare Sec-
Net with numerous previous reports on CB513. We benchmarked SecNet on CB513 and calcu-

lated 8-label, Rule #1 3-label, and Rule #2 3-label accuracies of 72.3%, 84.3%, and 86.3%

respectively (Table 4), which are close to the Test2018 accuracies with -0.7%, +0.3%, and

+0.3% differences; a lower value for 8 DSSP labels may be related to the CB513 deficiencies

described above.

Concerned with discrepancies in X-ray crystal structures with resolution up to 2.2 Å in

Set2018 and up to 3.5 Å in CB513, we explored more stringent structural quality parameters

that result in smaller training and test sets, but may result in higher prediction accuracy since

secondary structures may be more accurately determined especially for 8 labels. To test this,

Table 2. Confusion matrices for 8-label alphabet: H, E, C, T, S, G, B, and I. (1) Confusion matrix, (2) true positive rates (recalls) and false negative rates and (3) positive

predictive values (precisions) and false discovery rates of SecNet on Test2018 test set.

Confusion matrix of 37,620 test labels

Accuracy Pred. freq. True label

73.0% H E C T S G B I

True freq. 100% 33.26 23.31 19.27 10.94 8.24 3.70 1.24 0.05

Predicted label H 36.88 31.33 0.40 1.34 2.15 0.51 1.03 0.09 0.03

E 25.00 0.28 19.95 2.85 0.52 0.83 0.26 0.31 0.00

C 23.18 0.86 2.38 13.07 1.88 3.59 0.81 0.60 0.00

T 9.52 0.50 0.31 1.07 5.71 1.26 0.54 0.13 0.00

S 3.40 0.04 0.22 0.74 0.37 1.92 0.07 0.04 0.00

G 1.94 0.24 0.04 0.20 0.32 0.13 0.99 0.02 0.00

B 0.06 0.00 0.01 0.01 0.00 0.00 0.00 0.03 0.00

I 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Column normalized table True label

H E C T S G B I

100 100 100 100 100 100 100 100

Predicted label H 94.21 1.72 6.95 19.61 6.20 27.87 7.53 66.67

E 0.86 85.57 14.77 4.76 10.04 6.97 25.38 0.00

C 2.59 10.22 67.80 17.15 43.58 21.77 48.60 0.00

T 1.50 1.35 5.53 52.16 15.27 14.73 10.32 5.56

S 0.11 0.95 3.85 3.38 23.30 1.94 3.44 0.00

G 0.73 0.16 1.06 2.92 1.58 26.65 1.94 0.00

B 0.01 0.03 0.04 0.02 0.03 0.07 2.80 0.00

I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.78

Diagonal has True positive rates (Recalls) Elsewhere False Negative Rates

Row normalized table True label

H E C T S G B I

Predicted label H 100 84.94 1.09 3.63 5.82 1.38 2.80 0.25 0.09

E 100 1.14 79.80 11.39 2.08 3.31 1.03 1.25 0.00

C 100 3.72 10.27 56.37 8.10 15.48 3.47 2.59 0.00

T 100 5.25 3.30 11.20 59.95 13.21 5.72 1.34 0.03

S 100 1.09 6.49 21.80 10.86 56.40 2.11 1.25 0.00

G 100 12.44 1.92 10.53 16.41 6.70 50.75 1.23 0.00

B 100 4.36 13.00 12.96 4.31 4.32 4.37 56.68 0.00

I 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0

Diagonal has positive predictive values (Precisions) Elsewhere False Discovery Rates

https://doi.org/10.1371/journal.pone.0232528.t002
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we followed the same protocol to produce training, validation, and test sets with a 1.8 Å cutoff

(‘HigherRes’ sets), and then retrained the SecNet neural network. We then benchmarked Sec-
Net on the 1.8 ÅHigherRes and CB513 test sets. The 3-label accuracies are lower by 0.3–0.5

points for both test sets; 8-label accuracy is the same for the new test set compared to the 2.2 Å
test set; it is lower by 0.3 points for CB513 (rows 1, 4 vs. 5–6 in Table 4). The modest decreases

are likely due to (1) the smaller data set size– 1,224,479 vs. 2,074,301 amino acids in the 1.8 Å
and 2.2 Å data sets respectively and (2) a small impact from the ground-truth secondary-struc-

ture assignment at the higher resolution of 1.8 Å. Since SecNet has approximately the same

accuracy on the 2.2 Å Test2018 as it has on the 1.8 ÅHigherRes, and since the 2.2 Å training

and testing sets are much larger, all further results, discussion, and final benchmarking are

reported on Test2018 at 2.2 Å resolution.

We repeated the testing set preparation protocol for 2018–19 PDB entries with unchanged

Set2018 training/validation sets and generated Test2019 and Test2018-19 covering extra 14

months and total 24 months instead of 10 months of Test2018. For exact dates, please refer to

Methods. Prediction accuracies for Test2019 and Test2018-19 are higher by 0.2–1.0 percentage

points than for Test2018 (Table 4) and suggest a higher proportion of harder prediction targets

among the selected 2018 proteins than the selected 2019 proteins.

Next, we compared SecNet with 12 fifth-generation template-free methods with reported

CB513 accuracies in recent publications (Table 5). Our SecNet accuracies are 2–9 percentage

points higher than 11 out of 12 previous methods with only eCRRNN reporting a higher accu-

racy by 1.7 points on 8-label predictions and 1.1 points higher on 3-label predictions. We

chose to test eCRRNN directly as well as DeepCNF, both having the highest reported accuracies

Table 3. Rule #1 of the popular 3-label (H, C, and E) alphabet: (1) confusion matrix, (2) true positive rates (recalls)

and false negative rates and (3) positive predictive values (precisions) and false discovery rates of SecNet.

Confusion matrix of 37,620 test labels

Accuracy1 Pred. freq. True label

84.0% C H E

True freq. 100% 38.5 37.0 24.5

Predicted label C 41.0 32.1 3.9 5.1

H 36.8 3.5 32.8 0.4

E 22.2 2.8 0.3 19.1

Column normalized table True label

C H E

100 100 100

Predicted label C 83.4 10.4 20.6

H 9.2 88.7 1.8

E 7.4 0.9 77.6

Diagonal has TPRs Elsewhere FNRs

Row normalized table True label

C H E

Predicted label C 100 78.3 9.4 12.3

H 100 9.6 89.2 1.2

E 100 12.8 1.5 85.8

Diagonal has PPVs Elsewhere FDRs

The most common and harder 3-label (H, C, E) Rule #1 is defined as (G, I)! H, (B)! E and (B, S)! C. Depending

on different studies, it is 2–3 percentage points lower in accuracy than easier Rule #2.
1The overall accuracy is summation of the main diagonal of the confusion matrix.

https://doi.org/10.1371/journal.pone.0232528.t003
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on CB513. DeepCNF uses a CNN with 5 layers and conditional random field as an additional

layer and as input includes 42 features for each residue: 21 from a PSSM profile and 21 from

one-hot encoding. DeepCNF has an effective window size of 51 amino acids. The eCRRNN
architecture combines 6 blocks as a mixture of convolutional, residual and bidirectional recur-

rent NNs. The input to eCRRNN consists of 50 features for each residue– 20 values from a

PSSM profile, 7 physical properties, a conservation score, and a set of twenty-two 22-dimen-

sional orthogonal vectors. The second-block BRNNs process the full amino-acid sequence by

reading all residues on the left and right from the residue subject to prediction, making the

window width effectively unlimited.

Table 4. Prediction accuracy of our SecNet software in 3 categories of labels on 5 test sets.

Training set Testing set SecNet Accuracy in 3 categories Testing set size

8 labels 3 labels #Proteins #Amino acids

harder Rule #1 easier Rule #2

Set2018, 2.2Å Test2018, 2.2 Å 73.0 84.0 86.0 149 37,620

Test2019, 2.2 Å 74.0 84.7 86.5 220 50,590

Test2018-19, 2.2 Å 73.7 84.5 86.2 352 80,666

CB513 72.3 84.3 86.3 513 84,091

HigherRes, 1.8Å HighRes, 1.8 Å 73.0 83.5 85.6 67 14,791

CB513 72.0 84.0 86.0 513 84,091

Prediction accuracies are measured in 3 categories: 8 DSSP labels; the most common and harder 3-label Rule #1: (H, G, I)! H, (E, B)! E, (rest 4 labels)! C; and

easier 3-label Rule #2: (H)! H, (E)! E, (rest 6 labels)! C. The 2.2 Å and 1.8 Å training sets have about 2 and 1 million residues respectively. The training and

matching test sets share < 25% sequence identity in all cases. Six SecNetmodels were independently trained for 3 categories of labels x 2 training sets.

https://doi.org/10.1371/journal.pone.0232528.t004

Table 5. CB513 accuracy of the 5th-generation template-free secondary-structure prediction methods.

Method Seq id of CB513 and training data 8 labels Harder 3-label Rule #1 Easier 3-label Rule #2

accuracy source diff accuracy source diff accuracy source diff

Our SecNet (2019) < 25% 72.3 authors 0.0 84.3 authors 0.0 86.3 authors 0.0

eCRRNN (2018) unspec 74.0!70.2 auth!calc -2.1 81.2 calculated -3.1 87.3!84.3 auth!calc -2.0

MUFOLD-SS (2018) unspec 70.6 authors -1.7 - - - 82.7 eCRRNN -3.6

CNNH_PSS (2018) < 25% 70.3 authors -2.0 - - - - - -

DCRNN (2016) < 25% 69.7 authors -2.3 - - - 84.0 authors -2.3

DCNN (2017) < 25% 70.0 authors -2.6 - - - - - -

DeepCNF (2016) < 25% 68.3!69.1 auth!calc -3.2 82.3!81.8 auth!calc -2.5 - - -

BLSTM (2015) < 25% 67.4 authors -4.9 - - - - - -

GSN (2014) < 30% 66.4 authors -5.9 - - - - - -

SSpro, free (2014) Any 63.5 DeepCNF -8.8 78.5 DeepCNF -5.8 - - -

JPRED4 (2015) Any - - - 81.7 DeepCNF -2.6 79.6 FSVM -6.7

FSVM, free (2018) < 25% - - - - - - 82.9 authors -3.4

SPIDER2 (2015) Any - - - - - - 81.2 FSVM -5.1

PSIPRED (1999) Any - - - 79.2 DeepCNF -5.1 - - -

CB513 accuracies were compiled from recent papers of the fifth-generation, template-free methods. Accuracy taken from an original publication has “authors” tag. If a

study did not utilize the CB513 test set but a third-party benchmarked the method, the latter source is reported instead and the sequence identity to CB513 is listed as

“Any.” Some “authors” papers did not specify an identity cutoff between their training set and test sets, including CB513 (“unspec”). The widely used PSIPRED program

belongs to the third generation. We recalculated the eCRRNN and DeepCNF accuracies (“calc.”) with the original CB513 (indicated after the!). eCRRNN, DCRNN and

BLSTM employ bidirectional recurrent NNs;MUFOLD-SS applies an inception and residual NN; CNNH_PSS has a residual NN only; GSN uses a convolutional

generative stochastic network; DCNN is a conditional residual CNN; FSVM stands for fuzzy SVM; the remaining methods are CNNs.

https://doi.org/10.1371/journal.pone.0232528.t005
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Since DeepCNF and eCRRNN were submitted for publication prior to the end of 2018, our

Test2018 set is independent of their training sets (at 25% sequence identity). We applied both

methods to the Test2018 test sequences, and determined that our SecNet has higher accuracies

than DeepCNF by 3.3–3.4 percentage points (Table 6). Our method’s accuracies are 2.0–2.2%

higher than eCRRNN on Test2018. Next, we ran both of these methods on the original CB513
test set. The DeepCNF accuracies that we calculated on CB513 closely reproduce those of the

authors with slightly higher 8-label and slightly lower 3-label accuracies (Table 5). When the

authors tested DeepCNF on CB513, they excluded 31 shorter entries, and this may account for

these small observed differences. In contrast, our recalculated CB513 accuracies for eCRRNN
indicated that the authors overestimated their accuracy by 3.0–3.8 percentage points (Table 5).

We excluded the possibility that we incorrectly executed the eCRRNN software by reproducing

their results for the three tests sets included with their software. With these findings we

updated the CB513 accuracy for eCRRNN in Table 5 with our calculated values. With these

accuracy revisions, SecNet is more accurate than eCRRNN by 2.0–2.2 points on Test2018 and

2.0–3.1 points on CB513, depending on the label set.

The difference in accuracy of the earlier programs (DeepCNF and eCRRNN) may be due

either to the NN architecture and training procedures, and/or the training and testing data,

including the sequence database used to derive PSI-BLAST or HMM profiles. Because we have

these data available from the authors of DeepCNF, we decided to investigate how well the Sec-
Net architecture and training pipeline would behave with the training/testing data and

sequence database used by the DeepCNF authors. In Table 7 we report these values when

DeepCNFmodel with its original data set and sequence database chosen as a baseline. We re-

trained the SecNet model for several combinations of the components and re-tested it on

Test2018 and CB513. It turns out that the major accuracy improvement comes from the opti-

mized NN architecture and other hyper-parameters with 2.2–2.4 point and 1.9–2.2 point

increases for Test2018 and CB513 respectively. Our sequence database is more recent (2017)

than theirs (2015). A sequence database upgrade by 2 years from 2015 to 2017 brings addi-

tional 0.2–0.4 and 0.2 point improvements for Test2018 and CB513. The expansion of the

training data set from 5.6 to 8.6 thousand proteins of higher quality has a stronger rewarding

effect of 0.4-0.5 and 0.4–0.9 points for Test2018 and CB513 respectively. Both our larger

sequence database and large training data set bring a cumulative effect of 0.8–1.2 points and

0.6–1.0 points for Test2018 and CB513 which is equal or greater than a sum of individual

effects. The accuracy increments in both testing sets and among 3 label types are consistent.

The Rule #2 3-label results cannot be compared to DeepCNF baseline since it was not individu-

ally trained for that alphabet.

Several programs (including eCRRNN) in Table 5 do not specify a similarity cutoff

(“unspec”) between training and test sets. Some apply a higher value [81, 92] than the com-

monly used 25%, and one program, PSRSM [84], did not mention any similarity exclusion

technique between these sets in their publication. When training set proteins similar to the

testing set are not excluded properly, it is likely that such methods overestimate their accuracy

Table 6. Benchmarking of SecNet, DeepCNF, and eCRRNN on Test2018.

Test set Method 8 labels 3 labels

harder Rule #1 easier Rule #2

accur diff accur diff accur diff

Set2018 SecNet 73.0 0.0 84.0 0.0 86.0 0.0

eCRRNN 70.8 -2.2 81.8 -2.2 84.0 -2.0

DeepCNF 69.6 -3.4 80.7 -3.3 - -

https://doi.org/10.1371/journal.pone.0232528.t006
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by overtraining. Accuracy may also be overestimated when a single data set is used as both val-

idation set and testing set. To demonstrate this, we compared the accuracy on our testing set

and our validation set achieved during training. As expected, the accuracy on the validation set

is higher than the accuracy on the test set by 2.5% (75.5% vs. 73.0%) for 8-labels and 2.1%

(86.1% vs. 84.0%) for Rule #1 (Table 8). The accuracy on the training set is 6.8 points higher

(79.8% vs. 73.0%) for 8 labels and 4.3 points higher (88.3% vs. 84.0%) for Rule #1 3-label pre-

dictions. The striking over-estimation for the validation and training sets demonstrates the

importance of separate training, validation, and testing data sets. As another test, if we ran-

domly permute proteins and split them into different validation and training sets with the 1:9

ratio many times (testing set is unchanged), individually train each, and select the best model

based on the highest validation accuracy, we gain additional 2.3 and 2.0 point improvements

Table 7. Sources of SecNet accuracy improvement as measured on Test2018 and CB513.

Training Test2018 CB513

Method Dataset for training Sequence database for train & testing 8 labels 3 labels 8 labels 3 labels

Rule #1 Rule #2 Rule #1 Rule #2

accur diff accur diff accur accur diff accur diff accur

DeepCNF theirs Theirs 69.6 0.0 80.7 0.0 N/A 69.1 0.0 81.8 0.0 N/A

SecNet theirs Theirs 71.8 +2.2 83.1 +2.4 85.0 71.3 +2.2 83.7 +1.9 85.6

SecNet theirs Ours 72.0 +2.4 83.5 +2.8 85.5 71.5 +2.4 83.9 +2.1 85.7

SecNet ours Theirs 72.3 +2.7 83.5 +2.8 85.4 72.2 +3.1 84.1 +2.3 86.2

SecNet ours Ours 73.0 +3.4 84.0 +3.2 86.0 72.3 +3.2 84.3 +2.5 86.3

The sources of SecNet accuracy improvement include (1) more suitable NN architecture, other hyper-parameters, and training pipeline, (2) a larger sequence database,

and (3) a larger data set with stricter quality controls. These are measured by re-training SecNet using the data set and original sequence database from the DeepCNF
original publication.

https://doi.org/10.1371/journal.pone.0232528.t007

Table 8. Evidence of prediction accuracy overestimation of SecNet on Set2018 validation and training sets relative

to the test set.

Set2018 Accuracy

SecNet Diff. from Test

3 labels, Rule #1 Test 84.0 0.0

Validation 86.1 +2.1

Favorable Validation 88.0 +4.1

Training 88.3 +4.3

8 labels Test 73.0 0.0

Validation 75.5 +2.5

Favorable Validation 77.8 +4.8

Training 79.8 +6.8

The test accuracy was probed only once for reporting accuracy results. Accuracy probes on the validation set were

done multiple times for design decisions (~10s of times), hyper-parameter tuning (~100s), saving the best model

during training (~100 probes per training x ~1,000s trainings = ~10,000s), and rejecting more complex SecRes
residual NN (~10s). The “favorable validation” accuracy was achieved by splitting the whole training set with a 1:9

ratio into validation and reduced training sets more than 10 times (~100s). The models were individually trained,

and the validation set with the best accuracy was chosen. The training set accuracy was probed few million times per

training (~1,000,000s) during gradient-descent optimization. It is considerably below 100% owing to the

regularization technique with 30% dropout. The overestimated numbers underline the importance of having separate

test, validation, and training sets and probing the test set only once for reporting unbiased results.

https://doi.org/10.1371/journal.pone.0232528.t008
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in the 8-label and Rule #1 3-label validation accuracy with no improvement in the test accuracy

(Table 8). In this case, the validation accuracy is boosted due to a favorable random re-distri-

bution of proteins in the training and validation sets.

Finally, the accuracy of secondary structure prediction methods for 3 labels depends on the

helix, sheet, and coil fractions in the test set. If we oversample E orH, we can vary the accuracy

from 78% to 89% accuracy respectively (Fig 3). As it turns out, our training and test sets and

Fig 3. Variation of 3-label Rule #1 accuracy as a function of proportions of helix (H%), sheet (E%) and coil (C% = 100%–H%–E%)

in Test2018 test set. The Rule #1 accuracy of SecNet on Test2018 test set is 84.0% and shown with ‘+’. The contour plot demonstrates

how SecNet prediction accuracy can be skewed if a test set is enriched or diluted with helix and/or sheet. For example, if the underlying

test set has 100% helices, the accuracy rises to 88.7% (bottom right). If it is 100% sheet, the accuracy drops to 77.6% (top left). If it is

100% coil, the accuracy is 83.4% (bottom left). The extrapolated SecNet accuracies are indicated for the label proportions of Set2018
training set with ‘x’, CB513 test set with ‘�’ and ten validation sets for each cross-validation round of Set2018 with ten ‘.’.

eVal1.0_SeqID25% has label frequencies almost identical to Test2018 and shares ‘+’. For the same reason Test2019, Test2018-19 and

Same_ECOD_SeqID25% share ‘□’ while ECOD_SeqID25% and eVal1.0_ECOD_SeqID25% are shown with ‘o’. The differences in

extrapolated accuracies of these sets call for adjustment of the actual accuracies (“Raw values” in Table 9) to the accuracies with the same

label proportions (“Adj. to Test2018” in Table 9).

https://doi.org/10.1371/journal.pone.0232528.g003
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CB513 are very similar to each other in terms of the 3-label fractions of both Rule #1 with 37%,

24%, and 39% and Rule #2 with 34%, 23%, and 43% for helix, sheet, and coil respectively (Fig 3

and Table 3). This should be kept in mind when deriving new test sets.

One further aspect of deriving training and testing data sets for secondary structure predic-

tion (or other structure prediction tasks) is the evolutionary relationships (if any) between any

protein in the training/validation set and the testing data set. It is common to use a maximum

sequence identity of 25% between proteins in the training/validation sets and the testing set

(the sequence identity within each set is a distinct parameter). At this sequence identity, it is

likely that there are many pairs of homologous proteins shared by the training/validation and

testing data sets. It is possible that PSI-BLAST and HMM profiles may be quite similar for two

proteins that are homologous but less than 25% identical, and this presents a risk of overtrain-

ing. Stricter criteria for separating related proteins are: (1) enforcement of an e-value< 1.0 in

a pairwise sequence alignment; (2) association with two different protein super-families

according to a structure-based classification; (3) fulfillment of both requirements, each of the

three in addition to the < 25% sequence identity byHHblits and Clustal-Omega. For the pair-

wise sequence alignment, we used the PSI-BLAST profiles derived from Uniref90 database

with two rounds exactly as it had been done for SecNet features during training. For the struc-

tural classification, we used the ECOD database (Evolutionary Classification of Domains)

[102], which rigorously groups protein domains into broad classes (the X level, such as all-heli-

cal proteins) and then “homology groups” (the H level), which places all homologous domains

into single groups. The H level classification includes very remotely related proteins and is per-

formed manually by the Grishin group with extensive expertise in identifying such relation-

ships. Underneath the H level, there is a topology (T) level and protein family (F) level. Some

homologous proteins may have additional elements of secondary structure and therefore,

somewhat different topologies even though they share a (remote) evolutionary relationship.

Some protein chains or entries were missing in ECOD and required extensive processing

(refer toMethods).
We created four new testing sets as follows. First, from the Test2018-19 set of 352 test pro-

teins, we removed any protein with a PSI-BLAST e-value < 1.0 with any protein in the train-

ing/validation set. This set is called eVal1.0_SeqID25% and has 95 proteins. Second, using

ECOD to remove homologous proteins (with the same X.H group domains) of the training/

validation set from Test2018-19, however, resulted in only 60 proteins. To increase the number

of proteins using ECOD, we first selected proteins within the entire PDB of any year having

ECOD domains different from the ones in Set2018 training and validation sets and then

enforced the same requirements of the sequence identity, resolution and R-factor as in

Test2018-19. This set, in ECOD_SeqID25%, has 190 proteins. Third, eVal1.0_ECOD_Se-
qID25% was formed by applying the e-value< 1.0 requirement between each protein in

ECOD_SeqID25% and each protein in Set2018 training and validation sets. Fourth, and finally,

we created a positive control testing set (Same_ECOD_SeqID25%) of proteins from Test2018,
Test2019, Test2018-19 that share an ECOD H-level with proteins in the Set2018 training and

validation sets. These should be easier than the first three sets just described. Finally, because

secondary structure prediction accuracy can depend on the proportions of helix, sheet, and

coil in a test set and these sets indeed demonstrate variation in label frequencies (Fig 3), we

adjusted the accuracy on each of these sets by scaling them to the proportions of each second-

ary structure type (3 labels or 8 labels) as in the Test2018 set.

In Table 9 we present SecNet accuracy results on the control set and 3 testing sets with stric-

ter criteria on homology relationships. We include both the raw results and the accuracies

adjusted for label content. In the raw results, the more remote testing sets are at most 1.4

points lower in accuracy than the original testing sets (Test2018, Test2019, Test2018-2019). In
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the results adjusted for label contents, the more remote sets are up to 3 points worse than the

original testing sets. This suggests that a criterion of unrelated proteins based on the sequence

identity < 25% used in this study and many similar studies is imperfect; a more accurate esti-

mate of the prediction accuracy is achieved by applying the additional criteria. However, the

difference is not very large. In the case of the control testing set (Same_ECOD_SeqID25%)

with each protein sharing at least one ECOD domain in the training set, the results are at most

3 points higher than the most remote sets.

Choices that affect the accuracy of secondary structure prediction

We explored many different ideas and options during the development of SecNet. We can

divide these choices into three categories: (1) neural network type, architecture, and complex-

ity; (2) input features; and (3) how to perform training of the neural network. After optimizing

hyper-parameters (optimization strategy inMethods), final training of SecNet using the valida-

tion set multiple times and probing the Test2018 set only once to report the final performance

(Table 4), we performed an ablation study of the effect of these factors on the 8-label testing

accuracy. Some of the necessary CNNs were produced during the development of SecNet and

some needed to be generated for the ablation study. The results are shown in Fig 4. The first

line of the figure lists the three accuracy measures achieved by making various choices shown

in the rest of the figure: 86.0% for the 3-label accuracy from Rule #2 (H!H; E!E; all others

!C), 84.0% for the 3-label accuracy from Rule #1 (G,H, I!H; B, E!E; all others C), and

73.0% for the 8-label accuracy. Starting from the middle of the second line, using a “larger

HMM DB”, “4 days of training instead of 1”, and “ensemble of 10 models” raise the accuracy

from 72.0% to 73.0% in increments of 0.1, 0.3, 0.6 points respectively. A majority of individual

accuracy improvements in the figure are a fraction of a percent; it is the cumulative effect of

many choices that makes a significant improvement in accuracy.

Each line below the second line ablates one of the factors, such as a feature, algorithmic, or

training choices described in a blue rectangular box; the highest testing accuracy of 72.0% is

shown in the middle of the figure achieved with a set of the locally optimal parameters found

during the optimization (refer toMethods) using the validation set. The accuracy as a function

of the hyper-parameters has numerous local maxima. Our optimization strategy did not lead

to the global maximum; at best, it found the maximum with the highest accuracy among a

Table 9. Prediction accuracy of our SecNet software trained on Set2018 and tested on sets with stricter criteria of unrelated proteins.

Test set Criteria of unrelated proteins Accuracy # of proteins in test set

Adj. to Test2018 label

proportions†
Raw values

Seq.ID <25% eVal <1.0 Diff. ECOD 8 labels 3 labels, Rule #1 8 labels 3 labels, Rule #1

Same_ECOD_SeqID25% + - control 74.6 85.1 74.0 84.9 250

Test2019 + - - 74.4 84.8 74.0 84.7 220

Test2018-19 + - - 74.1 84.7 73.7 84.5 352

Test2018 + - - 73.0 84.0 73.0 84.0 149

eVal1.0_SeqID25% + + - 72.3 83.5 72.6 83.5 95

ECOD_SeqID25% + - + 72.0 83.1 73.8 83.9 190

eVal1.0_ECOD_SeqID25% + + + 71.5 82.6 73.1 83.4 72

† Testing sets have varying proportions of 3 and 8 ground-truth labels. Some labels such as alpha helix (H) are the easiest to predict both in 3 and 8 labels while some

labels such as beta sheet (E) in 3 labels or bend (S) or bridge (B) in 8 labels are harder to predict. To make the testing sets comparable, we also adjusted their overall

accuracies to the same label proportions as in Test2018 set.

https://doi.org/10.1371/journal.pone.0232528.t009
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Fig 4. Ablation study of Test2018 accuracy of SecNet. Accuracy is presented as a function of factors (blue boxes in the middle) from 3

groups: 1) NN architecture and complexity (top); 2) input features and databases (center); and 3) hyper-parameters of the training

pipeline (bottom). The test accuracies displayed in black uncover unbiased estimates for publication purposes after all choices of the final

model parameters were made; the validation set was used to make these choices of hyper-parameters using our optimization strategy.

Lines 1–2: Actions such as “4-day training” or “ensemble of 10 cross-validated models” led to further improvement. Line 1: The accuracy

increases with switch of 8!3 labels by replacing a harder Rule #1 to easier Rule #2 and with a weaker 25%!50% maximal sequence

identity between the test and training sets. Each arrow indicates a direction of favorable parameter change and embeds associated

accuracy gain. Parameter values are in blue. The optimal parameter values are highlighted in yellow and shown in the middle with

smaller and larger values on the left and right. The cumulative effect from multiple changes of the same hyper-parameter is a sum of

individual accuracy increments (in black). Stronger effects (�1 point) are shown in green. The accuracy is a non-linear function of

hyper-parameters; an effect from a change of multiple hyper-parameters is not the sum of the accuracy increments associated with the

different hyper-parameter changes while the remaining parameters are fixed.

https://doi.org/10.1371/journal.pone.0232528.g004
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limited number of local maxima tested. Non-optimal parameters are ordered on the left and

right with lower and higher values compared to the optimal values respectively. The accuracy

as a function of hyper-parameters is highly non-linear; its change is not a sum of individual

accuracy changes associated with individual hyper-parameter variations. Many subsets of

hyper-parameters such as (learning rate, momentum, decay) or (network depth, convolutional

width) exhibit a strong interaction and have been optimized together. In the ablation study we

only demonstrate ablation of a single factor away from the local optimum while keeping the

remaining hyper-parameters fixed.

The first category of choices involves the architecture of the neural network and its com-

plexity. For example, secondary structure formation is influenced by short, middle, and long-

range inter-residue interactions. We were interested to see how the accuracy relates to the size

of the sequence “input window” (line 3 in Fig 4) centered on a residue subject to prediction.

To investigate this, we varied the input window size, and observed increasing accuracy from

69.5 to 71.9% for a window of 9 to 27 (left), the highest 72.0% for the optimal window of 29

(middle) and subsequent degradation to 71.9% for a window of 31 to 39 (right). The severe

degradation of the accuracy (1.7–2.5 points) was observed for 9–13 amino-acid-wide windows,

moderate reduction (0.1–1.1 points) was for 17–27 wide windows and very minor decrease

(0.1 points) was for 31–39 wide windows.

Another important factor in secondary structure prediction accuracy is the kind of neural

network, convolutional filter width, and the number of layers. The 4-layer NN is more accurate

by 1.7 and 1.1 points than 3-layer and 2-layer NNs and by 0.1 and 0.3 points than 5-layer and

6-layer NNs (line 4). Wang et al. made a similar observation of accuracy saturation at 5–7 lay-

ers [75]. The convolutional filter width of 7 is the most accurate; there is slight accuracy degra-

dation of 0.1 and 0.4 points with wider and narrower filter widths of 9 and 5 respectively.

Further expansion of the width by 2 drops accuracy by additional 0.2 points each time while

narrowing of the filter width from 5 to 3 severely decreases accuracy by an additional 1.2

points. The filter narrowing below 7 is more damaging than expansion because 310-, α- and π-

helices form hydrogen bonds between amino-acid residues with 3, 4 and 5 residues apart, and

an average length of beta strands is about 6 [103].

We also tested a more complex residual neural network with 20–40 layers and a 21–51

amino-acid window size, and observed the same or worse accuracy than SecNet’s traditional

CNN with 4 layers (Fig A in S1 File). We underline that the residual neural networks did not

fail and produced the same accuracy with several different architectures; the residual neural

networks were abandoned due to their higher complexity both during training and final appli-

cation. Coupled with the results from Table 5, we conclude that a CNN is adequate for second-

ary structure prediction, despite availability of newer and more complex neural architectures.

The second category of choices consists of the features used as NN inputs. The use of

sequence profiles, as demonstrated by many programs over the last 30 years, has a strong posi-

tive impact on accuracy (line 6). If both the PSI-BLAST andHMM features are disabled, the

accuracy drops from 72.0% to only 56.2% (“HMM off; no rounds”), contributing to the largest

observed impact of all factors we explored in the ablation study. When eitherHMM or PSI--
BLAST are individually enabled, the accuracy jumps to 66.6% and 71.6% respectively.

A choice of database for the PSI-BLAST searches is not that critical. Uniref90 is only 0.3

points better than the NR non-redundant sequence database from NCBI (line 8), probably

because for some targets NR produces too many nearly identical hits, and subsequently skews

the PSI-BLAST profile too much in their favor. There is a PSI-BLAST command-line argument

that determines how many of the top hits are included in a profile; if the profile is limited to

the top 15 hits, the accuracy suffers by a hefty 2.7 points for NR (“NR; partial” vs. NR’s “com-

plete” in line 8) and only 0.6 points for Uniref90 (line 9). PSI-BLAST produces profiles both in
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log-odds form and amino-acid percentages. The log-odds form (“score”) is better than the per-

centage values by 2.5 points (line 10). It is common to use a sigmoid function to transform a

feature into a 0 to 1 range. The log-odds score is also better than their sigmoid function values

(“sigmoid(score)”)—by 0.5 points.

PSI-BLAST profiles generated after a certain number of rounds have a significant effect

(line 7). Profiles obtained from the third, fourth, and fifth rounds contain homologues that are

very distant from a target sequence and therefore may contain significant differences in sec-

ondary structure, which seem to adversely affect the accuracy. The accuracy of neural networks

trained on profiles after the third, fourth, and fifth rounds alone drops respectively by 1.7, 2.2,

and 2.7 percentage points relative to the best option which includes both profiles after the first

and second rounds. This best option is higher by 0.5 and 0.7 points than using the first or sec-

ond round profiles alone. We observe a steady but modest degradation of accuracy by 0.0 or

0.2 or 0.4 points when a combination of rounds 1–3, 1–4, or 1–5 are used. A possible explana-

tion is that the additional rounds decrease the data/parameter ratio. The round 2–3 combina-

tion is worse by 0.9 points than the round 1–2 combination.

The third category of choices involves the training options. A difference in training data set

size of 1 or 2 million amino-acids has no effect, but a 10-fold training data set reduction to 100

thousand amino acids pushes accuracy down by 3 percentage points (line 11). For regulariza-

tion, we chose the dropout technique by adding a dropout layer at each NN layer (including

the input and dense layers) which effectively randomly sets 30% of the input features and

model parameters to zero during each minimal training iteration with a subsequent restora-

tion (line 12). This approach results in 1.6 points higher accuracy compared to training with-

out any dropout. The 30% dropout is optimal; the accuracy drops when dropout is either

decreased or increased from 30%. CNN is relatively insensitive to small changes in learning

rate from 0.01 and momentum from 0.900. However, larger deviations from these values result

in significant accuracy losses; for example, the accuracy loses 0.3–1.8 points and 0.4–1.2 points

when the learning rate is 0.001–0.005 and 0.05–0.1 respectively (line 13). A momentum of

0.500 instead of 0.900 results in a 1.4 points drop while a value of 0.990 reduces accuracy by

10.8 points (line 14).

Each weight update in training our network involves calculating derivatives of the loss func-

tion for a batch of data, called a “mini-batch.” If the mini-batch is too small, then the calculated

derivatives will be too noisy; mini-batch sizes of 16–64 instead of 256 amino acids produced

losses of 0.1–4.1 points in accuracy. A mini-batch size that is too large may produce too stable

loss function gradient and may result in premature convergence of the model to a less optimal

set of parameters; mini-batch sizes from 1,024 to 16,384 resulted in a loss of 0.8–4.6 points

(line 15).

In order to find a better optimum during the training and especially toward its end, it is

critical to reduce the size of gradient-descent steps by decreasing the current learning rate

(“decay”). A formula-based decay of “learning rate / epoch total” which is equal to 10−5 with

the optimal learning rate of 0.01 and 650 epochs for 4 days, is better by 0.6 points than no

decay (0.0) or smaller decay of 10−6; it is also better by 0.6, 2.8 and 6.7 points than a larger

decay of 10−4 or 10−3 or 0.01 respectively (line 16). Finally, if we permute proteins in the whole

data set minus the unchanged testing set and split them into different training and validation

setsmany times, the validation accuracy becomes overestimated by 2.3 points due to easier tar-

gets in the favorable random validation set; however, we observe no improvement in the test-

ing accuracy. Linear or non-linear random sampling of central residues either within proteins

or the complete training set had no effect on the validation or testing accuracies. Other train-

ing options were described earlier (lines 1–2), resulting in a final accuracy of 73.0%.
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We conclude that the best results are achieved with good choices for input features,

sequence databases and arguments, and the training pipeline and regularization techniques. It

appears that the NN type, architecture and complexity, and the associated number of training

parameters are not as critical as long as the NN is not too simple.

Practicality of secondary structure prediction: Which and how many labels

Most existing secondary structure prediction programs have been trained and tested on either

8-label or 3-label data sets. In most cases, the 8 DSSP labels are reduced to 3 by treating 310

helices (“G” in DSSP) and π helices (“I” in DSSP) asH, and single-residue beta strands (beta

bridges or “B” in DSSP) as E; the other labels (“C” or coil, “T” or turns, “S” or bends) are

reduced to C. We wondered how label sets with more than 3 but fewer than 8 labels would

behave and how these might be developed.

To investigate this, we calculated the confusion matrix for 8-label SecNet (Table 2) and both

the column and row-normalized versions of the confusion matrix. The column-normalized

table (Table 2, middle) provides true positive rates (“recalls”) along the main diagonal

(TPR = TP/(TP+FN)) and false negative rates (FNR = FN/(TP+FN)) off the diagonal; the row-

normalized table (Table 2, bottom) reports positive predictive values (“precisions”) along the

diagonal (PPV = TP/(TP+FP)) and false discovery rates off the diagonal (FDR = FP/(TP+FP)).

The column-normalized confusion matrix shows that only labelsH, E, C, and T have true

positive rates over 50%. The TPR for beta bridges (“B”) is only 2.8%. Experimental G and I are

predicted asHmore often than their true labels. Bends (“S”) are predicted as C almost twice as

often as they are predicted as S. The row-normalized confusion matrix shows that all 8 labels

have positive predictive values over 50%, but they are more than 60% for onlyH (85%), E
(80%), and I (100%). I labels, however, are only 0.05% of the true labels and 0.01% of the pre-

dictions (Table 2, top).

From a practical point of view, predicted secondary structure labels are useful if they are

accurate (high PPV and TPR), commonly observed, and lead to effective sampling strategies in

tertiary structure prediction, which might be performed though the use of fragments or from

dihedral angle distributions. From this point of view, the S and B labels are not very useful.

The S label indicates a “bend” when the angle Cα(i-2)–Cα(i)–Cα(i+2) is less than 110˚ and res-

idue i is notH, B, E, G, I, or T [2]. The B label indicates a beta bridge, which is simply a one-

residue backbone-backbone hydrogen bond, resembling a one-amino-acid beta-sheet strand.

Since S and B have low TPR values and are impractical to sample effectively, it makes sense to

convert them to the catch-all label, C, and sample them from Ramachandran distributions gen-

erated from residues not in helices or sheets [104]. Similarly, the I label is so rare that it may be

converted toH, since about 75% of the time it occurs as the first or last turn in an alpha helix.

Thus, after these conversions, we are left withH, E, C, T, and G.

We trained and tested a 5-label version of SecNet (H, E, C, G, T), and achieved an accuracy

rate of 78.5% (Table 10), compared to 84.0% for the Rule #1 3-label predictions, 86.0% for the

Rule #2 3-label predictions, and 73.0% for 8-label predictions. The TPR values for the 5-label

rules forH, C, E, T, and G are 94%, 78%, 84%, 52%, and 34% respectively. The PPV values are

89%, 73%, 84%, 69%, and 55%.

The label G (310 helices) remains problematic in the 5-label scheme with false negative rate

of 28%, 22%, and 12% for C,H, and T compared to a 34% true positive rate for G. In a recent

study on beta turns [105], we divided 310 helices into three categories: 310 helices that abut

alpha helices (20% of G), isolated 3-residue 310 helices (the most common length by far) in

loop regions and not abutting alpha helices (55% of G), and isolated 310 helices of length 4 or

more (25% of G). 310 helices that abut alpha helices might be viewed as a distortion of the
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alpha helix and therefore might be more similar toH labels. Isolated 310 helices of length 3

strongly resemble the succession of two Type I beta turns (with distorted backbone dihedral

angles for the first turn compared to other Type I turns) [105].

We analyzed the TPR and FNR values for these three categories of residues in 310 helices

from the 5-label predictions (bottom of Table 10). With SecRes trained on a 5-letter scheme, G
residue stretches that abut alpha helices have a 35% true positive rate and false negative rates of

42%, 13%, and 10% forH, C, and T respectively. Isolated GGG segments in loops have a 35%

true positive rate and false negative rates of 12%, 34%, and 15% forH, C, and T respectively.

Finally, isolated 310 helices of length 4 or longer produce a TPR of 31% and FNR values of

28%, 27%, and 10% forH, C, and T respectively. With these results in hand we derive a 4-letter

scheme (H, E, C, T) by converting all G to C, since 80% of G residues are isolated 310 helices of

length 3 or longer. Since the majority of residues in 310 helices come from isolated length-3

Table 10. 5-label practical alphabet:H, C, E, T, and G: (1) true positive rates (recalls) and false negative rates and (2)

positive predictive values (precisions) and false discovery rates of SecNet, (3) TPRs and FNRs for three subclasses of G:

(a) G abutHH. . .H, (b) isolated GGG in loops and (c) isolatedGGGG+ in loops.

Accuracy True label

78.5% Column normalized table H C E T any G

100 100 100 100 100

Predicted label H 94.0 4.9 1.2 14.9 22.2

C 3.0 78.1 14.2 26.7 27.9

E 0.6 10.7 83.6 2.3 3.4

T 1.4 5.3 0.8 52.3 12.4

G 0.9 1.0 0.2 3.7 34.2

Diagonal has TPRs Elsewhere FNRs

Row normalized table True label

H C E T any G

Predicted label H 100 88.6 3.9 0.7 4.5 2.3

C 100 3.3 73.4 10.3 9.6 3.4

E 100 0.9 13.8 83.6 1.1 0.6

T 100 5.7 18.2 2.1 68.5 5.5

G 100 13.3 12.5 1.9 17.6 54.7

Diagonal has PPVs Elsewhere FDRs

Column normalized table True label

G abut H GGG GGGG+

20% any G 55% any G 25% any G

100 100 100

Predicted label H 41.8 12.4 27.6

C 12.7 33.7 27.4

E 0.6 4.1 4.0

T 9.9 14.5 10.0

G 34.9 35.3 31.0

1 TPR + 4 FNRs for subclasses of G

The 5 practical labels are defined as: (S, B)! (C) and (I)! (H). Bottom: Same 5-label alphabet. The G recalls and

FNRs are shown for 3 subclasses of G where any true G‘s (G column in theMiddle section) are assigned into: (a)

GG. . .G abut HH. . .H, (b) isolated stretch of 3 G’s in loops and (c) isolated stretch of 4 or more G’s in loops as well.

The dominant FNR of 33.7% for C in the prevailing GGG subclass of 55% and almost equal FNRs for H and C of

27.6% and 27.4% in the 25% GGGG+ subclass outweigh the dominant FNR for H of 41.8% in the minority G-abut-H
subclass of only 20%.

https://doi.org/10.1371/journal.pone.0232528.t010
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helices which are very similar to beta turns, retaining the prediction of turns (label T) may

enable the sampling of these structures in loop regions. As before, B and S are converted to C,

and I is converted toH.

The accuracy for this 4-label practical scheme is 79.9%; the column- and row-normalized

confusion matrices for this scheme are provided in Table 11. It achieves very high TPRs of

94%, 79%, and 83% and PPVs of 90%, 75%, and 85% forH, C and E; it achieves satisfactory

TPR of 50% and PPV of 71% for T. If simpler, practical labels are required, Tmay be replaced

with C as the best candidate both structurally and in terms of the highest false negative rate of

33% and highest false discovery rate of 22%. The final accuracy for this new 3-label prediction

scheme is 86.0%; its TPR (recall), FNR, PPV (precision) and FNR are in Table 12.

To summarize, we suggest new 5- and 4-label schemes as follows and abandon new 3 labels

for the reasons outlined below:

• 5 new labels: (E)! E, (H, I)! H, (C, S, B)! C, (G)! G, (T)! T (Table 10)

• 4 new labels: (E)! E, (H, I)! H, (C, S, B, G)! C, (T)! T (Table 11)

• 3 new labels (abandoned): (E)! E, (H, I)!H, (C, S, B, G, T)! C (Table 12)

This last 3-label alphabet is neither Rule #1 nor Rule #2 3-label alphabets found in the litera-

ture. It very closely resembles Rule #2 of the 3-label alphabet except for a different conversion of

I label (0.017% of all Set2018 residues); due to the negligible frequency of I, there is no observ-

able difference in training nor the overall accuracy (86.0%) between this rule and Rule #2.
Therefore, we abandon this new 3-label scheme and keep the traditional Rule #2 instead. In

Table 13 we summarize existing and new definitions and compare accuracy of all six alphabets.

Usage of our secondary-structure prediction software

Our secondary structure prediction software, SecNet, is free, open-source, and cross-platform.

It is written in Python 3; a 20KB online installer is downloadable from dunbrack.fccc.edu/ss

and github.com/sh-maxim/ss. When the SecNet installer is launched, it prompts for a single

Table 11. 4-label practical alphabet: H, C, E, and T: (1) true positive rates (recalls) and false negative rates and (2)

positive predictive values (precisions) and false discovery rates of SecNet.

Accuracy True label

79.9% Column normalized table H C E T

100 100 100 100

Pred. label H 93.7 6.5 1.3 14.4

C 4.4 79.3 15.6 33.3

E 0.5 9 82.5 2.1

T 1.4 5.2 0.6 50.2

Diagonal has TPRs Elsewhere FNRs

Row normalized table True label

H C E T

Pred. label H 100 88.9 5.9 0.8 4.4

C 100 4.4 74.9 10.1 10.6

E 100 0.8 13.5 84.7 1.1

T 100 6.1 21.6 1.7 70.6

Diagonal has PPVs Elsewhere FDRs

The 4-label alphabet is defined as: (S, B, G)! (C) and (I)! (H).

https://doi.org/10.1371/journal.pone.0232528.t011
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destination directory, self-configures, downloads and installs a required version of embedded

Python, detects and installs the required (but missing) Python libraries such as Numpy, Keras,
and Theano, downloads and installs necessary third-party software and databases. The unin-

stallation is simple as deleting a kit directory. The prediction mode of our application requires

an average desktop with 2–4 CPU cores and 2–4 GB of RAM; during execution, it consumes

1-2 GB of RAM. For faster multi-threaded execution, the software detects how many CPU

cores are available and uses all of them in the third-party sequence alignment software and

running NN code as well unless fewer cores are assigned with an optional argument.

A user does not need to generate any input features manually; SecNet automatically pre-

pares all required input features for a target protein sequence by running included third-party

software with preprocessed sequence databases. For an average protein of 200–300 residues it

takes about 5–10 minutes to prepare input features, several seconds to load predictive models

from a storage device into memory, and several seconds to run an ensemble of 10 NN models

to perform secondary structure prediction. The usage is very simple with intuitive command-

line arguments such as—label [3 or 4 or 5 or 8 or all] and—rule1 or—rule2; the full instruc-

tions and options are available at the above online resources, with “—help” flag and also

included in a readme file:

secnet -i example.seq—label 8 -o example.ss8

secnet -input example.fasta—rule1—label 3—output example.rule1ss3

secnet -i example.seq -l 4 -o example.ss4—cpu 3

Table 12. Final 3-label alphabet: H, C, and E: (1) confusion matrix, (2) TPR and TNR and (3) PPV and FDR of

SecNet.

Confusion matrix of 37,620 test labels

Accuracy Pred. freq. True label

86.0% C H E

True freq. 100% 43.4 33.3 23.3

Predicted label C 44.3 37.1 2.8 4.4

H 34.0 3.5 30.3 0.3

E 21.7 2.9 0.1 18.7

Column normalized table True label

C H E

100 100 100

Predicted label C 85.3 8.6 18.9

H 8.0 91.1 1.1

E 6.7 0.3 80.0

Diagonal has TPRs Elsewhere FNRs

Row normalized table True label

C H E

Predicted label C 100 83.6 6.4 9.9

H 100 10.2 89.0 0.8

E 100 13.4 0.5 86.1

Diagonal has PPVs Elsewhere FDRs

The final 3-label rule is defined as: (S, B, G, T)! (C) and (I)! (H). The Rule #2 requires I! C, in contrast to this

rule, which converts I! H; otherwise they are identical. Since the I frequency within the test set is negligible 0.05%,

there is no difference in the final accuracies of the two alphabets.

https://doi.org/10.1371/journal.pone.0232528.t012
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Discussion

We have developed SecNet, a simple traditional four-layer convolutional neural network for

predicting protein secondary structure purely from sequence. We constructed new training,

validation, and testing sets such that the test set consists of protein structures determined in

2018 that had no more than 25% sequence identity with any structure released in the PDB

prior to January 1, 2018. This enabled fair and unbiased comparison of our method with two

programs, DeepCNF and eCRRNN, which were trained on data released prior to 2018 and

which had the highest reported accuracies on CB513, a widely used test set in secondary struc-

ture prediction studies. SecNet achieved accuracy of 73.0% on 8-label predictions, 84.0%, on

Rule #1 3-label predictions, and 86% on Rule #2 3-label predictions on Test2018. It outper-

forms DeepCNF and eCRRNN by 2.0–3.4 percentage points on our Test2018 set and CB513,
and other methods by 1.7–8.8 points on the CB513 test set. While this is a small improvement

in accuracy, it is significant in light of progress over the last 20 years—the accuracy of

PSIPRED, published in 1999, on CB513 was 79.2% for 3-label Rule #1 predictions.

The 25% sequence identity cutoff between training and testing sets in secondary structure

prediction is very common. We performed an additional check that this cutoff did not result

in overtraining (by having homologous proteins in the training and testing sets with< 25%

sequence identity but with similar PSI-BLAST profiles). We developed an alternate testing set

by applying the definitions of homologous domains from the ECOD database (Evolutionary

Classification of Domains). This test set of 190 proteins had no domain at the ECOD H level

in common with any protein in the training/validation set. SecNet tested on this new set had

higher 8-label accuracy and only 0.1 point lower (83.9% vs 84.0%) on 3-label accuracy than it

did on Test2018. The results with a PSI-BLAST e-value cutoff of< 1.0 were similar (Table 9).

These sets may in fact be slightly easier than Test2018. If we adjust them for their proportions

of different secondary structure types to be identical with Test2018, their accuracy drops by

one percentage point.

In the development of SecNet, we tried a variety of options for feature calculation, network

structure, and training hyper-parameters. After selecting the best options with the validation

set, we used the test set only once to estimate the accuracy. We then performed a retrospective

ablation study, using the test set to calculate accuracy on the various networks produced dur-

ing the earlier training and validation studies. The results not surprisingly indicate that the

most accurate model is the result of many decisions each of which contributes toward the

accuracy. The most interesting results of the ablation study were that window sizes larger than

29 residues did not increase the accuracy, and that PSI-BLAST profiles are more useful than

Table 13. Definitions of different label alphabets and associated SecNet accuracies on Test2018 test set.

Alphabet Definition Labels Accur. Diff.

8 labels 8 original DSSP labels unchanged

(C, S, B, T, I, G, H, E)

H, E, C, T, G, S, B, I 73.0 0.0

5 labels

new, kept

(C, S, B)! C, (H, I)! H,

(E)! E, (T)! T, (G)! G
H, E, C, T, G 78.5 +5.5

4 labels

new, kept

(C, S, B, G)! C, (H, I)! H,

(E)! E, (T)! T
H, E, C, T 79.9 +6.9

Rule #1

3 labels

(C, S, T)! C, (H, I, G)! H,

(E, B)! E
H, E, C 84.0 +11.0

Rule #2

3 labels

(C, S, B, T, I, G)! C, (H)! H,

(E)! E
H, E, C 86.0 +12.0

3 labels

new, discarded

(C, S, B, G, T)! C, (H, I)! H,

(E)! E
H, E, C 86.0 +12.0

https://doi.org/10.1371/journal.pone.0232528.t013
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HMMs in predicting secondary structure, even though the information in HMMs is inherently

richer.

From our experience in developing the training, validation, and test set, we developed a

short list of recommendations that might be considered in future efforts to avoid overtraining

and to enable comparison of different programs:

1) Generating a list of chains for training, validation, and test sets

A majority of prediction methods enforce a maximal pairwise sequence identity of 25%

between training, validation, and/or test sets as well within the test set. But how the sequence

identities are calculated can matter, and this is not always described in sufficient detail to

ensure reproducibility. A few methods either do not list a threshold [77, 80] or use a higher

value [81, 92], which may lead to a higher accuracy that would not be sustained on proteins

unrelated to the training and testing sets [82]. For example, we observed that if our model is

trained and tested on data sets with 50% sequence identity instead of 25%, it has 1.3 points

higher accuracy (top of Fig 4). This issue has been raised several times by different groups [34,

46, 90, 91]. In this work, we developed a rigorous protocol that relies on two passes of two dif-

ferent sequence alignment software programs (HHblits and Clustal-Omega) to enforce 25%

identity within our data sets.

An unforeseen violation of a sequence-identity threshold may occur when a method relies

on predictions from third-party software as input features when the third-party software was

trained on protein structures that are more than 25% identical to sequences in the test set of

the new method. This may occur for instance, if a method uses features such as predicted con-

tacts or solvent exposure from other programs trained on sequences related to those in the test

set. This can be avoided if the test set for the secondary structure prediction method contains

sequences of structures determined that are less than 25% identical to the training sets of all

predicted input features. This can be hard to determine, since not all training sets are defined

by authors of feature prediction programs or there is a set of nested programs with each

trained on its own training set. To avoid such a situation, we should enforce the pairwise iden-

tity threshold between every new structure published after the third-party software release and

those before it. It is necessary to compare all sequences before and after the required date,

regardless of resolution, experimental method, or structure quality. These filters can be applied

to the training, validation, and test data later.

Another consideration on which chains to include in the training, validation, and test sets

is their secondary structure content. Alpha helices are easier to predict and a test set enriched

with them is biased to have higher accuracy (Fig 3); therefore, data sets should have secondary

structure labels representative of the general PDB population.

2) Sequences and labels for the training, validation, and test sets

Secondary structure cannot be assigned to amino acids with missing coordinates caused by

unresolved electron density, and such amino acids are ignored by DSSP. A test set should con-

sist of full sequences, and the labels therefore need to include a designation for residues miss-

ing from the coordinates. By contrast, the popular CB513 test set does not include residues

with missing coordinates. Information on disordered residues mapped to the sequence is pro-

vided in themmCIF format of files from the PDB, or from the file “ss_dis.txt” available from

the PDB (https://www.rcsb.org/pages/download/http#ss).

Previously secondary structure prediction methods are mostly trained to predict three

labels: helix (H), sheet (E), and coil (C). In the early days, ground-truth labels came from sec-

ondary structure assigned by authors of deposited PDB structures. With emergence of a
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widely-adopted DSSP program in 1983, the 8 secondary-structure labels (H, B, E, G, I, T, S, C)

assigned by this software have been converted into 3 labels (H, E, C); the sets of 8 and 3 labels

are used separately for development of prediction methods. With a lack of standardization,

methods report accuracies based on either Rule #1: (H, G, I)!H, (E, B)! E, (other 4 labels)

! C or Rule #2: (H)! H, (E)! E, (other 6 labels)! C. The 3-label Rule #2 is easier for pre-

diction than Rule #1 by 2.0 percentage points (top of Fig 4). Some authors did not report

which rule was used [77, 78, 81, 83]; some continue to use the easier Rule #2 and compare their

results to previous methods that used the harder Rule #1 [80, 93]. Which rule is used should be

clearly stated in a publication to avoid ambiguity.

Label sets greater in size than 3 but less than 8 may be useful in some contexts. We demon-

strated that the B (beta bridge) and S (bend) labels have very little sequence signal, and since

they may be difficult to sample anyway they can productively be converted to the generic C
label. The I label (pi helices) is very rare, and may be converted toH, producing a 5-label rule:

(H, I)!H; (B, S, C)! C; E; T; G. Residues in 310 helices are also difficult to predict. We

showed that those 310 helix residues immediately adjacent to alpha helices have similar amino-

acid preferences to alpha helices. Those isolated within coil regions, which are commonly of

length 3, are mostly predicted as coil. However, these residues outnumber those adjacent to

alpha helices, and G can therefore be productively converted to C. Therefore, we define a

4-label rule as: (H, I)!H, (B, S, C, G)! C; E; T. Finally, we define a slightly modified version

of Rule #2: (H, I)! H; (B, S, C, T)! C; E.

3) Separation of training, validation, and test sets

Some methods do not designate a separate validation set, and make design decisions based on

repeated use of either the training set or a single test set. If a training set is used for these pur-

poses, the produced model is over-trained and training accuracy will not propagate to the test

set accuracy. For example, the accuracy on our validation set is 2.0 points and 2.5 points higher

than that on the test sets for 3-label and 8-label predictions respectively. A validation set should

be split from the training set and used for model selection, with the test set only used at the

end to produce final accuracy estimations [106].

4) Distributing the data sets, including sequences and labels

The availability of reliable data sets is critical for reproducibility and fair benchmarking. For

many publications, these sets are not readily available; contacting authors is time-consuming

and often unproductive, and the needed information is not always still available. Data sets that

can be reused by other groups to test new methods need to contain not only the PDB codes

and chain identifiers but also the full sequences and label strings. The PDB can occasionally

change a sequence and coordinates if an entry is updated. If the 8-label DSSP codes are con-

verted to a smaller set, then providing the transformed labels is valuable to retain consistency.

Complete data sets should be uploaded to at least two publicly available data sharing systems,

for example to journal or institutional websites or Github or Dropbox or Sourceforge. A journal

may not always provide adequate storage for bulky data sets.

Methods

Protocol for preparation of 2018 data sets

A complete list of PDB entries was obtained from PISCES [27] server on November 12, 2018.

The entry list was divided into Before18, which consists of entries released prior to January 1,

2018, and After18 which consists of those released on or after the same date (Fig 1). Chain
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sequences were obtained from PISCES. Identical sequences were removed from Before18 and

After18, and sequences identical to any sequence in Before18 were removed from After18.
Each identical sequence was linked with a complete list of its protein structures of varying

quality.

We used the output of two sequence-alignment programs, HHblits and Clustal-Omega, to

calculate pairwise sequence identities within and between the sequences in the Before18 and

After18 sets. According toHHblits, a sequence identity is the number of identical amino-acid

residues divided by the shortest protein sequence in a pairwise alignment. Clustal-Omega
returns an identity matrix with “—distmat-out = filename—percent-id” flags. According to

Clustal-Omega, a sequence identity is the number of amino-acid identities in the alignment

divided by the number of residues compared (gap positions are excluded). TheHHblits pair-

wise sequence identities were calculated for use in the PISCES server. Any item in After18 was

removed if it had more than 25% sequence identity to any item in Before18 calculated with

eitherHHblits or Clustal-Omega. We underline that Before18 includes PDB sequences of any

experiment or resolution to eliminate any test sequence too similar even to a low-quality pre-

2018 sequence that could have been included in training of previous methods. Usage of two

programs helps if either one fails to detect similarity.

We applied several filters to the structures and sequences in Before18 and After18 before

applying a pairwise sequence identity filter within each set. We removed structures having res-

olution worse than 2.2 Å, or free R-factor greater than 0.25 (if free-R factor was not available,

we used the R-factor+0.05) [94]. We excluded chains of length less than 40 residues and Cα-

atom-only models. Next, we enforced 25% pairwise identity in each set based on the sequence

identities obtained fromHHblits and Clustal-Omega. We removed any sequences from

Before18 that was more than 25% identical with any sequence in CB513 so that we could use

Set2018 to train SecNet and use CB513 as an additional test set (Test2018 already cannot have

sequences more than 25% identical to the structures in CB513 that were determined before the

year 2000). For identical sequences, we selected a protein chain from a crystal structure having

the highest resolution, followed by the best R-factor, and then the PDB chain having the largest

number of coordinates.

This procedure produced the Test2018 test set (once the quality and sequence identity filters

were applied to After18), which contains sequences that are not more than 25% similar to any
chain in a PDB entry released before Jan 1, 2018. Similarly, the Set2018 training and validation

sets were created from a 9 to 1 random split of the chains in Before18 after the quality and

sequence identity filters were applied. We note that complete chain sequences are stored (not

just the ones with coordinates) in our sets. We store original one-letter sequences using the

standard representation where a non-standard amino acid has a single-letter code of the clos-

est analog among 20 standard amino acids if it exists; otherwise “X” is used.

Generation of Test2019 and Test2018-19 data sets

Since Test2018 only includes proteins released within about a 10-month range (01/01/18-11/

12/18), we created two additional data sets, Test2019 and Test2018-19, corresponding to 11/

13/18-12/31/19 and 01/01/18-12/31/19 date ranges which cover 14 months and 24 months

respectively. We carried out the same protocol shown above for Test2018.

ECOD database, processing and test on two related proteins

The ECOD database, (file: “ecod.develop262.domains.txt”, version: “develop262”, release date:

01/31/2020) was downloaded from http://prodata.swmed.edu/ecod/complete/distribution. For

any protein under consideration for our training or testing sets:
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1. The ECOD database is queried with PDB_ID + chain_ID.

2. If a record is found, assigned (if any) X.H group intra-chain or inter-chain domains are

saved for the protein (some domains extend across two different chains, e.g. trypsin).

3. If such record does not exist in the database, the database is queried with PDB_ID + chai-

n_ID of a protein chain having the same sequence and same PDB_ID.

4. If such protein chain does not exist or such record is not found, the database is queried

with PDB_ID + chain_ID of a protein chain having again the same sequence but a different

PDB_ID.

5. If such protein chain does not exist or such record is not found, an HTTP request for

PDB_ID is made with http://prodata.swmed.edu/ecod/complete/search?kw=PDB_ID and

parsed to find whether the ECOD team has already processed the PDB entry either auto-

matically or manually.

To test for a relationship between two proteins, if the sets of saved X.H group domains of

the first and second proteins share at least one domain, the proteins are considered related.

Input labels and features

The 8 secondary-structure labels assigned with DSSP of 3.0.5 version (released by CMBI on

Oct 11, 2018) were obtained from the file, “ss_dis.txt” which has records for the entire PDB

and is available for download from PDB. This file also contains strings that indicate the

ordered and disordered residues in the sequence. The DSSP and disorder strings were com-

bined, with spaces in the DSSP string replaced with “C” when the disorder string indicated an

ordered residue (“-“) and “X” when the disorder string indicated a disordered residue (“X”).

For instance, for PDB entry 1A64 chain A, this file contains:

>1A64:A:sequence
RDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKPFLKSGAFEI-

LANGDLKIKNLTRDDSGTYN
VTVYSTNGTRILDKALDLRILE
>1A64:A:secstr
EEEEETT EEE TT TTEEEEEEEETTEEEEEEESS EESSTTEEE TTS EEESS GGG

EEEE
EEEEETTS EEEEEEEEEEEE
>1A64:A:disorder
XXX - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - -
- - - - - - - - - - - - - -

which results in the combined DSSP-disorder string:

XXXCEEEEETTCCEEECCTTCCCCTTEEEEEEEETTEEEEEEESSCEESSTTEEECTTS-
CEEESSCCGGGCEEEE
EEEEETTSCEEEEEEEEEEEE
Training was performed and test accuracy was reported on all residues with known coordi-

nates for which DSSP was able to assign labels, i.e. for residues with ordered ‘-’ flag and not

with disorder ‘X’ flag. Each amino acid subject to training or testing includes a full amino-acid

sequence around it including disordered residues.

In addition to the labels, the input to our CNN includes a 92-by-29 feature matrix where

the columns represent 14 residues to the left from the central residue, the central residue

which is subject to secondary structure prediction, and 14 residues to the right; the rows
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consist of 92 features for each position of 29 residues. Among the features are 1) one-hot

encoding of 22 residue types: the 20 standard amino acids, “X” (a non-standard residue with-

out a standard amino-acid analog), and “?” which denotes a non-existing residue outside the

sequence when the central residue of an input window is too close to the beginning and end of

the sequence; 2) two sets of PSI-BLAST sequence profiles generated against Uniref90 sequence

database at the end of the first and second rounds, each 20 long–the number of standard

amino acids; 3) 30 parameters of Hidden Markov Model of the target generated by a search

against the uniprot20 sequence database computed with hhsuite. Thus, the number of rows in

the input matrix is 22 + 2 � 20 + 30 = 92.

PSI-BLAST version 2.6.0 was obtained from NCBI, and used to search the Uniref90 data-

base of 58,284,765 sequences downloaded on Aug 2, 2017 from www.uniprot.org/downloads.

Uniref90 was converted to a PSI-BLAST database with the command:

makeblastdb -in uniref90.fasta -parse_seqids -dbtype prot

The PSI-BLAST searches were performed with the following command:

psiblast -db uniref90.binary -query example.fasta -inclusion_ethresh 0.001

-evalue 10 -save_pssm_after_last_round -out_ascii_pssm example.mtx

-num_iterations 2 -num_threads 16 -save_each_pssm

The e-value for printing out alignments is 10 but the e-value for inclusion in the profile is

0.001. PSI-BLAST predicts an effective search space based on the supplied e-value to speed up

calculations; our approach allows us to find more hits with e-value< 0.001 but still abandons

the ones above this threshold from inclusion in the profile matrix. The last flag forces PSI--
BLAST to output each PSSM with a different file name (-1, -2, etc.). The input to SecNet con-

sists of the output log-scale scores instead of rounded weighted percentages. For non-existing

residues outside the complete sequence, log score values of -19 were used at each of the 20

standard amino-acid positions.

The HMM of a target vs. uniprot20 sequence database was created with 2.0.16 hhsuite. uni-
prot20 is located at wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/old-

releases and dated Feb, 2016. All 30 parameters of each residue in a target sequence are used

from the HMM file generated with a set of two commands:

hhblits -i example.fasta -d uniprot20 -oa3m example.a3m -cpu 16

hhmake -i example.a3m -o example.hhm

The 30 parameters with ‘�’ values representing +1 values were replaced with 99999.0. For

the non-existing residues outside the N and C termini, the first 27 variables (A’, ‘C’, ‘D’, ‘E’, ‘F’,

‘G’, ‘H’, ‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘V’, ‘W’, ‘Y’, ‘M!M’, ‘M!I’, ‘M!D’, ‘I!M’,

‘I!I’, ‘D!M’, ‘D!D’) of 99999.0 value and the last 3 variables (‘Neff’, ‘Neff_I’, ‘Neff_D’) of 0.0

value were used for HMM parameterization. At the end all HMM parameters were divided by

a normalization factor of 99,999.0.

Training and testing a CNN for secondary structure prediction

Our neural network is a traditional CNN (Fig 2) consisting of an input layer which reads a

92-by-29 matrix centered on a residue subject to secondary structure label prediction, 4 convo-

lutional hidden layers, densely-connected NN layer with an output dimensionality of the num-

ber of secondary structure labels, and a softmax activation layer returning a vector of

probabilities for each label. The total number of CNN parameters is 2,397,960. The 4
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convolutional hidden layers have the same filter length of 7 with valid border treatment and a

rectified linear unit (ReLU); the number of filters at each hidden layer increases by 128 starting

from 128 at the first hidden layer: 128, 256, 384 and 512. As a training regularization tech-

nique, a dropout layer with 0.30 value is implemented in front of each of the 4 hidden layers

and the dense layer. This CNN was implemented and trained using 1.2.2 Keras, an open-

source NN Python library with 0.8.2 Theano backend.

We independently trained 10 CNN models by 10-fold cross-validation on the training set.

To gain additional accuracy improvement, we used a popular technique where a final predic-

tive model is an ensemble of 10 CNNs returning a majority label vote based on 10 outputs of a

predicted label. The final accuracy was reported based the independent test set that had never

been used during training, validation, or making design decisions. The test set was used only

once to report the final results such as the final overall accuracy, confusion matrix, and accu-

racy improvement for each component of the predictive model during the retrospective abla-

tion study to update these overestimated values based on the original validation set with the

unbiased ones based on the testing set. However, during algorithm development all decisions

on how to train, what input features to use, what third-party software arguments to use, which

sequence databases to employ and what CNN architecture to use were only based on the vali-

dation set to avoid overestimated accuracy at the very end with the testing set.

A stochastic gradient descent was used for optimization. We tried many different combina-

tions of parameters using our optimization strategy (next section) and empirically selected the

following optimization parameters leading to the best validation accuracy during many train-

ing trials: loss function = categorical cross entropy, number of epochs = 650, batch size = 256,
learning rate = 0.01,momentum = 0.9, Nesterov accelerated gradient = off, decay = learning rate
/ number of epochs = 0.01 / 650 = 1.54e-5 and dropout = 0.3. We computed validation accuracy

at the end of each epoch and saved a model if the validation accuracy was higher than at any

previous epoch disregarding a value of the training set accuracy.

A single training requires about 4 days on a 16-core CPU workstation; within the first 12–

24 hours the validation accuracy was typically 0.3–0.5 points below the final best accuracy. The

training was stable if different starting random seed states were used leading to a spread of

final validation accuracies of only up to 0.1 points.

Training and testing were based on overall accuracy which includes all residues with

assigned secondary structure different from ‘X’ (disordered residues with missing coordi-

nates). The accuracy was calculated as a number of correctly predicted labels / number of all

assigned labels.

Optimization strategy

The accuracy as a function of multiple hyper-parameters is non-linear and has numerous local

maxima. Training and validation of a single NN model with a set of selected hyper-parameters

is a computationally expensive task of several hours on a single multiple-core CPU. The multi-

dimensional space of hyper-parameters makes this problem impossible to solve exactly in a

timely manner.

Our optimization strategy is a mixture of the following repeated steps in varying orders: (1)

a subjective, biased search based on our domain experience and expectations, literature and

forum recommendations; (2) an exhaustive search on sets of 2–4 related parameters such as

(learning rate, momentum, decay) or (network depth, convolutional width) or (PSI-BLAST

rounds, HMM and PSI-BLAST application parameters); (3) a random search in the multi-

dimensional space with a linear analysis of prevailing trends and identifying the most critical

hyper-parameters. During this multi-step procedure, we sometimes added previously
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unexplored hyper-parameters and sometimes eliminated some existing ones. During this pro-

cess, our experience and expectations changed. In the final step, we independently and exhaus-

tively optimized single parameter choices or pairs or triples or quadruples among all of the

hyper-parameters where it was computationally possible to find a local optimum again. All of

these steps were done based on the accuracy calculated from the validation data set.

Our optimization strategy is empirical and does not find a global optimum; at most it finds

the best optimum among a limited number of local optima that were searched.

Benchmarking of competitor software

We ran DeepCNF and eCRRNN with default arguments. An ensemble of 10 models was

enabled for eCRRNN. We made sure that we were executing these third-party programs prop-

erly by benchmarking them on data sets included in their respective published studies and

reproducing the same results within 0.1% accuracy for each included set. As with SecNet,
DeepCNF and eCRRNN were benchmarked on complete original sequences and accuracy was

reported on residues of known secondary structure.
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