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Carbohydrates are considered as one of the most important classes of biomarkers for cell types, disease states, protein func-
tions, and developmental states. Carbohydrate “binders” that can specifically recognize a carbohydrate biomarker can be used 
for developing novel types of site specific delivery methods and imaging agents. In this review, we present selected examples 
of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents. 
Examples are arranged based on disease categories including (1) infectious diseases, (2) cancer, (3) inflammation and immune 
responses, (4) signal transduction, (5) stem cell transformation, (6) embryo development, and (7) cardiovascular diseases, 
though some issues cross therapeutic boundaries. 
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1  Introduction 

Carbohydrates, traditionally considered as bioenergy sup-
pliers and structural components, have been found to have a 
wide variety of biological and physiological functions. 
Therefore, together with proteins and peptides, nucleic acids 
and oligonucleotides, and lipids, carbohydrates are consid-
ered one of the most important classes of biomacro-
molecules [1–4]. In addition, the relationship among these 
four classes of biomolecules is often intertwined. For exam-
ple, protein glycosylation is very important to its conforma-
tion, transportation, function, and fate [5–16]; glycosylated 
lipids (glycolipids) are essential biomolecules [3, 17–22]; 
and nucleic acid glycosylation, whether synthetic [23] or 
natural [24–31], has recently been recognized as important 
in affecting its distribution and function. Because of all 
these properties, it is not surprising that carbohydrates are 
biomarkers for cell types, disease states, protein functions,  

and developmental states [2, 32–40]. Recent years have 
seen a rapid increase in knowledge related to all these areas 
mentioned. Such advancements can largely be attributed to 
the development in new techniques, such as NMR and mass 
spectrometry, and molecular biology, and the ready avail-
ability of genomic information. As a result, recent ad-
vancements in glycobiology and glycomics have also 
opened new doors for the development of new therapeutics 
and imaging agents through carbohydrate recognition. 
Therefore, compounds that can specifically recognize a par-
ticular carbohydrate have very important applications 
[41–52]. They can be used as sensors for detection, diagno-
sis, and prognosis, as “blockers/inhibitors” for therapeutics 
development if the target carbohydrate is involved in 
pathogenesis, and as vectors for the targeted delivery of 
imaging and therapeutic agents. Critical to all these poten-
tial applications are two issues: (1) the identification of 
carbohydrate biomarkers and (2) the design and synthesis of 
“binders” that can specifically recognize the target bio-
marker with high affinity and specificity. In this review, we  
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present selected examples of important carbohydrate bio-
markers and how they can be targeted for the development 
of therapeutic and diagnostic agents. It should be noted that 
there are many books on glycobiology and there are many 
review articles on how one can target carbohydrates for 
various applications [45, 51, 53–55] and it would be impos-
sible to cover the entire topic in detail. Therefore, this arti-
cle does not strive to be comprehensive. Instead, it is meant 
to be “tutorial,” which we hope would help to generate 
more interests in carbohydrate recognition as a way for the 
development of new therapeutics and diagnostics. Carbohy-
drate recognition research impacts essentially all areas in 
which carbohydrates play a role. Examples include (1) in-
fectious diseases, (2) cancer, (3) inflammation and immune 
responses, (4) signal transduction, (5) stem cell transforma-
tion, (6) embryo development, and (7) cardiovascular dis-
eases. In the following sections, we divide the discussions 
based on disease categories though some issues cross 
therapeutic boundaries. In the last section, we present a few 
simple examples of how to target carbohydrate biomarkers 
for diagnostic and therapeutic applications. 

2  Cancer 

Among all pathologically relevant glycosylation changes, 
cancer is probably the most extensively studied. Even in 
normal cells, surface carbohydrate structures are known to 
be characteristic markers for different types of cells [56–61]. 
Transformations of normal to cancerous cells are often as-
sociated with the alteration of cell surface carbohydrates 
and the expression or over-expression of certain carbohy-
drates has been closely correlated with cancer [56–61]. 
Therefore, many carbohydrates are considered cancer asso-
ciated antigens (CAA). Among all carbohydrate-based CAA, 
Globo H and the Tn antigen are probably the most common. 
It is known that the Tn antigen is found on the cell surface 
of over 90% of solid tumor [62]. The formation of the Tn 
antigen is because of deficiency of an enzyme named 
β-1,3-galactosyltransferase, which results in the incomplete 
conversion of the Tn antigen to the T antigen. Other impor-
tant cancer-related carbohydrates include the sialylated 
carbohydrates. For example, sialyl Lewis X (sLex) has been 
shown to mediate lung colonization of B16 melanoma cells 
[63] and yet excessive sLex expression is shown to lead to 
rejection by natural killer cells [64]; serum sLex and cy-
tokeratin 19 fragment are said to be predictive factors for 
recurrence in patients with stage I non-small cell lung can-
cer [65]; and sLex and sialyl Lewis a (sLea) have been 
shown to mediate adhesion of urothelial cancer cells to ac-
tivated endothelium [66]. Changes in sLex and sLea levels in 
cancer have been attributed to both “neosynthesis” and “in-       
complete synthesis” of pathways involving sulfation or sia-        
lylation [67] and variations of enzyme levels can be directly 
correlated with certain changes in glycosylation [68]. With 

all these aberrant glycan expressions, “binders” that can 
recognize these carbohydrates will be very useful research 
tools, diagnostic agents, and possibly therapeutic agents 
[51].  

In addition to cell surface carbohydrate biomarkers, post- 
/co-translational protein glycosylation often carries signa-
tures of malignant transformations [69–93]. In terms of the 
biological significance of protein glycosylation, usually it is 
not a question of whether there is glycosylation; rather it is 
the glycosylation pattern that marks different pathological 
states including malignancy. For example, the glycosylation 
patterns of prostate specific antigen (PSA) from cancer cells 
in culture [94] and prostate cancer patients’ tissue and sera 
[69, 93, 95] are different from that of normal prostate; hu-
man pancreatic RNase 1, a glycoprotein secreted mostly by 
pancreatic cells, has completely different oligosaccharide 
chains when produced from pancreatic tumor cells [39, 71, 
96, 97]; pregnancy-related human chorionic gonadotropin 
(hCG) can be biomarkers for cancer, Down syndrome, and 
pregnancy failure depending on their glycosylation patterns 
[98, 99]; and specific glycosylation patterns of haptoglobin 
(Hp) and alpha-fetoprotein (AFP) have a much higher de-
gree of correlation with cancer than the total Hp/AFP levels 
[100, 101]. In such cases, “binders” that can recognize gly-
cosylation variations can be very useful diagnostic tools.  

3  Infectious diseases 

There are several ways in which carbohydrates are involved 
in the pathogenicity of infectious agents. In the case of viral 
infections, the human influenza virus is an excellent exam-
ple. Flu viral infection involves sialic acid for binding to 
hemagglutinin and infection. After infection, the budding of 
mature viruses from infected cells involves the cleavage of 
sialic acid by neuraminidase in order for the virus to detach 
[102, 103]. Flu drug such as tamiflu functions by inhibiting 
neuraminidase and thus inhibit viral replication [104, 105].  

In the case of human immunodeficiency virus (HIV), a 
critical protein, gp120, is glycosylated with polymannose 
[106, 107]. Infection of cells by HIV-1 requires the fusion 
of the viral membrane with cellular membrane [108]. This 
fusion is mediated by gp120 and gp41 along with cell sur-
face receptors (CD4 and chemokine receptor) on the target 
cells [109]. Conceivably, agents that interact with gp120 
may interfere with viral entry into target cells [110]. Bind-
ing to glycans on the viral envelope may also force the virus 
to delete a portion of its glycan shield, making the virus 
more susceptible to attack [111]. Along this line, several 
lectins have been studied for their anti-HIV activities. For 
example, cyanovirin-N (CV-N) is a 11kDa protein with 101 
amino acids and has affinity for high-mannose glycans es-
pecially α-(1,2)-linked mannose oligomers [112, 113]. CV-N 
inactivates T-lymphocyte-tropic, laboratory strains of HIV 
type 1 and HIV type 2, as well as T-tropic, M-tropic and 
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dual tropic primary clinical isolates of HIV-1, presumably 
through inhibition of viral entry by blocking part of gp120. 
In CEM-SS cells, CV-N has an EC50 of 0.1 nM. As a con-
trol, treatment of uninfected CEM-SS cells in the presence 
of high concentrations (9000 nM) of CV-N did attenuate the 
lethal effect of the virus. Other lectins have also shown 
similar effect, presumably by binding to the polymannose 
portion of gp120. These include SVN (scytovirm), which 
has affinity for α(1,2)-α(1,6)-mannose trisaccharide units 
and can inhibit HIV infection in T-tropic laboratory strain 
HIV-1 in CEM-SS cells with an EC50 of 0.3 nM [114], and 
actinohivin, which has affinity for mannose-type glycans 
[115] and can inhibit T-cell and macrophage infection by 
HIV-1 in cell culture (IC50

 of 60 to 700 nM). All such re-
sults indicate that the viral envelope glycans play an impor-
tant role in their pathogenicity.  

In bacterial pathogenicity, carbohydrates also play very 
important roles. One prominent example is lipopolysaccha-
rides (LPS), also known as endotoxin, from the outer mem-
brane of cell wall of Gram negative bacteria. One such ex-
ample is Pasteurella multocida, an encapsulated, Gram- 
negative coccobacillus that causes a wide range of animal 
diseases including avian fowl cholera [116]. When infec-
tions by Gram-negative bacteria occur, LPS stimulate the 
immune system in an attempt to clear the bacteria and the 
infection that may result. The lipid A component of LPS is 
primarily responsible for this inflammatory response. As the 
infection proceeds, the presence of a large amount of LPS 
can result in an overproduction of inflammatory mediators 
that result in damage to tissues, septic shock, organ failure, 

and death [117]. LPS has also been shown to play an im-
portant role in the pathogenesis of P. multocida, in which 
modification of LPS structure negatively affects the viabil-
ity of P. multocida in vivo [118]. In addition to functioning 
as toxins, carbohydrates can also be the target for bacterial 
recognition. For example, many pulmonary pathogenic 
bacteria bind specifically to the carbohydrate sequence 
GalNAc beta 1-4Gal found in some glycolipids [119]; 
Pseudomonas aeruginosa and Pseudomonas cepacia iso-       
lated from cystic fibrosis patients bind specifically to gan-

gliotetraosylceramide (asialo GM1) and gangliotriaosylcera-       
mide (asialo GM2) [120]; the pili of P. aeruginosa strains 
PAK and PAO bind specifically to the carbohydrate se-
quence beta GalNAc(1-4)beta Gal found in glycosphingol-
ipids asialo-GM1 and asialo-GM2 [121]; adherence of P. 
aeruginosa and Candida albicans to glycosphingolipid 
(Asialo-GM1) receptors is achieved by a conserved recep-
tor-binding domain present on their adhesions [122]; lacto- 
and ganglio-series glycolipids are adhesion receptors for 
Neisseria gonorrhoeae [123]; and there are many other ex-
amples [124]. In addition to all these, serotyping of 
Gram-negative bacteria is primarily based on their LPS 
structures [125]. Because of the many ways that carbohy-
drates can affect bacteria (and fungi) infections, one can 
envision situations where artificial “binders” of the target 
carbohydrates can be used for detection and treatment of 
bacterial and fungal infections. 

4  Inflammation and immune responses 

Carbohydrates are involved in mediating inflammatory 
processes in many ways. The most widely known example 
is probably sLex-mediated white blood cell adhesion to  
infection/damaged sites through interactions with L-selectin. 
Recent studies unveiled that 6-O GlcNAc sulfate modifica-
tion of the sLex tetrasaccharide is of importance in L-   
selectin activity in animal and in leukocyte invasion into 

different human tissues [126]. Furthermore, the de novo 
induction of endothelial sLex or its sulfated form through 
interactions with L-selectin is a common event in many or-
gans, including thyroid gland, heart, skin and colon, thus, 
suggesting a crucial role for these glycans in the early-state 
induction of tissue inflammation [127].  

The most prominent examples of carbohydrate-mediated 
immune responses originate from the ABO blood group 
antigens, which are entirely carbohydrate-based [128]. Fig-
ure 1 shows the structures of these antigens. The difference 
between the A and B blood types is due to their terminal 
galactosamine N-acetylation on red blood cells, while type  

 

Figure 1  Diagram of the ABO blood group system. 



6 CHENG YunFeng, et al.   Sci China Chem   January (2010) Vol.53 No.1 

O antigen lacks the terminal sugar. Therefore, persons of 
one blood type, such as A, would have natural antibodies 
against the other type (such as B) by targeting the difference 
in the terminal sugar structures. However, since O-type an-
tigen does not have the terminal sugar and only has the 
common sugar structure, no antibody against the common 
core is produced by individuals of any blood type, which is 
the reason that O-type is “universal” [129]. 

Another type of carbohydrate-mediated immune response 
is the natural immunity in human against animal tissues. For 
example, pig cell surface has an antigen including the 
α-Gal-Gal moiety [130], which is absent on human cells. 
Therefore, humans have natural antibodies against α-Gal- 
Gal [131]. The acute immune response against α-Gal-Gal is 
a major hurdle in organ transplant using pig organs. A few 
years ago, genetically engineered pigs were produced [132, 
133], which lack the α-Gal-Gal moiety and thus allow for 
organ transplant using pig organs to move one step closer to 
reality. In addition, targeted delivery of the α-Gal-Gal moi-
ety has also been used to elicit immune response at a spe-
cific location or cell type [134].  

5  Stem cell differentiation and embryo devel-         
opment 

Fundamentally, stem cell differentiation and embryo devel-
opment are the same. The process of transforming pluripo-
tent stem cells into those of specialized functions is marked 
by different stages, which have characteristic stage-specific 
biomarkers. Such biomarkers are often carbohydrate-based 
[135–137] and can be targeted in “binder” development for 
various applications [138]. For example, Lewis X (Lex) has 
been identified as a stage-specific embryonic antigen, which 
can be used for identifying and isolating specific cell types 
from heterogeneous populations [139, 140]. Along this line, 
it was reported that sorting SVZ cells on the basis of Lex 
was a good strategy to enrich a restricted but highly prolif-       
erative neutral stem cell population [141]. Other examples 
of carbohydrate changes at various developmental stages 
include (1) enriched fucose incorporation into macromole-         
cules was found on cell surface at the 8- to 16-cell stage in 
pre-implantation mouse embryos [142]; (2) sialic acid was 
found on the 12th day of incubation of metanephros while 
before that time only N-acetyl-D-glucosamine and alpha- 
D-mannose were found to exist ubiquitously [143]; (3) in 
chick embryo development, glycopeptides were found to be 
mainly N-linked on the 8-day and both O- and N-linked on 
the 16th day with increased sialylated small glycopeptide 
contents [144]; and (4) glycosylation of two identical poly-           
peptide chains was found to be organ specific by analysis of 
chicken serum transferrin and ovotransferrin glycans [145]. 
There are also many other examples of these biomarkers, 
such as SSEA-1, -3, and -4 and tumor rejection antigen  

(TRA)-1-60 and -1-81 [137, 139, 146]. All such results indi-         
cate that carbohydrate biomarkers play very important roles 
in the stem cell differentiation and embryo development. In 
stem cell research, one critical element is the ability to pu-
rify cells of the same differentiation stage and lineage. 
“Binders” that can recognize stage-specific biomarkers will 
be very useful for the purpose of separation and identifica-      
tions. Along this line, aptamers can be very useful since 
their selection does not require prior knowledge of the na-       
ture and structure of the biomarkers in questions. There 
have been successful examples of selecting aptamers for 
cell-surface biomarkers using whole cells for the selection 
[138, 147–151]. For example, liver cancer-specific aptamers 
were developed by using whole live cells [152]. This study 
demonstrates that cell-based aptamer selection can specifi-       
cally recognize cells from multiple cell lines, even for two 
cell lines with minor differences [152, 153]. In another study, 
a series of aptamers were selected for leukemia cells. These 
aptamers have dissociation constants (Kd) in the nano to 
pico-molar range. The selected aptamers could specifically 
recognize leukemia cells when mixed with normal human 
bone marrow aspirates. These aptamers were also used to 
identify cancer cells closely related to the target cell line in 
real clinical specimens [154]. Therefore, cell-based selec-       
tion is a very promising method of developing specific mo-      
lecular probes for cell-surface biomarker recognition. Simi-      
lar approaches can be applied to stem cells for the selection 
of aptamers capable of recognizing stage-specific carbohy-
drate biomarkers. The recent development of boronic 
acid-modified DNA-based aptamers [155] allows for the 
selection of high affinity “binders” for glycoproteins with 
the ability to differentiate variations in glycosylation pat-
terns and should tremendously enhance the chance of find-
ing high affinity aptamers for such cell-surface carbohy-
drate biomarkers because of the intrinsic affinity of the bo-
ronic acid moiety for carbohydrates [51, 55]. Recently, the 
Schultz lab has developed a way of engineering boronic 
acid-modified protein [155, 156]. This will also be very 
useful in selecting artificial lectins for carbohydrate recog-
nition. 

6  Signal transduction 

In the signal transduction area, the most prominent example 
is probably with glycosphingolipids (GSLs), which are in-
volved in a whole host of activities. GSLs have the general 
structure of two hydrophobic tails (ceramide, consisting of 
Sph and fatty acid) and one carbohydrate chain, which are 
oriented perpendicularly. GSLs are held in the membrane 
by ceramide such that the carbohydrate chain is accessible 
to various ligands (antibodies, lectins, and complementary 
carbohydrates) (Figure 2) [157]. GSLs are an integral part 
of cellular membrane, which functions as antigens, recep-
tors for microbial toxins, and mediators of cell adhesion and 
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Figure 2  Structure of GSLs. 

modulators of signal transduction. Many functions were 
attributed to the unique property of GSLs to form clusters. 
Glycosynapse refers to glycosphingolipids-enriched micro-         
domain, and glycosynaptic domains, which control GSL- 
dependent or -modulated cell adhesion, growth, and motil-         
ity, are formed by the interaction of GSL clusters and func-           
tional membrane proteins. Modulation of glycosynapse 
functions can lead to new strategies in cancer therapy, and 
elucidation of the molecular mechanism of interaction 
among components in glycosynaptic domain might shed 
lights on new possible approaches to disrupt or promote 
such interactions [119, 121, 122, 157–161]. 

Protein glycosylation is known to be involved in regulat-
ing signal transduction as well. For example, the dynamic 
glycosylation of serine or threonine residues on nuclear and 
cytosolic proteins by O-linked β-N-acetylglucosamine (O- 
GlcNAc) has been implicated in regulating protein-protein 
interaction(s) and/or protein function [162]; the Notch sig-             
naling pathway could be regulated by alterations of O- 
fucose structures [68]; O-fucose modification of Cripto is 
essential for Nodal-dependent signaling [68]; glycosylation 
of human CRLR at Asn123 is required for ligand binding 
and signaling [163]; elevated nucleocytoplasmic glycosyla-         
tion by O-GlcNAc results in insulin resistance associated 
with defects in Akt activation [164]; alternative O-glyco-           
sylation/O-phosphorylation of serine-16 regulates the ac-
tivities of murine estrogen receptor beta [165]; NFkappaB 
activation is associated with its O-GlcNAcylation state un-
der hyperglycemic conditions [166]; glucose deprivation 
stimulates O-GlcNAc modification of proteins through up- 
regulation of O-linked N-acetylglucosaminyltransferase 
[167, 168]; a mitotic GlcNAcylation/phosphorylation sig-
naling complex alters the posttranslational state of the cy-
toskeletal protein vimentin [169]; O-glycosylation of Sp1 
by insulin seems to enhance its nuclear recruitment and re-
sults in activation of CaM gene transcription [170]; and 
glycosylation of guanylyl cyclase C affects its conformation 
and functional ability [134]. There are many other reports of 
similar nature.  

In 1993, a uniquely glycosylated base, β-D-glucopyrano-            
syloxymethyluracil (also called base J), was identified in the 
nuclear DNA of Trypanosoma brucei [171]. This is a rare, if 

not the only, case where DNA glycosylation is known to 
play a very important physiological role in signal transduc-
tion and gene silencing [24, 25, 27, 172–175]. Specifically, 
base J is said to be the first hypermodified base found in 
eukaryotic DNA in the telomeric repeats and to be present 
in all kinetoplastid flagellates analyzed and some unicellular 
flagellates closely related to trypanosomatids [176]. In one 
study, Sabatini and coworkers proposed a model in which 
chromatin remodeling by J Binding Protein (JBP2) regu-
lates the initial sites of J synthesis within bloodstream form 
trypanosome DNA, with further propagation and mainte-
nance of J by JBP1. Synthesis of J within telomeric DNA of 
Trypanosoma brucei correlates with the bloodstream-form- 
specific epigenetic silencing of telomeric variant surface 
glycoprotein genes involved in antigenic variation [177, 178]. 
All such results suggest that binding and modulation of 
glycans of various proteins, lipids, and even DNA may al-
low for regulation of signal transductions. 

7  Cardiovascular diseases 

In the cardiovascular area, the case of glycosylated hemo-
globin (technically it should be glycated since the attach-
ment of a sugar moiety is through chemical reactions) is 
most widely recognized. Specifically, glycated hemoglobin 
(GlcHb) level is a strong indicator of cardiovascular disease 
(CVD) risk in diabetic patients [179–184], who die of CVD 
at rates 2–4 times higher than those without diabetes [181]. 
In vivo, glycation, normally defined as a nonenzymatic re-
action of glucose with amino groups in protein to form the 
Amadori product [185] (Scheme 1), is generally considered 
the first step in the Maillard reaction [186, 187]. Later 
stages of Maillard reaction lead to the formation of 
sugar-derived protein adducts and advanced glycation 
end-products (AGEs), which play an important role in the 
pathogenesis of chronic diseases [182]. The term GlcHb 
generally refers to the full spectrum of glycated hemoglo-
bins, including those containing glycated valine (such as 
HbA1c) and/or lysine residues. In a normoglycemic person, 
GlcHb accounts for ~24% of total hemoglobin at the end of 
the erythrocyte lifespan (~120 days), including 4% HbA1c 
[182, 188]. However, elevated glucose concentration in 
diabetic patients significantly increases this glycation reac-
tion. For example, some diabetic patients have about 2–4 
fold increases in HbA1c [189]. Although certain important 
questions regarding the prevention of CVD in diabetic pa-
tients remain unresolved, epidemiologic analyses suggested 
that a 1% increase in glycated hemoglobin elevates the risk 
for CVD by approximately 18% [181].  

Another example of glycosylation’s effect on cardiovas-
cular diseases is with fibrinogen, which circulates in the 
blood as the precursor of fibrin, the structural component of 
blood clot. It plays a key role in platelet aggregation, the 
final step of the coagulation cascade, and is a major deter-         
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Scheme 1  Reaction between glucose and the amino group of a protein to form the Amadori product. 

minant of plasma viscosity and erythrocyte aggregation 
[190]. Fibrinogen is a glycoprotein with a molecular weight 
of 340 kDa [191] and contains approximately 3% carbohy-          
drate consisting of NeuAc, Gal, Man, and GlcNAc [192]. 
From amino acid sequence studies, it has been determined 
that carbohydrate is linked to Asn52 on the γ chain and 
Asn364 on the Bβ chain [193, 194]. The carbohydrate 
moieties play important roles in fibrinogen functions [195, 
196] and are involved in the clotting process, although some 
contradictory results have been reported [197–199]: degly-        
cosylated fibrinogen could accelerate polymerization and 
increase lateral aggregation of fibrin fiber [200]; the desia-        
lylated oligosaccharide chains of fibrinogen could poten-         
tially mediate plasma clearance via the hepatic galactose/ 
galactosamine binding lectin [201]; altered amounts of car-        
bohydrate in fibrinogen are known to be directly related to 
certain types of dysfibrinogenemia [202]; extra negative 
charges (sialic acids) on fibrinogen can impair fibrin po-        
lymerization [203, 204], presumably due to the repulsive 
forces of the charges; and steric hindrance presented by 
additional glycan structures can also impair fibrin polym-
erization [203]. Fibrinogen-related abnormality is also im-       
plicated in other diseases such as hepatoma [202], pancre-
atic [33, 205] and other cancers [33, 206–213], tumor me-
tastasis [208, 214–216], human hemopoietic cell prolifera-
tion [217], and embryogenesis and reproduction [218]. 
Some of these pathological changes are directly related to 
abnormal glycosylations [203, 204, 219–228]. In addition, 
there are many other situations where glycosylation affects 
the health of the cardiovascular system. For example, cer-
tain congenital disorder of glycosylation has been linked to 
intracranial hemorrhage [229].  

The above examples are far from a complete list and are 
at best some highlights of examples where glycosylation 
variations play an important role in determining the bio-
logical outcome. However, even from this incomplete list, it 
can be seen that “binders” that can recognize a carbohydrate 
biomarker with high specificity and affinity would have 
great application potentials as sensors for concentration 
analysis, diagnostics, and possibly therapeutic agents. Be-

low is a section describing the general concept of artificial 
“binder” design. It should be noted that there are several 
extensive reviews and book chapters on this subject. The 
following section is far from comprehensive. It can only be 
treated as some basic conceptual description. Readers are 
referred to published reviews [45, 51, 54, 55, 230, 231] and 
book chapters [232, 233] for more details. 

8  Carbohydrate recognition 

As discussed above, “binders” that can recognize certain 
carbohydrates with high affinity and specificity should be 
very useful research tools and potential diagnostic and 
therapeutic agents. However, achieving high affinity and 
high specificity carbohydrate recognition is not a trivial 
issue. In molecular recognition, antibody is often the gold 
standard. However, in the case of carbohydrates, raising 
antibodies is often a difficult task. More often than not, low 
affinity IgM antibodies are obtained. Recently, Boons [234] 
and colleagues have developed a remarkable synthetic ap-
proach to carbohydrate-protein conjugates, which elicits 
strong immune responses with very high titer. Naturally 
occurring protein “binders” include lectins [235, 236]. A 
few hundreds of lectins have been identified, about 60 of 
which are commercially readily available. Lectins all have 
certain specificity based on the overall topology and sugar 
compositions. For example, there are lectins that recognize 
polymannose structures and others that can recognize ga-
lactose connected to different structures. However, essen-
tially all lectins have cross reactivity issues [237, 238].  

Recent years have seen a great deal of interest in devel-
oping artificial lectins for various applications. These artifi-
cial lectins can generally be divided into two types: boronic 
acid-based and non-boronic acid based. The reason that 
boronic acid plays such an important role is that it can form 
tight complexes with diol-containing compounds. Some-       
times single hydroxyl group interactions are sufficient in 
reinforcing highly specific macromolecular interactions. All 
these aspects have been discussed in detail in a recent re-
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view and will not be duplicated here [51]. One thing that 
needs to be emphasized is the misperception that boronic 
acids only interact with linear diols and diols on five- 
membered ring. There are ample literature precedents dem-
onstrating that boronic acid interactions with single hy-
droxyl groups or other nucleophiles/Lewis bases can also 
play a very important role in designing/selecting carbohy-
drate “binders” [51]. Since all boronic acid-containing car-
bohydrate “binders” function in a similar fashion as lectins, 
we have termed them as boronolectins [55]. Within the bo-        
ronolectin category, there are small molecule- and macro-       
molecule-based boronolectins including boronic acid-based 
carbohydrate sensors [51, 55, 239], nucleic acid-based boro-        
nolectins (NABL) [240], peptide boronolectins (PBL) 
[241–244], and protein boronolectins (PrBL) [155, 156]. 
Each of these categories is discussed briefly below.  

8.1  Non-boronic acid based lectin mimics 

In this approach, the design is mostly based on hydrophobic 
and hydrogen bond interactions for recognition. Though 
early efforts were mostly on recognition in organic solvent, 
recently there has been remarkable progress in making non- 
covalent carbohydrate binders which showed reasonably 
high affinity in water, especially those by the Davis lab 
[245–249]. One example comes from the successful design 
of such a binder (1, Figure 3) for all-equatorial disaccha-
rides, such as D-cellobiose, with good affinity and selectiv-
ity in aqueous solution [248]. Receptor 1 has two building 
blocks: (1) a-meta-tertphenyl structure providing the “roof” 
and “floor” for hydrophobic interactions with carbohydrates 
and defining the length of the binding cavity; (2) isophtha-
lamide units serving as pillars, with the potential to form 
hydrogen bonds, promote solubility, as well as prevent the 
cavity from collapsing. The binding constants between re-
porter 1 and selecting carbohydrates were determined to be  

 

Figure 3  Structure of all-equatorial disaccharide receptor 1. 

5–910 M−1 with good selectivity. 
Recently, Boons and Davis reported another analog 2 

(Figure 4) using the same design concept, with a biphenyl 
“roof” and “floor” as well as isophthalamide “pillars” [249]. 
In a previous study, receptor 2 showed weak bind for the 
β-glucosyl unit (Ka = 9 M−1 for D-glucose (α/β = 40/60) and 
5 M−1 for D-glucose (α/β = 72/28); Ka = 27 M−1 for methyl-β- 
glucoside and 7 M−1 for α-anomer) [247]. In an expanded 
study, 2 was recently reported as a strong and selective re-
ceptor for β-GlcNAc. The apparent binding constant be-
tween GlcNac β-OMe (Figure 4) and receptor 2 was deter-
mined to be 630 M−1, which competes well with one lectin 
(WGA, Ka = 730 M−1). Furthermore, receptor 2 has higher 
selectivity for GlcNac β-OMe than for the α-anomer and 
other N-acetylaminosugars. 

8.2  Small molecule boronolectins (SBL) 

Among all the carbohydrate sensors, boronic acid emerges as 
the most commonly used functional group for recognition, 
due to its strong interactions with diols [51–55, 231, 239, 
250–263], aminoalcohols [264–266], α-aminoacids [267], 
α-hydroxyl acids [268–271], alcohols [55, 233, 272–287] as 
well as cyanide [288, 289] and fluoride [290–294]. The in-
trinsic ability for boronic acids to interact with nucleophiles 
is described in Scheme 2. The boron atom has only 6 va-
lence electrons in its trigonal neutral form, which makes 
boronic acid a Lewis acid and capable of strong interactions 
with Lewis bases/nucleophiles. As a result, the boronic acid 
(3, Scheme 2) group is able to react with a protic solvent 
and convert to its anionic tetrahedral form (4). Both 3 and 4 
are able to form tight and reversible complexes with 1,2- 
and 1,3-substituted Lewis base donors such as hydroxyl, 
amino, and carboxylate groups. Several factors such as  

 

Figure 4  Structures of reporter 2 and GlcNAcβ-OMe. 
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Scheme 2  Overall binding equilibria of phenylboronic acid with a diol. 

O-C-C-O dihedral angle, pKa values of the diol, buffer, 
ionic strength, as well as solvent all affect the complexation 
[55, 295, 263, 296]. 

Small molecule boronolectins (SBLs) have drawn a great 
deal of attentions in carbohydrate biomarker recognition 
and targeting [51]. Several recent reviews and research pa-
pers comprehensively summarize the use of boronic acids in 
sensor designs for carbohydrates [51, 54, 55, 231, 239] fluo-
ride [290–294], cyanides [288, 289], as well as in-depth 
discussions of factors [55, 263, 296] that should be consid-
ered along the line of designing such sensors. Besides, there 
have also been quite a few recent reviews [51, 53] and re-
search papers [44, 156, 297–312] on boronic acids that 
change fluorescent properties upon binding to a nucleo-
philic analyte or pH changes. Readers are referred to the 
above-referenced papers for details. Below, several repre-
sentative examples are discussed to highlight applications. 
One such example comes from the Wang lab, which devel-
oped an anthracene-based diboronic acid compound for 
sialyl Lewis X (sLex). The anthracene-based boronic acid 
was first developed by the Shinkai group [253], whose 
fluorescence can be quenched by nitrogen lone pair elec-
trons and recovered if lone pair electrons are masked 
through protonation after binding with carbohydrates [140]. 
By taking advantage of this, Wang and co-workers suc-
cessfully designed and synthesized a series of anthra-
cene-based diboronic acid compounds with different linkers, 
rigidity, and spatial orientation for recognition of sLex on 
cell surface [254, 313]. Among all the designed compounds, 
sensor 7 (Figure 5) stands out as an excellent receptor, 
which was able to label sLex-expressing cells at low con-
centrations (0.5 μM) without cross-reactivity to Ley-ex-         
pressing cells. This represents the first example of a small 
organic molecule used to fluorescently label cells based on 
the cell-surface carbohydrate structures. Further develop-
ment along this line could lead to a number of small mole-
cule boronolectins for labeling, drug delivery, and selective 
imaging applications.  

In another example, the Hall lab in 2006 reported an ortho- 
hydroxymethyl phenylboronic acid (8, Scheme 3), which  

 

Figure 5  Structures of boronic acids sensor 7. 

competes well with the well-established dialkylamino 
(Wulff-type) analogs with better binding affinity and solu-
bility [272, 306]. The most significant finding of compound 
8 was the weak but encouraging binding with model gly-
copyranosides. In aqueous media at physiological pH (7.4), 
the apparent binding constant between 8 and methyl α-D- 
glucopyranoside was determined to be 22 M−1, which was 
slightly lower than that for glucose (Ka = 36 M−1). This sys-
tem has been used by the Hindsgaul lab for the detection of 
the terminal glycosylation of a glycoprotein with the aid of 
colored ortho-hydroxymethyl phenylboronic acid conju-
gates [314].  

 

Scheme 3  Binding between ortho-hydroxymethyl phenylboronic acid 8 
and glycoconjugates. 

8.3  NABL 

Another area developed recently in carbohydrate sensor de-
sign is nucleic acid-based boronolectins (NABL). The Wang 
lab is working on incorporating boronic acid-modified 
thymidine into DNA for aptamer selection work for glyco-
proteins. A boronic acid-labeled thymidine triphosphate 
(BTTP 9, Figure 6) was successfully synthesized [46]. It has 
been demonstrated that DNA polymerase can recognize 
BTTP as a substrate and the boronic acid-labeled DNA as a 
template, which are critical issues for aptamer selection 
work. One challenging task of carbohydrate recognition is 
the differentiation of glycosylation patterns of a glycopro-
tein. By taking advantage of the general aptamer selection 
method developed about 18 years by the labs of Szostak 
[315], Joyce [316], and Gold [317], as well as the intrinsic 
affinity of boronic acids for carbohydrates, it is reasonable 
to believe that incorporation of a boronic acid into the DNA 
aptamer would allow for the selection process to gravitate 
toward the glycosylation site and therefore allow for differ-
entiation of glycosylation patterns. 
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Figure 6  Structure of BTTP 9. 

Anslyn and co-workers invented a method of using ap-
tamers to fine-tune the selectivity of boronic acid-based 
synthetic small molecule receptors [240]. Specifically, or-
ganic receptor 10 (Figure 7) was immobilized on glyoxal 
agarose beads through reductive amination to form immobi-
lized receptor 11, which was in complexation with tartrate 
as the target for the selection. Control compound 12, inca-
pable of binding tartrate, was used for counter selection. 
The progress of the selection was monitored by incorporat-
ing a radiolabel into the RNA pool. By this approach, the 
author successfully selected an aptamer with good selectiv-
ity for the complex between bis-boronic acid receptor 11 
and tartrate (>14 for tartrate, Kd = 2.1 × 10−4 M and Kd < 3 × 

10−3 M for citrate in 20% MeOH). One explanation for the 
selectivity is that aptamer might form a pocket more pre-
cisely to accommodate the receptor-tartrate complex, while 
excluding citrate via steric interactions or charge repulsion. 
This work can lead to the applications for improving the 
specificity of synthetic receptors and the development of 
biosensors for small organic analytes. 

8.4  PBL 

In addition to nucleic acid-based boronolectins (NABL), 
there have been efforts in making peptide boronolectins 
(PBL) for the same purpose [241–244]. For examples, the 

Anslyn lab group developed a chemosensor array of PBL 
for saccharides, saccharide derivatives, and even sucralose 
in a real world beverage sample with good water solubility 
and high sensitivity at physiological pH [241]. The Duggan 
lab prepared solid-supported PBL derived from 4-borono-L- 
phenylalanine and studied their affinity for alizarin [242]. 
The Hall lab developed a general solid-phase approach to 
the synthesis and isolation of functionalized boronic acids, 
which should be very useful in combinatorial library syn-         
thesis of boronic acid-based carbohydrate sensors [243]. 
The Lavigne lab reported their PBL sensors for glycomics 
recognition with the potential for cancer diagnosis [244]. 
Along a similar line, Hall and coworkers have also estab-
lished a prototypic bead-supported split-pool library of 
triamine-derived triboronic acid receptors [318]. 

8.5  PrBL  

Recently, the Schultz lab successfully demonstrated the 
feasibility of adding the boronate functionality to the ge-      
netic code of E. coli in high yield and efficiency [155, 156]. 
Specifically, p-boronophenylalanine (13, Figure 8) was in-       
corporated into proteins. The intrinsic affinity of the boronic 
acid group allows for the selection of high affinity PrBL. In 
addition, this method has the potential to be used for purify-       
cation of native protein sequences in a one-step scarless 
affinity procedure. 

8.6  Carbohydrate labeling in living systems  

Recently, the Bertozzi lab has developed labeling ap-
proaches to probing the functions of glycans in living sys-
tem and application of these tools to studies of glycobiology 
such as the identification of novel glycan-based tumor bio-
markers [319–334].  

The general principle relies on the availability of a toolkit 
of “azido sugars” for metabolically labeling different 
classes of glycans. These azido sugars can be recognized by 
their respective processing/incorporation enzymes and can 
be used for tagging via two bio-orthogonal reactions: 
Staudinger ligation (Figure 9) and [2+3] cycloaddition 
(click reaction) (Figure 10) [335–337]. Along this line, a  

 

Figure 7  Structures of compounds 10–12. 
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Figure 8  Structure of p-boronophenylalanine 13. 

 

Figure 9  Incorporation of “azido-sugar” into cell and subsequent Staud-
inger ligation. 

 

Figure 10  Cyclooctynes for strain-promoted cycloadditions with azides 
in living systems. 

series of successful applications have been published [320, 
323, 325, 330, 332, 334]. For examples, the azide-bearing 
ManNAz has been employed to visualize sialic acids in live 
cells using phosphine and cyclooctyne reagents [320, 334]; 
the same strategy was further developed to perform in vivo 
imaging [332]; simultaneous imaging of the expression of 
two different glycans was also achieved by introducing two 
chemical reporters (ketone and azide) into sialic acid and 
N-acetylgalactosamine (GalNAc) residues, which allowed 
controlled introduction of two fluorescent probes to monitor 
glycan expression and dynamics [323]; and a FRET-based 
fluorogenic phosphine for live-cell imaging with Staudinger 

ligation was also exploited recently [325]. 
In using the Huisgen [3+2] dipolar cycloaddition with 

alkynes, the Bertozzi lab developed strained alkynes (14 and 
15, Figure 10) for copper-free cycloaddition [320, 322, 324, 
326, 328]. The Boons lab subsequently also reported their 
own strained alkynes for copper-free cycloaddition with 
azido compounds (16, Figure 10) [338]. The availability of 
such alkynes for copper free cycloaddition is especially 
important in live cell imaging because of the toxicity issues 
of copper in living systems. With this technique, the dy-
namics of glycan trafficking and a population of sialogly-
coconjugates with unexpectedly rapid internalization kinet-
ics were studied. In another example, 14 was used for the 
noninvasive imaging of glycans in live developing zebrafish 
[327]. In this experiment, zebrafish embryos were first 
treated with an unnatural sugar to metabolically label their 
cell-surface glycans with azides and then visualized by   
using an in vivo Cu-free click reaction with fluorophore- 
conjugated 14. The Bertozzi group also performed a spatio-
temporal analysis of glycan expression and trafficking and 
identified patterns by using a multicolor detection strategy 
[324].  

In conclusion, carbohydrates serve very important bio-
logical functions in a wide variety of processes. “Binders” 
that can specifically recognize a carbohydrate biomarker 
can be used for site specific delivery of therapeutic and im-
aging agents. Specific recognition of carbohydrates that 
mediate pathological processes has the potential to be used 
as a way to develop novel types of therapeutic agents. Re-
cent years have seen a tremendous amount of work in de-
veloping carbohydrate “binders,” with boronolectins show-
ing special promises. It is almost a certainty that new diag-
nostic and therapeutic agents will come out in the not too 
distant future that rely on carbohydrate recognition. 
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