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Abstract CD26 is a T-cell costimulatory molecule with
dipeptidyl peptidase IV (DPPIV) activity in its extracellular
region. We previously reported that recombinant soluble
CD26 enhances peripheral blood T-cell proliferation in-
duced by the recall antigen tetanus toxoid (TT).
Recently, we demonstrated that CD26 binds caveolin-1 on
antigen-presenting cell (APC), and that residues 201–211 of
CD26 along with the serine catalytic site at residue 630,
which constitute a pocket structure of CD26/DPPIV, con-
tribute to binding to caveolin-1 scaffolding domain. In addi-
tion, following CD26–caveolin-1 interaction on TT-loaded
monocytes, caveolin-1 is phosphorylated, with linkage to
NF-κB activation, followed by upregulation of CD86.
Finally, reduced caveolin-1 expression on APC inhibits
CD26-mediated CD86 upregulation and abrogates CD26
effect on TT-induced T-cell proliferation, and immunohis-
tochemical studies revealed an infiltration of CD26+ T cells
in the sublining region of rheumatoid synovium and high
expression of caveolin-1 in the increased vasculature and
synoviocytes of the rheumatoid synovium. Taken together,
these results strongly suggest that CD26–cavolin-1 interac-
tion plays a role in the upregulation of CD86 on TT-loaded
APC and subsequent engagement with CD28 on T cells,
leading to antigen-specific T-cell activation such as the
T-cell-mediated antigen-specific response in rheumatoid
arthritis.
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Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory dis-
ease characterized by the progressive destruction of carti-
lage and bone in the synovial joints, which is associated
with proliferation of synovial cells and infiltration of acti-
vated memory T cells, antigen-presenting cells (APCs) and
plasma cells.1 Proposed etiologies for RA include genetic
predisposition, dysregulation of self-tolerance, immune
dysregulation triggered by environmental agents, and
subsequent transformation of synovial cells.1–3 Macroph-
ages and/or T cells are important mediators of RA patho-
genesis, with cytokines such as tumor necrosis factor alpha
(TNF-α) and interleukin-1 (IL-1) being proven therapeutic
targets. In fact, antagonists against such cytokines have
been used recently as effective RA therapy, decreasing
joint damage and slowing radiographic progression of
disease in patients of RA with inadequate response to
methotrexate.4–7 However, as many patients do not experi-
ence effective relief even with the use of these newer bio-
logical agents, additional novel therapeutic approaches are
still needed.8–10

Major-histocompatibility-complex (MHC) class II phe-
notype such as HLA-DR1, DR-4 and DR-14 confers sus-
ceptibility to RA.11–14 MHC class II molecules present
antigens to CD4+ T cells, suggesting an important role for T
cells in the pathogenesis of RA. Moreover, the rheumatoid
synovium contains activated T cells, providing further ratio-
nale for the proposal that T cells have an important role in
RA.15,16 Antigen-presenting cells such as monocytes, macro-
phages, and dendritic cells are also present in the rheuma-
toid synovium,1 being activated and expressing both MHC
class II and costimulatory molecules such as CD86 and
CD80. These findings strongly suggest that the interaction
between synovial T cells and APCs have a direct role in the
progression of synovitis.2 Moreover, careful analysis of
infiltrating synovial T cells has revealed a bias towards the
TH1 phenotype.17,18 In particular, patients with autoimmune
diseases such as multiple sclerosis, Graves’ disease, and RA
have been found to have increased numbers of CD4+
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CD26+ T cells in inflamed tissues as well as in their periph-
eral blood,19–22 with enhancement of CD26 expression in
these autoimmune diseases correlating with disease sever-
ity.19,20,23 In addition, we previously demonstrated that T
cells migrating through endothelial cell monolayers in vitro
express high levels of CD26.24 These findings imply that
CD26+ T cells play an important role in the inflammation
process and subsequent tissue damage in such diseases.

It is well established that T cells require at least two
signals to be fully activated.25 The first signal is antigen-
specific and is delivered by engagement of the T-cell recep-
tor (TCR) complex with an MHC-peptide complex on
APC. The second signal is exerted by the binding of a
costimulatory receptor on T cells to a ligand on the APCs.
A key costimulatory signal is provided by the interaction of
CD28 on T cells with CD86 or CD80 on APCs. We showed
previously that CD26 on T cells have a very strong
costimulatory effect on CD4+ T-cell activation in response
to memory antigen such as tetanus toxoid (TT).26–29 How-
ever, the molecular mechanism involved in the process of
antigen-specific T-cell activation via CD26 has not been
clearly elucidated. We recently demonstrated that caveolin-
1 on antigen-loaded monocytes is a binding partner of
CD26 and that signaling downstream of caveolin-1 in APC
is triggered by stimulation with exogenous CD26.30,31 There-
fore, T-cell costimulation via CD26 as well as CD28 may
have an important role in the pathophysiology of inflamma-
tory diseases such as RA. In this review, we discuss various
aspects of CD26 involvement in immune regulation and
immune-mediated disorders such as RA, with a particular
focus on the role of caveolin-1 as its key binding partner.

Structure and function of CD26

CD26 is a 110kDa cell-surface glycoprotein that belongs to
the serine protease family, and human CD26 is expressed
on a variety of tissues including T lymphocytes, endothelial
and epithelial cells. As shown in Fig. 1A, human CD26 is
composed of 766 amino acids, including a short cytoplasmic
domain of 6 amino acids, a transmembrane region of 24
amino acids, and an extracellular domain with dipeptidyl
peptidase activity which selectively removes the N-terminal
dipeptide from peptides with proline or alanine at the
penultimate position (dipeptidyl peptidase IV, DPPIV).32

The amino acid sequence of human CD26 illustrates ap-
proximately 85% homology with the rat DPPIV enzyme
and the mouse thymocyte activation molecule (THAM),
the mouse homologue of human CD26.33 CD26 knockout
(CD26-KO) mice with C57BL/6 background display an ap-
parently normal phenotype.34,35 However, the percentage of
CD4+ T cells is lower in the spleen lymphocyte population
in the CD26-KO mice than in CD26-positive wild-type
mice. After immunization of mice with PWM in vivo, serum
levels of total IgG, IgG1, IgG2a and IgE were markedly
decreased in CD26-KO mice than those in wild-type mice.
Moreover, IL-4 and IL-2 level in sera of CD26-KO mice
were decreased and production of interferon-gamma

(IFN-γ) was delayed in response to PWM immunization.
These results indicate that CD26 helps to regulate the de-
velopment, maturation and migration of CD4+ T lympho-
cytes, cytokine secretion, T cell-dependent antibody
production, and immunoglobulin isotype switching of B
cells.34

In contrast to the function of murine CD26, human
CD26+ T cells exert diverse effects.28,36,37 CD26 is a
membrane-associated ectopeptidase with DPPIV activity,
and possible substrates of CD26/DPPIV include several
critical cytokines and chemokines. Activity of RANTES
(regulated on activation, normal T-cell expressed and se-
creted; CCL5) is altered by the enzymatic cleavage of
DPPIV, as CD26/DPPIV-processed RANTES affects im-
portant activities such as those implicated in monocyte
chemotaxis and HIV-1 infection.38,39 Other important
chemokines that appear to be substrates of DPPIV enzy-
matic activity include eotaxin (CCL11), macrophage-
derived chemokine (MDC) (CCL22), interferon inducible
chemokines (CXCL10), and other chemokines involved in
the inhibition of HIV infection.39 In addition, recent work
showed that CD26 plays an important role in the mobiliza-
tion of hematopoietic stem cell (HSC) and hematopoietic
progenitor cells (HPC) induced by granulocyte colony-
stimulating factor (G-CSF).40 One of the substrates of
CD26/DPPIV is CXCL12 (SDF-1α, stromal cell-derived
factor 1 alpha), an important chemokine that serves as a
chemoattractant for HSC/HPC.41,42 It has been shown that
CXCL12 can be selectively truncated in vitro by CD26/
DPPIV, and the truncated molecule lacks the ability to
induce migration of hematopoietic cells isolated from
mouse bone marrow. Furthermore, treatment of mice with
CD26/DPPIV inhibitors during the process of G-CSF mobi-
lization results in a significant reduction in the number of
mobilized HPC.40,41 Other exciting development regarding
DPPIV involves its role in glucose metabolism, since inhibi-
tion of endogenous glucagon-like peptide 1 (GLP-1) degra-
dation by reducing DPPIV activity is an alternative strategy
for improving the incretin action of GLP-1 in vivo and
regulating glucose levels.43 Selective small molecule inhibi-
tors of DPPIV are currently being investigated in clinical
trials for the treatment of impaired glucose tolerance and
type 2 diabetes.44

Besides its ability to regulate the effect of biological
factors through DPPIV enzyme activity, CD26 has an
essential role in human T-cell physiology, especially in
response to memory antigens (Fig. 1B).28 Originally charac-
terized as a T-cell differentiation antigen, CD26 is preferen-
tially expressed on a specific population of T lymphocytes,
the subset of CD4+ CD45RO+ memory T cells, and is
upregulated following T-cell activation.29 Besides being a
marker of T-cell activation, CD26 is also associated with
T-cell signal transduction processes as a costimulatory
molecule.27,37,45,46 In addition, CD26 serves as a functional
collagen receptor with a role in T-cell activation, as well as
having a potential role in thymic ontogeny (Fig. 2).26,46,47 The
enzymatic activity of CD26 appears to be very important in
enhancing cellular responses to external stimuli. For ex-
ample, Jurkat cells transfected with wild type CD26 consis-
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tently demonstrate greater activation than parental CD26
negative Jurkat or cells transfected with CD26 mutated at
the DPPIV enzymatic site.48 Furthermore, CD26 interacts
with several molecules playing important roles in T-cell
function. CD26 physically binds with adenosine deaminase
(ADA), an enzyme that plays a key role in the development
and function of lymphoid tissues.49–51 Adenosine deaminase
is essential for purine metabolism, with the loss of ADA
leading to a clinical syndrome characterized by severe
immunodeficiency.52 When the ADA inhibitor pentostatin
was used in the treatment of recurrent T-cell lymphomas, a
significant reduction in circulating CD26+ T cells was ob-
served in treated patients.53 This finding is consistent with
the fact that there is a physical association between CD26

and ADA on the surface of T lymphocytes. CD26 also
interacts with CD45RO, a tyrosine phosphatase with a criti-
cal role in T-cell signal transduction, at lipid rafts in periph-
eral blood T lymphocytes to modify cellular signaling events
(Fig. 2).54,55 Interestingly, CD26 is associated with CD45 RA
outside of lipid rafts in cord blood T cells, and the strong
physical linkage of CD26 and CD45 RA may be responsible
for the attenuation of cord blood T-cell activation signaling
through CD26, which may in turn result in immature im-
mune response and the relatively low incidence of severe
graft-versus-host disease (GVHD) in cord blood transplan-
tation (Fig. 2).56

Since the 1970s, DPPIV-like activity has been reported
in human serum. After identification of the ADA-binding

Fig. 1. A Schematic diagram
of human CD26 structure.
Adenosine deaminase (ADA)
binding site at residues 340–343,
fibronectin binding site at
residue 469–479, and dipeptidyl
peptidase IV (DPPIV) enzyme
activity at Ser630. X-Ala- or X-
Pro- denotes peptides containing
any amino acid at N-terminal
position with alanine or proline
at the penultimate position. B
Cellular function of CD26high T
cell. See text for details. APC,
antigen-presenting cell; TCR,
T-cell receptor; IFN, interferon;
IL, interleukin

A

Fibronectin

DPPIV

AA 469-
479

AA 340-
343

ADA
Extracellular domain

(AA29-766)

Flexible stalk
(AA 30-48)

Transmembrane domain
(AA 7-29)

Cytoplamic domain

(AA 1-6)NH2

X-Ala- or
X-Pro-

B

CD26high T cell

CD26

TCR
CD45RO

VLAs
(CD49/ CD29)

IFN-γ

IL- 2

B cells Immunoglobulins

Production of TH1 type cytokines

Production of Immunoglobulin

Migration through endothlium

Proliferaion of memory T
cells

APC

Accumulation at inflammatory sites;
RA, MS, Basedow,
Hashimoto, Sarcoidosis,
Delayed hypersensitive
reaction



6

protein of plasma as CD26, soluble form of CD26 protein
was characterized in the serum and seminal fluids.57,58 In the
previous report, we have shown that exogenous recombi-
nant soluble CD26 (rsCD26) enhances the proliferative
response of peripheral blood lymphocytes (PBLs) to stimu-
lation with the soluble antigen tetanus toxoid (TT).59 More
recently, we demonstrated that the target cells of rsCD26
are the CD14+ monocytes in the peripheral blood, and that
rsCD26 upregulates CD86 expression, but not CD80 or
HLA-DR antigen levels on monocytes.30 Significantly, man-
nose 6-phosphate/insulin-like growth factor II receptor
(M6P/IGF-IIR) was identified as a platform molecule for
CD26 interaction with APC.30 However, while both
DPPIV-positive and DPPIV-negative rsCD26 are taken up
by monocytes via M6P/IGF-IIR, only DPPIV-positive
rsCD26 molecules affect CD86 upregulation on monocytes,
thus suggesting that additional key factors may interact with
CD26 in this process. We subsequently identified caveolin-
1 on APC as a binding protein for CD26, and demonstrated
that CD26 stimulation upregulates surface expression of
CD86 on APC by means of caveolin-1 and enhances TT-
mediated T-cell proliferation.31 In the next section of this
review, we will focus on caveolin-1 as the binding protein of
CD26 in the context of antigen-driven T-cell activation.

Structure and function of caveolin-1

Caveolin-1 was the first family member discovered, and
demonstrated as a structural component and marker for
caveolae and trans-Golgi derived transport vesicles.60,61

Caveolae were described as structures resembling “little
caves” due to their appearance as 50- to 100-nm vesicular
invaginations of the plasma membrane.62 Caveolin-1 is ex-
pressed in a wide variety of cell types, especially terminally
differentiated cells such as endothelial cells, adipocytes, al-
veolar type I pneumocytes, macrophages, synoviocytes, and
smooth muscle cells. Presently, caveolin-related proteins
have been identified as caveolin-1, -2, and -3, all of which
serve as protein markers for caveolae.63 The majority of
caveolae in cells and tissues require only caveolin-1 expres-
sion for their proper formation, whereas caveolin-2 is not
absolutely required, although the expression of caveolin-2 is
tightly associated with the expression of caveolin-1.64,65 On
the other hand, caveolin-3 is found in skeletal muscle tissue
and cardiac myocytes.66 The three human genes encoding
members of the caveolin family share significant homology.
The caveolin-2 protein is approximately 38% identical and
58% similar to caveolin-1, while caveolin-3 is more closely
related to caveolin-1, with 65% identity and 85% similar-
ity.63 All three caveolins possess an invariant “FEDVIAEP”
stretch within their hydrophilic N-terminal domains which

Fig. 2. Schematic diagram of
CD26-associated molecules in
T-cell receptor-mediated
activation of human adult
peripheral blood T cell and cord
blood T cell
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are named the “caveolin signature motif.”67 Caveolin-1 is
composed of 178 amino acid residues (Fig. 3A), and pre-
dominantly localized at the plasma membrane, demonstrat-
ing a punctuate staining patterns, and in Golgi-derived
vesicles.60 Two isoforms of caveolin-1 (caveolin-1α and β)
have been identified, with the β-isoform composed of 31
residue truncated N-terminus of caveolin-1α isoform.68

Caveolin-1 is composed of the N-terminal hydrophilic
domain (residues 1–101), the oligomerization domain
(residues 61–101), the scaffolding domain (SCD) (residues
82–101), the membrane spanning domain (residues 102–
134), and the C-terminal lipid raft-anchoring domain (resi-
dues 135–178).63 As in trans-Golgi transport, caveolin-1
plays an important role in signal transduction via its SCD,
which compartmentalizes a multitude of signaling mol-
ecules.63,69 These include G proteins, epidermal growth fac-
tor receptor, insulin receptor, endothelial nitric oxide
synthase (eNOS), nonreceptor tyrosine kinase (Src, Fyn,
Yes), flotillins, Ser/Thr kinases (PKA, Raf, MAPK, PI3K,
Grb2), and catenins.63,69 Other cellular functions of
caveolin-1 are related to the lipid metabolism, especially to
cholesterol scavenging in macrophages.70 However, it is un-
known whether caveolin-1 also plays a role in signal trans-
duction in APCs. Although CD26 was present in caveolae
of fibroblast-like synoviocytes,71 direct CD26–cavolin-1 in-
teraction and associated signaling events have not been
demonstrated in immune cells. Interestingly, caveolin-1
knockout mice show defects in the angiogenic response to
exogenous stimuli, such as Matrigel plugs containing angio-
genic growth factors (bFGF) or tumors.72 In this context,
angiogenic vessels density and penetration was significantly
reduced in caveolin-1 null mice. Moreover, electron micro-
scopic examination revealed incomplete de novo capillary
formation in tumors implanted within caveolin-1 null mice.
Thus, it appears that caveolin-1 null mice have a defect in
endothelial cell differentiation. This is consistent with in
vitro observations demonstrating that overexpression of
caveolin-1 enhances endothelial capillary-tube formation,
while downregulation of caveolin-1 using an anti-sense ap-
proach blocks endothelial tube formation.73 With regards to
inflammation and caveolin-1, a series of elegant experi-
ments showed that caveolin-1 has a role in inflammation
with association of eNOS.74 Using a cell permeable peptides
link to the caveolin-1 scaffolding domain in aortic explants,
the potent eNOS inhibiting activity of caveolin-1 was dem-
onstrated. In vivo delivery of this peptide resulted in signifi-
cant decreases in acute inflammation and edema resulting
from vascular permeability. Taken together, these findings
demonstrate an important relationship between caveolin-1
and vascularization, with implication for capillary forma-
tion in inflammatory processes.

Caveolin-1: CD26 binding protein in APC

Since CD26 on human T cells was identified as an activation
antigen and costimulatory molecule of the TCR complex,
several binding proteins to CD26 have been described. As
described above, multiple chemokines interact with CD26/
DPPIV as its substrates, and other proteins such as ADA,
fibronectin, thromboxane A2 receptor, and CXCR4 are
shown to be associated with CD26.49,75–78 However, the pre-
cise mechanism involved in T-cell activation in response to
memory antigen such as TT remains to be clearly character-
ized. Recently, we demonstrated that CD26 binds to

Fig. 3. A Schematic representation of human caveolin-1. Residues 1–
81 comprise the N-terminal region (NT; striped rectangle), residues 82–
101 comprise the scaffolding domain (SCD; black rectangle), residues
102–134 comprise the transmembrane region (memb; open rectangle),
and residues 135–178 comprise the C-terminal region (dotted rect-
angle). CD26 contains a caveolin-binding motif (ΦXΦXXXXΦXXΦ; Φ
and X depict aromatic residue and any amino acid, respectively),
specifically WVYEEEVFSAY in CD26. B Model for CD26–caveolin-
1 interaction leading to upregulation of CD86. (1) Caveolin-1 in mono-
cytes (antigen-presenting cells; APC) resides at the inner membrane.
(2) After uptake of tetanus toxoid into monocytes via caveolae, part of
the population of caveolin-1 is exposed on the outer cell surface of
tetanus toxoid (TT)-loaded monocytes. (3) Migration of CD26+ anti-
gen-specific memory T cells to areas of antigen-loaded APCs results in
contact with TT antigen-presenting APC, leading to the association of
CD26 and caveolin-1. Aggregation of caveolin-1 in the contact area
occurs, presumably by homo-oligomerization (via its residues 61–101),
followed by its phosphorylation. (4) Phosphorylated caveolin-1
(phospho-caveolin-1) transduces signaling leading to activation of NF-
κB, resulting in CD86 upregulation. DPPIV, dipeptidyl peptidase IV;
TCR, T-cell receptor; MHC, major histocompatibility complex
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caveolin-1 on APC, and that residues 201–211 of CD26
along with the serine catalytic site at residue 630, which
constitute a pocket structure of CD26/DPPIV, contribute to
binding to the caveolin-1 scaffolding domain (Fig. 3A).31

This region in CD26 contains a caveolin-binding domain
(CBD) (ΦXΦXXXXΦXXΦ; Φ and X depict aromatic
residue and any amino acid, respectively), specifically
WVYEEEVFSAY in CD26.48,69 These observations
strongly support the notion that DPPIV enzyme activity is
necessary to exert TCR-costimulatory activation via
CD26.48 In addition, following CD26–cavolin-1 interaction
on TT-loaded monocytes, caveolin-1 is phosphorylated,
with linkage to NF-κB activation, followed by upregulation
of CD86. Finally, reduced caveolin-1 expression on mono-
cytes inhibits CD26-mediated CD86 upregulation and abro-
gates CD26 effect on TT-induced T-cell proliferation (Fig.
3B). Taken together, these results strongly suggest that
CD26–cavolin-1 interaction plays a role in the upregulation
of CD86 on TT-loaded monocytes and subsequent engage-
ment with CD28 on T cells, leading to antigen-specific T-cell
activation.

Caveolin-1 has been reported to be an integral mem-
brane protein with a cytoplasmic N-terminal domain and a
cytoplasmic C-terminal domain.63 Our data showed that the
N-terminal domain of caveolin-1 was expressed on the cell
surface of monocytes 12–24h after tetanus toxoid was
loaded (Fig. 4A). Since tetanus toxoid was trafficked in cells
through caveolae,79,80 caveolin-1 may be transported along
with the peptide-MHC complex in APC, and is then ex-
pressed on cell surface by the antigen-processing machinery
for T-cell contact.80–82 The data shown in Fig. 4B indicated
that CD26 on activated memory T cells directly faces
caveolin-1 on TT-loaded monocytes in the contact area,
which is the immunological synapse for T cell-APC interac-
tion. It is conceivable that the interaction of CD26 with
caveolin-1 on antigen-loaded monocytes results in CD86
upregulation, therefore enhancing the subsequent interac-
tion of CD86 and CD28 on T cells to induce antigen-specific
T-cell proliferation and activation.

CD26 and caveolin-1 in synovitis

Rheumatoid arthritis is a classical example of an immune-
mediated disease with chronically smoldering injury of the
synovial joints resulting from infiltration of inflammatory
cells, and synovitis of diarthrodial joints is its most visible
manifestation. Although the observed architectures of
rheumatoid synovitis vary in different individuals with RA
as well as at various disease stages, the most frequent type
of rheumatoid synovitis is a diffuse inflammatory infiltrate
in which T cells, B cells, and macrophages are scattered
around increased vasculature and synoviocytes. Meanwhile,
in the remaining 40–50% of patients with RA, infiltrating
inflammatory cells organize themselves into follicular struc-
tures.1 It is known that the inflammatory activation events
in rheumatoid synovitis are dependent upon cell–cell con-
tact among T cells, fibroblast-like synoviocytes, APCs, and

regional tissues such as type II collagen and proteoglycan.83

Moreover, previous reports showed that CD26+ T cells ex-
hibit strong migratory ability through endothelial cells, and
are present at high levels in the rheumatoid synovium and
the synovial fluids.20,22,23 These findings suggest that T cells
with high levels of CD26 antigen may preferentially migrate
into the rheumatoid synovium to induce inflammation and
tissue destruction. To test this hypothesis, we examined the
expression of CD26 and caveolin-1 in the rheumatoid
synovium through immunohistochemistry. As shown in Fig.
5A, CD26+ lymphoid cells are clearly observed in diffuse
synovitis. In follicular synovitis examined with the sequen-
tial sections, CD26+ lymphoid cells are infiltrated in the
sublining area of caveolin-1-positive synovial cells (arrow in
panel b of Fig. 5B), and are adjacent to caveolin-1-positive
inflammatory cells (arrowheads in panel c of Fig. 5B).
Moreover, the intimal lining layer is hyperplastic with
multiple layers, and the synoviocytes in these layers highly
express caveolin-1 (arrow in Fig. 5C). In addition, CD86
and caveolin-1 are coexpressed in the intimal lining
synoviocytes and the sublining fibroblast-like synovial cells
(black arrowhead in Fig. 5C). Furthermore, increased vas-

Fig. 4A,B. Immunocytochemical analysis of caveolin-1 and CD26 in-
teraction. A Caveolin-1 in monocytes was exposed to cell surface after
tetanus toxoid (TT) treatment, and interacted with CD26 on activated
T cells. After purified monocytes were incubated with (solid circle) or
without (open circle) TT, cell surface caveolin-1 was stained with anti-
caveolin-1 antibody detecting the N terminal region, and analyzed for
% positive cells by flow cytometry. Data of % positive cells represent
mean ± SE from five independent experiments. Asterisks indicate
points of significant increase. B To form cell–cell conjugation, activated
T cells and TT-loaded monocytes were mixed, followed by centrifuga-
tion. Conjugates were fixed without permeabilization, and stained with
anti-CD26 (fluorescein isothiocyanate) and anti-caveolin-1 (Texas red)
antibodies. Bars 10 µm
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cularization is seen in synovitis, and caveolin-1 is preferen-
tially expressed in the luminar surface of endothelial cells in
the rheumatoid synovium (white arrowheads in Fig. 5C).
Taken together, we propose a model to describe the
molecular events in monocytes leading to activation that
are triggered by CD26–cavolin-1 interaction in rheumatoid
synovium (Fig. 6). The initial step of inflammation in the
synovium proceeds from activation of CD26+ T cells by
APC and/or rheumatoid synoviocytes via presentation
of a yet-to-be-identified antigen, concomitant with
costimulation via such pairing as CD28–B7 and CD26–
cavolin-1 (phase 1 in Fig. 6). With regard to the interaction
between T cell–APC and the resultant immune response,

entry of antigens via caveolae into APC leads to presenta-
tion of antigen peptides on MHC class II molecules and
exposure of caveolin-1 (inside box in phase 1 of Fig. 6).
APC thus induces the activation of memory T cells through
the TCR and costimulatory molecules such as CD86/CD80–
CD28, leading to the formation of mature immunological
synapses. Following the association between caveolin-1 on
APC and CD26 on memory T cells, CD86 is upregulated on
APC surface, and memory T cells are subsequently acti-
vated via the costimulatory effect of CD26 on TCR activa-
tion. By enhancing TCR activation via CD26–cavolin-1
interaction, prolongation of the immunological synapse
may be maintained. CD86 upregulation therefore results in
potent T cell–APC interaction, leading to the development
of activated memory T cells locally and activation of the
immune response, as well as the subsequent development of
rheumatoid synovitis. After triggering inflammation of the
synovium, memory T-cell activation leads to progression of
inflammation in rheumatoid synovium, i.e., infiltration of
inflammatory cells, increase of vascular vessels, formation
of follicular germinal centers, and proliferation of
synoviocytes (phase 2 in Fig. 6). Destructive inflammation
then progresses to cartilage and bone injury by pannus
(phase 3 in Fig. 6). As a result, progressive inflammation
leads to synovial membrane invasion of bone, loss of carti-
lage and bone destruction in joints.

Molecular-targeted therapeutic strategies in RA

Although the specific antigens responsible for the patho-
genesis of RA have not been identified, T-cell activation via
interaction with APCs plays a pivotal role in disease devel-
opment. In this regard, therapeutic strategies have targeted
cellular pathways in RA. In addition to anti-cytokine re-
agents, impressive therapeutic effect has been recently
reported following the blocking of CD28-mediated
costimulation by the use of cytotoxic T-lymphocyte-associ-
ated antigen 4-IgG1 (CTLA4Ig).84,85 Expressed on T cells
within hours to days after activation,86,87 CTLA4 is the high-
avidity receptor for both CD80 and CD86, and inhibits T-
cell proliferation and IL-2 production.88,89 A fusion protein,
CTLA4Ig binds both CD80 and CD86 on APCs, thereby
preventing these molecules from engaging CD28 on T
cells.90 By blocking the engagement of CD28, CTLA4Ig
prevents the delivery of the second costimulatory signal that
is required for optimal activation of T cells. The successful
usage of this agent therefore demonstrates that blocking
costimulatory signal to inhibit T-cell activation is a novel
and promising therapeutic concept for selected autoim-
mune diseases.84,85 In this regard, since we showed that
CD26–cavolin-1 interaction may play a pivotal role in rheu-
matoid synovitis, reagents capable of blocking CD26–
cavolin-1 interaction in synovitis may be potentially useful
in the treatment of patients with RA.

Fig. 5A–C. Architecture and immunohistochemistry of rheumatoid
synovitis. A Panel a shows H&E-stained histology of diffuse synovitis
with inflammatory cells intermingled with fibroblast-like synoviocytes
(×100). Panel b shows immunohistochemistry of the sequential section
of panel a, which was stained with fluorescein isothiocyanate (FITC)-
conjugated anti-CD26 antibody (×100). B Panel a shows H&E-stained
histology of follicular synovitis with germinal center formation (×100).
Panel b shows immunohistochemistry of the sequential section of panel
a, which was stained with FITC-conjugated anti-CD26 antibody. This
reveals that CD26-positive lymphoid cells are scattered around the
follicles (arrow) (×100). Panel c shows immunohistochemistry of the
sequential section of panel b, which was stained with anti-caveolin-1
(Texas red). This reveals that the intimal lining synoviocytes and the
sublining fibroblast-like synoviocytes adjacent to CD26+ lymphoid
cells (arrow head) express caveolin-1 (×100). C Panel a shows synovial
histology of rheumatoid arthritis with H&E staining (×100). Panels b
and c show immunohistochemistry of the sequential section of panel a
which was stained with caveolin-1 (Texas red) and CD86 (FITC),
simultaneously. Panel d shows the merged view of panels b and c.
Arrow shows the intimal lining synoviocytes, and black arrowhead
shows the sublining fibroblast-like synoviocytes. White arrowheads
show the increased vascularization in synovitis
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Fig. 6. Schematic diagram of inflammatory progress in rheumatoid synovitis. See text for details
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Conclusions

Our results may thus provide a new approach to the treat-
ment of autoimmune diseases or other immune-mediated
disorders by directly intervening with the interaction be-
tween activated T-cell and APC. Targeting the binding of
the pocket structure of CD26 and the scaffolding domain of
caveolin-1 may lead to novel therapeutic approaches, in-
cluding the utilization of antagonists that regulate antigen-
specific immune response in immune-mediated disorders
such as RA.
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