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Abstract

Based on electrohysterogram, this paper designed a new method using wavelet-based

nonlinear features and stacked sparse autoencoder for preterm birth detection. For each

sample, three level wavelet decomposition of a time series was performed. Approximation

coefficients at level 3 and detail coefficients at levels 1, 2 and 3 were extracted. Sample

entropy of the detail coefficients at levels 1, 2, 3 and approximation coefficients at level 3

were computed as features. The classifier was constructed based on stacked sparse auto-

encoder. In addition, stacked sparse autoencoder was further compared with extreme

learning machine and support vector machine in relation to their classification performance

of electrohysterogram. The experiment results reveal that classifier based on stacked

sparse autoencoder showed better performance than the other two classifiers with an

accuracy of 90%, a sensitivity of 92%, a specificity of 88%. The results indicate that the

method proposed in this paper could be effective for detecting preterm birth in electrohys-

terogram and the framework designed in this work presents higher discriminability than

other techniques.

Introduction

Preterm birth is defined as birth before 37 weeks of pregnancy. The World Health Organiza-

tion have reported that every year about 15 million newborns are preterm, which account for

more than 10% of all babies born around the world. [1] Preterm birth is a dominant cause for

morbidity and mortality during both the perinatal and early neonatal periods. In addition, the

complications of preterm birth such as significant neurological, mental, behavioral and pulmo-

nary problems have a significant adverse impact on family and the economy.[2] Preterm birth

is therefore both a major medical and economic challenge. One of the keys to reduce the inci-

dence of preterm birth would be its detection or prediction using effective methods.

For the detection or prediction of preterm birth, continuous efforts have been applied

toward diagnosing the onset of early labor for many years. As a result, various clinical
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techniques have been designed to monitor labor, such as the index detection based on bio-

chemical indicators, infection immunity index and biophysical indicators. To prevent sponta-

neous preterm birth within asymptomatic high-risk women, Crane and Hutchens [3] adopted

transvaginal ultrasonography to investigate the ability of cervical length. In order to predict

the onset of preterm birth, Hudić et al. [4] studied the maternal serum concentration of pro-

gesterone-induced blocking factor. Compared with those methods, recording and analyzing

EHG signals is a new noninvasive technique for diagnosing preterm birth, which has been

proved to be of interest to provide a better monitor for the process of pregnancy. [5, 6].

In conjunction with EHG signals processing, extracting features from EHGs is an impor-

tant step which can catch uterine contractility information. Among the EHGs analysis

approaches, linear methods in both time and frequency domains were first adopted to extract

features. Maner et al. [7] studied the ability of the power density spectrum peak frequency to

classify EHG signals recorded on pregnant women who were 48, 24, 12 and 8 hours from term

delivery, and 6, 4, 2 and 1 day(s) from preterm delivery. Some time-frequency analysis meth-

ods were also adopted to characterize EHG signals. Arora et al. [8] extracted the relative wave-

let energy from each detail based on 4-level decomposition. Hassan et al. [9] employed wavelet

coherence to diagnose the uterine electrical activity synchronization in labor. In an attempt to

better characterize EHG, nonlinear characteristics have been explored to analyze EHG signals.

Radomski et al. [10] adopted sample entropy to assess regularity in EHGs. Diab et al. [11]

explored the performance of four nonlinear methods (time reversibility, sample entropy, Lya-

punov exponent and delay vector variance) for detecting preterm birth. It is known that uterus

is composed of a huge amount of intricately interconnected cells, which lead to uterus a com-

plex, non-stationary and non-linear dynamic system. [12] Therefore, time-frequency analysis

methods combined with non-linear signal processing techniques may achieve better results in

analyzing EHG signals. Within time-frequency analysis methods and non-linear signal pro-

cessing techniques, wavelets can capture the subtle changes in transient signals and entropy

[13–15].

To be successful in classification and recognition for EHG signals, selection of a reliable

classification method should also be a careful consideration. Recently, many recognition algo-

rithms including artificial neural network, decision trees, Bayesian classifier, support vector

machine, extreme learning machine and deep learning have been proposed for pattern recog-

nition. Maner and Garfield [2] adopted an artificial neural network on EHG data to distin-

guish human term and preterm labor. In this work, a classification accuracy of 80% was

achieved. Lu et al. [16] used multilayer Perceptron to distinguish EHG signals between 11 pre-

term signals and 28 term signals. This work reported that the classification accuracy of 64.1%.

Moslem et al. [17] used a competitive neural network to classify EHG signals recorded on 32

women as pregnancy group and labor group. As a result, a classification accuracy of 78.2% was

achieved. Moslem et al. [18] applied support vector machine to determine 137 pregnancy con-

traction signals and 76 labor signals. This work obtained an overall classification accuracy of

83.4%. While among these recognition technologies, most of them are supervised learning

which needs millions of labeled samples for training. [19] In addition, the neural network can

easily get into local optima, thus leading to a poor generalization. So, the choice of recognition

model still is a big challenge because of the complex classification problem. A new unsuper-

vised feature learning method, sparse autoencoder (SAE) possesses strong representation abil-

ity which can reveals high-level representation from complex data. Stacked sparse autoencoder

(SSAE), a kind of deep learning neural network consisted of multiple layers of SAE, has

achieved remarkable results in many fields. [20–24].

In present work, this paper proposed a novel method for classifying pregnancy EHG signals

and labor EHG signals based on wavelet transform, sample entropy and stacked sparse
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autoencoder. The rest of this paper is composed as follows. After the introduction, the dataset

used in this work and the methods of wavelet transform, sample entropy and stacked sparse

autoencoder are described in Section 2. The process of the experiment and the obtained exper-

iment results are discussed in Section 3. Section 4 concludes this paper. The block diagram of

the designed method is presented in Fig 1.

Materials and methods

Data description

The EHG recordings employed in this work derives from Icelandic 16-electrode Electrohyster-

ogram Database of PhysioNet. [25, 26] This dataset comprises 112 pregnancy EHG recordings

and 10 labor EHG recordings. All the 122 EHG recordings were taken from 45 participants

using a 4-by-4 electrode matrix positioned on the women’s abdomen. Pregnancy recordings

were performed on participants who are in the third trimester and not suspected to be in

labor. This experiment was made at Akureyri Primary Health Care Centre and Landspitali

University Hospital. Labor recordings were recorded on participants who are suspected to be

in labor within 24 hours. The duration of pregnancy recordings was between 19–86 minutes

and the duration of labor recordings were 8–64 minutes. The signal sampling rate was 200 Hz.

The recording device adopted an anti-aliasing filter whose cut-off frequency was 100 Hz. The

tocographic signals were obtained at the same time during recordings based on a tocodynam-

ometer attached to women’s abdomen. The protocol was approved by the National Bioethics

Committee in Iceland (VSN 02-006-V4).

Wavelet transform and entropy calculation

Wavelet transform, a powerful signal processing technique, was first proposed to overcome

the shortcomings of Fourier transform. Wavelet transform is a multi-revolution decomposi-

tion fast algorithm which can decompose a time series into a set of components by utilizing

orthogonal wavelet bases. [27] It is equal to recursively decomposing the time series using a

high-pass and low-pass filter pair. The band width of high-pass filter is equal to that for low-

pass filter. Therefore after each level of decomposition, the sampling frequency is halved. The

low-frequency component then be recursively decomposed to produce the components of the

next stage. [28].

Given ψ 2 L2(R) is a mother wavelet satisfying the permission condition
R
R ψ(t)dt = 0. The

wavelet cluster can be expressed as:

cs;cðtÞ ¼
1
ffiffi
s
p c

t � c
s

� �

; s > 0; c 2 R ð1Þ

In formula (1), s is the scale parameter and c is the translation parameter.

Then continuous wavelet transforms W(s, c) of x(t) can be expressed as:

Wðs; cÞ ¼
1
ffiffi
s
p

Z

xðtÞc�
t � c
s

� �

dt ð2Þ

In formula (2), � indicates complex conjugation.
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Fig 1. The generalized block diagram of the proposed method.

https://doi.org/10.1371/journal.pone.0214712.g001
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Then discrete wavelet transform of time series x(n) (n = 1, . . ., N) can be obtained based on

continuous wavelet transform by restraining s and c to a discrete lattice (s = 2−j, c = 2−j k):

cAj;kðnÞ ¼
X

n

xðnÞl�j ðn � 2jkÞ

" #

cDj;kðnÞ ¼
X

n

xðnÞh�j ðn � 2jkÞ

" #

8
>>>>><

>>>>>:

ð3Þ

In formula (3), j refers to the wavelet scale and k refers to translation factors. l(n) denotes

low pass filter and h(n) denotes high pass filter. cAj,k and cDj,k represent the coefficients of

approximation components and detail components respectively.

Then the frequency band ranges contained in Dj(k) and Aj(k) can be achieved by recon-

struction as follows.

DjðkÞ : ½2� ðjþ1Þfs; 2
� jfs�

AjðkÞ : ½0; 2� ðjþ1Þfs�
ðj ¼ 1; 2; . . . ; JÞ

(

ð4Þ

In formula (4), fs is the sampling frequency and J refers to maximal scale.

The time series x(n) can be denoted by the sum of all components as follows.

xðnÞ ¼ D1ðnÞ þ A1ðnÞ ¼ D1ðnÞ þ D2ðnÞ þ A2ðnÞ ¼
XJ

j¼1

DjðnÞ þ AJðnÞ ð5Þ

In this work, the sample entropy will be used for its effective calculation power in complex-

ity. Detailed descriptions for sample entropy method can be found in Ref[29]. The definition

of sample entropy is as follows.

SampEnðm; r;NÞ ¼ � ln
Bmþ1ðrÞ
BmðrÞ

� �

ð6Þ

In formula (6), m is the embedding dimension and r is vector comparison threshold. Bm (r)
stands for the probability of two sequences matching for m points, and Bm+1 (r) is the probabil-

ity of two sequences matching for m + 1 points.

Sparse autoencoer

As an unsupervised learning method, the autoencoder is a multi-layer feedforward neural net-

work used to represent the input with backpropagation. The autoencoder aims to learn a high-

level representation from input data with minimum reconstruction loss. The basic structure of

a three-layer autoencoder is described in Fig 2. A sparse autoencoder is an extension of the

autoencoder which can achieve some specific representation ability by introducing a spare

constraint on the hidden layer. [30].

The algorithm steps for the sparse autoencoder are given as follows.

Step 1: Given dataset X = {x(1), x(2), . . ., x(i), . . ., x(N)}, x(i) 2 RM was first mapped to the hid-

den layer by means of a nonlinear activation function (formula (7)):

Z ¼ f ðW1X þ b1Þ ¼
1

1þ exp½� ðW1X þ b1Þ�
ð7Þ

In formula (7), the resulting hidden representation Z is then mapped back to a
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reconstructed vector hw,b(x) in the input space and f represents the encoder activation func-

tion. In formula (7), W1 and b1 represent respectively the weight matrix and the bias of the

encoder.

In the decoding process, the hidden representation Z is converted back to reconstructed

vector hw,b(x) by the activation function between the hidden and output layer. The specific

calculation details are as formula (8):

hw;bðxÞ ¼ f ðW2Z þ b2Þ ¼
1

1þ exp½� ðW2Z þ b2Þ�
ð8Þ

In formula (8), f indicates the decoder activation function. W2 and b2 signify the weight

matrix and the bias of the decoder, respectively. In formula (7) and (8), N is the number of

data samples; M is the length of each data sample.

Step 2: In order to reconstruct the input data from the reconstructed vector, the parameter set

{W1, b1, W2, b2} is optimized by minimizing error between the input data and the recon-

structed dada. In addition, for SAE, a sparse constraint was introduced to the hidden layer.

Fig 2. The structure of an autoencoder.

https://doi.org/10.1371/journal.pone.0214712.g002
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Therefore, the cost function of the SAE can be given as:

JðW; bÞ ¼
1

N

XN

i¼1

1

2
khw;bðxðiÞÞ � xðiÞk2

� �

þ
l

2

X2

l¼1

Xsl

i¼1

Xslþ1

j¼1

ðWl
jiÞ

2
þ b
Xs2

j¼1

KLðrjjr̂ jÞ ð9Þ

The meanings of the notations in formula (9) are shown in Table 1.

KLðrjjr̂ jÞ can be defined as:

KLðrjjr̂ jÞ ¼ r log
r

r̂ j
þ ð1 � rÞlog

1 � r

1 � r̂ j
ð10Þ

Step 3: In the process of coding, the optimal parameters of W and b need to be updated, which

can be realized by minimizing J(W, b). This can be solved by adopting the backpropagation

algorithm, where the stochastic gradient descent approach is adopted for training. The

parameters W and b in each iteration can be updated as follows:

Wl
ji ¼Wl

ji � ε
@

@Wl
ji

JðW; bÞ ð11Þ

bl ¼ bl � ε
@

@bl
JðW; bÞ ð12Þ

In formula (11) and (12), l represents the lth layer of the network; the parameter ε indicates

the learning rate; i and j denote the ith and jth neurons of two neighboring layers,

respectively.

In general, the forward pass works to calculate the average activation r̂ j to get the sparse

error, then the parameters were updated by using the back-propagation algorithm. After that,

the effective high level representations can be obtained by the SAE[19].

Stacked sparse autoencoder

SSAE is a deep neural network comprised of multiple layers of SAE, which adopts unsuper-

vised greedy layer-wise algorithm to adjust the weights and uses backpropagation algorithm to

fine-tune the entire deep neural networks. [31] The detailed descriptions for SSAE can be

found in Ref.[32]. Fig 3 describes the SSAE structure combined with a softmax classifier.

Table 1. The notations utilized in the cost function.

Notation Meaning

N Number of data samples

λ Weight decay parameter

β The weight of sparsity penalty term

ρ Sparsity parameter defining the sparsity level

r̂ i The average activation of hidden neuron j
sl Number of neurons in layer l
x(i) Input feature vector

hw,b(x(i)) Output feature vector

KLðrjjr̂ iÞ Kullback-Leibler divergence between ρ and r̂ j

Wl
ji The weight on the connection between neuron j in layer l + 1 and neuron i in layer l

https://doi.org/10.1371/journal.pone.0214712.t001
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Results and discussion

Data preprocessing

It is known that the of EHG ranges between 0.1 and 3Hz. 3Hz are the most useful frequency as

the other. The obtained EHG recordings often contain irrelevant information such as maternal

electrocardiogram, movement artifacts and base line. [33] Fig 4 presents two original EHG

instances from the pregnancy state and labor state, respectively. Therefore, before implement-

ing features extraction, the following steps should be applied on the raw EHG recordings: first,

throughout this work, all raw EHG recordings were filtered between 0.1 and 3Hz using a But-

terworth filter; then, the bursts reflecting uterine contractile activity were manually segmented

from each recording based on tocographic signals; Finally, 150 pregnancy EHG samples and

150 labor EHG samples were segmented from these bursts. In this study, all the 16 time series

in the EHG recordings were used. The length of each time series in each sample is 4096 points.

Fig 5 shows the tocographic signal and its corresponding preprocessed one time series.

Features extraction

The steps for parameters extraction are as follows: Firstly, 3-level wavelet decomposition of a

time series using db1 was performed. Fig 6 illustrates the result of 3-level wavelet decomposi-

tion about a time series. Secondly, the level-3 approximation coefficients of a time series are

computed. Fig 7(b) shows level-3 approximation coefficients. Detail coefficients at levels 1, 2

and 3 from wavelet decomposition structure of a time series are then computed. Fig 7(c), 7(d)

and 7(e) respectively illustrates the detail coefficients at levels 1, 2 and 3. Finally, Sample

entropy of the detail coefficients at levels 1, 2 and 3 are then computed. Sample entropy of

level-3 approximation coefficients is also computed. Thus, a feature vector consists of 64

parameters.

SSAE classification results

In this work, a 2-hidden-layer SSAE with a softmax classifier network is constructed to auto-

matically classify EHG signals. As mentioned previously, 150 EHG feature vectors for preg-

nancy EHG and 150 EHG feature vectors for labor EHG were collected. For each vector set,

100 feature vectors were randomly chosen for training and the remaining 50 feature vectors

were used for testing. When training set and test set are built, the values are all normalized to

between 0 and 1. The parameter settings for this 2-hidden-layer SSAE with a softmax classifier

network are given in Table 2. The architecture of the classification model used in this work is

shown in Fig 8. When the classification model was established, the test set was used to verify

the identification performance of the model. The confusion matrix for the proposed method

Fig 3. The SSAE used in this work with a softmax clssifisr.

https://doi.org/10.1371/journal.pone.0214712.g003
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in this work is presented in Fig 9. In Fig 9, the rows related to the predicted class (Output

Class) and the columns related to the true class (Target Class). The first two diagonal cells indi-

cate the number and percentage of correct classifications by the trained network. As out of 50

pregnancy cases, 44 cases are correctly classified as pregnancy, which corresponds to 88.0% of

all pregnancy cases; 6 cases are incorrectly classified as labor, which corresponds to 12.0% of

all pregnancy cases. Out of 50 labor cases, 44 cases are correctly classified as labor, which corre-

sponds to 88.0% of all labor cases; 6 cases are incorrectly classified as pregnancy, which

Fig 4. Samples of raw 16-channel EHGs. (a) Pregnancy EHG instance (b) Labor EHG instance.

https://doi.org/10.1371/journal.pone.0214712.g004
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corresponds to 12.0% of all labor cases. Overall, 88.0% of all predictions are classified correctly

and 12.0% are classified incorrectly.

Performance comparison with ELM and SVM

In order to verify the discriminability between pregnancy and labor EHG signals in this experi-

ment, the SSAE algorithm was further compared with two widely used classification methods,

Fig 5. The tocographic signal and its corresponding preprocessed one time series. (a) The tocographic signal obtained by

tocographic measurement (Each small square is 30 seconds). (b) The simultaneously recorded one channel when filtered between

0.1-3Hz.

https://doi.org/10.1371/journal.pone.0214712.g005

Fig 6. The decomposition of one EHG time series after filtering.

https://doi.org/10.1371/journal.pone.0214712.g006
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namely extreme learning machine (ELM) and support vector machine (SVM). For the ELM

classifier, the number of hidden neurons was set to be 20, and the Sigmoidal function was cho-

sen as transfer function. For the SVM classifier, radial basis function was adopted as kernal

function and optimal parameters were obtained in training step for every trial.

The index sensitivity, specificity and classification accuracy are used for evaluating the clas-

sification performance of the three classifiers. In addition, the classification performance for

Fig 7. Approximate signal at level 3and detail signals at level 1, 2 and 3.

https://doi.org/10.1371/journal.pone.0214712.g007

Table 2. Parameter settings for modeling process.

Layer1 The number of input layer size 64

The number of output layer size 30

Sparsity proportion 0.05

Sparsity regularization for loss function 8

weight regularization for loss function 0.001

Layer2 The number of input layer size 30

The number of output layer size 10

Sparsity proportion 0.05

Sparsity regularization for loss function 8

weight regularization for loss function 0.001

Softmax classifier The number of input layer size 10

The number of output layer size 2

Sparsity proportion 0.05

https://doi.org/10.1371/journal.pone.0214712.t002
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the three classifiers can be further evaluated by receiver operating characteristic (ROC) analy-

sis, which gives us an intuitive view of entire spectrum of sensitivity.[34] The area under ROC

curve (AUC) provides an effective way of comparing the performance for the classification

model. The larger the area under ROC curve, the better the discrimination capability of the

classification model.

Fig 8. The architecture of the classification model used in this work.

https://doi.org/10.1371/journal.pone.0214712.g008

Fig 9. The classification result of test set by using the obtained model.

https://doi.org/10.1371/journal.pone.0214712.g009
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The index sensitivity, specificity and classification accuracy can be represented as:

Sensitivity ¼
TP

TP þ FN
ð13Þ

Specificity ¼
TN

TN þ FP
ð14Þ

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
ð15Þ

In formula (13), (14) and (15), true positives (TP) denotes the number of labor samples pre-

dicted correctly; false negatives (FN) denotes the number of labor samples predicted incor-

rectly; true negatives (TN) denotes the number of pregnancy samples predicted correctly; false

positives (FP) denotes the number of pregnancy samples predicted incorrectly.

The performance of the three classifiers evaluated by ROC plot is illustrated in Fig 10. It is

clear that the AUC achieved by SSAE is bigger than those by other two classifiers, which indi-

cates that the classification model proposed in this work has a better classification perfor-

mance. Fig 11 presents the performance comparison results for the three different classifiers

using four indexes. As can be seen, when it comes to accuracy, SSAE presents the highest accu-

racy (90%). When it comes to sensitivity, SSAE presents the highest sensitivity (92%). When it

comes to specificity, SSAE and ELM present the same sensitivity (88%). When it comes to

AUC, SSAE presents the highest AUC (90%).

Fig 10. The ROC curve for the three classifiers.

https://doi.org/10.1371/journal.pone.0214712.g010
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Conclusion

In this work, the paper considered the application of wavelet transform and Stacked Sparse

Autoencoder to the automatic classification of pregnancy EHG and labor EHG. Experimental

results indicate that the method presented demonstrated better performance with an accuracy

of 90%, a sensitivity of 92%, a specificity of 88% and the AUC of 90%. Experimental results

demonstrated the effectiveness of feature extraction methods. It was also shown that by apply-

ing SSAE it is not only possible to improve the classification results but also to increase the

generalization property of the classifier. Therefore, experimental results show that the pro-

posed method achieves high accuracy in preterm birth detection. The method presented in

this paper is a useful clinical test to aid diagnosis of preterm birth.

Further developments of this work may include that accuracy and specificity of the method

is needed to be further enhanced. The classification model used in this paper has got acceptable

results, but it still cannot be confidently used in clinics as accuracy of>95% is considered. In

theory, as the sample increases, classifier based on SSAE will get better performance. In this

paper, the experimental samples came from the database of PhysioNet with only 45 subjects.

In future, more subjects will be used to train classifier based on SSAE and experiments will be

performed with the new dataset in order to perfect the method in terms of specificity and

accuracy.
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