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Abstract: Chemical features of small molecules can be abstracted to 3D pharmacophore models,
which are easy to generate, interpret, and adapt by medicinal chemists. Three-dimensional pharma-
cophores can be used to efficiently match and align molecules according to their chemical feature
pattern, which facilitates the virtual screening of even large compound databases. Existing alignment
methods, used in computational drug discovery and bio-activity prediction, are often not suitable
for finding matches between pharmacophores accurately as they purely aim to minimize RMSD or
maximize volume overlap, when the actual goal is to match as many features as possible within
the positional tolerances of the pharmacophore features. As a consequence, the obtained alignment
results are often suboptimal in terms of the number of geometrically matched feature pairs, which
increases the false-negative rate, thus negatively affecting the outcome of virtual screening experi-
ments. We addressed this issue by introducing a new alignment algorithm, Greedy 3-Point Search
(G3PS), which aims at finding optimal alignments by using a matching-feature-pair maximizing
search strategy while at the same time being faster than competing methods.

Keywords: pharmacophore alignment; pharmacophore modelling; virtual screening; greedy algo-
rithm; drug design

1. Introduction

3D Pharmacophores are spatial models that abstract the chemical features of molecules
into labeled points [1–3]. These points can be supplemented by additional information like
feature position tolerances or direction vectors. Such pharmacophore models have proven
to be a useful tool for describing macromolecule–ligand interactions [4] and provide an
intuitive abstraction of ligand features that are key for high binding-site affinity. Typically,
pharmacophores modelling energetically favourable binding-site interactions are created
by first finding two or more active molecules that bind to the target receptor of interest and
then generating a consensus pharmacophore model. Alternatively, pharmacophores can also
be derived directly from the 3D structure of one or more ligand–target complexes [2,5,6].
The latter approach generally leads to higher quality models due to the availability of bound-
state ligand structures and binding-site environment information. In any case, the obtained
pharmacophores usually need to be further refined by an expert user towards higher quality
regarding their ability to discriminate between active and inactive molecules [2].

Since pharmacophore features model non-bonding interactions of functional groups and
moieties without being tied to the underlying chemical structure, a single pharmacophore
model may cover a wide variety of molecular structures with distinct scaffolds and functional
groups that expose the same feature pattern. Pharmacophore-based techniques thus have
an inherent scaffold hopping ability, which is of high value for lead optimization tasks or
the tailored design of drug molecule [7].

One of the most prominent application of pharmacophores is their use as a filter for
the virtual screening of large compound libraries (for which pharmacophores also have

Molecules 2021, 26, 7201. https://doi.org/10.3390/molecules26237201 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-3574-0899
https://orcid.org/0000-0002-9815-6577
https://orcid.org/0000-0002-5242-1240
https://doi.org/10.3390/molecules26237201
https://doi.org/10.3390/molecules26237201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26237201
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26237201?type=check_update&version=2


Molecules 2021, 26, 7201 2 of 20

been pre-generated), which aims at finding molecules providing the same chemical feature
pattern as specified by the query pharmacophore [5,8]. Found molecules where all or
most of the query features match are likely to be also active towards the target of interest
and represent a good first set of candidates for further experimental activity analyses.
In comparison to a random selection of molecules, a refined set of candidate molecules
significantly reduces resources spent with in vitro testing in the hit-finding phase and as
a consequence also helps to reduce the overall drug discovery and development costs [9].

For virtual screening, query pharmacophore features are usually associated with
certain positional tolerances to accommodate slight pharmacophore differences resulting
from distinct molecular scaffolds and associated conformational spaces. How well two
particular features match depends on how many feature pairs can be overlapped at most,
given the optimal rotation and translation. The process of finding such an optimal rigid
body transformation is called alignment. Pharmacophore alignment can be considered
as the “heart” of the pharmacophore-based screening process in which the ultimate de-
cision is made whether two pharmacophores match or do not match. Therefore, high
robustness, reliability, and computational efficiency of the underlying algorithm are key
factors regarding the usability of the screening software in real-world scenarios. Additional
consideration has to be put on the conformational flexibility of molecules. Various methods
for aligning molecules in a “flexible” way have been proposed [8], each with its benefits and
downsides. In the context of pharmacophores, the problem of flexibility is often abstracted
by simply pre-generating multiple low-energy conformations for a molecule and then
aligning the pharmacophore of each conformer individually [8]. As pharmacophore-based
alignments are relatively fast, large numbers of those alignments can be performed, which
usually allows for a sufficiently good treatment of conformational flexibility. In the follow-
ing, we do not go further into the details of molecule conformer generation since this topic
is out of the scope of this study, and a wide variety of well-validated software tools for this
task is already available [10–14].

For tackling the pharmacophore alignment problem, several methods and algorithms
were devised [15–17]. Many of them have been implemented as part of well-known
software platforms for pharmacophore modelling and screening like LigandScout [5,18],
Phase [17,19], Catalyst [16,20], or MOE [21].

The algorithm by Wolber et al. [15] (due to the lack of a name, hereinafter referred to
as the RM method/algorithm or RMM), for example, is used for generic pharmacophore
alignment tasks and for pharmacophore matching in LigandScout’s virtual screening
pipeline. In the first step of the algorithm, each pharmacophore feature gets abstracted
through its feature type and a histogram of distances to the surrounding features. For each
feature type present in the neighbourhood, one histogram is created, counting occurrences
in the bins of the histogram. As distances may be close to falling into a neighbouring
bin, smoothing filters are applied to the histogram. This results in the histograms of two
features, where the features are in neighbouring bins, to be more similar. Next, a cost matrix
for solving the pair assignment problem of the features of the two pharmacophores to align
is created. This is done by assessing the similarity between the encoded features and setting
a cost accordingly. This cost matrix is then used with the Hungarian algorithm [22] to find
the best assignment that minimizes the overall cost. As a result, matching feature pairs
are obtained, which are then used to compute a pharmacophore 3D alignment employing
Kabsch’s method [23,24]. If the found alignment is not plausible according to the specified
feature position tolerances, the pairs violating this condition are removed, and the method
is repeated from the point of finding ideal feature pairs with the Hungarian method.
If the alignment does meet the feature-matching criteria, the alignment transformation
matrix is kept and applied to the underlying molecules. In a further post-processing step,
the alignments are then checked whether they also fulfil any additional constraints imposed
by directed features or exclusion volume spheres (see Section 2). Should those not be met,
the alignment will be discarded and the algorithm proceeds until a valid alignment could
be found, or it terminates without a found alignment solution.
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Other alignment algorithms are based on volume overlap and model atoms or phar-
macophore features such as Gaussian volumes, for which they optimize towards maximum
overlap [25].

ROCS [26] is a well-known example for this group of methods, which considers
Gaussian volumes defined by the atoms and (optionally) additional chemical feature
information to align molecules.

Pharao [27] is also a method where pharmacophore features are modelled as Gaussian
spheres. It operates by generating combinations of “feasible” pairs, which are then aligned
by superimposing their coordinate centres and computing a rotation with a constrained
gradient ascent. To create feasible pairs, the distance between two points of one phar-
macophore and then the distance between two points (with matching feature types) of
the other pharmacophore is measured. The difference between those distances is set in rela-
tion to the sum of distance thresholds for the four features and compared to a cut-off value
ε (usually 0.5). If the value is smaller than ε, the pair is deemed feasible. Next, feasible pairs
are assembled combinatorially, whereby any pair added to a combination must be feasible
and compatible with all other pairs of the combination. A tuning of the ε parameter allows
to reduce the total number of feasible combinations. For every combination produced,
alignment is performed by first aligning the centres of the pharmacophore feature subsets.
In the next step, constrained gradient ascent optimization is applied to find the rotation
needed for the second pharmacophore to achieve maximum overlap with the first one. This
procedure is carried out for four different starting orientations and results in a rotational
transformation and an alignment score quantifying the overlap. Combinations with a larger
number of matching features are aligned first, allowing for early termination if smaller
combinations have a far smaller overlap.

Existing alignment methods that optimize towards minimizing the root mean squared
distance (RMSD) of corresponding feature pairs disregard that worse RMSDs may allow
for more features to match. This disconnect between the optimization goal and the actual
goal of alignment can be intuitively understood when thinking about the best case for an
unambiguous alignment with RMSD. For any pair of pharmacophores, the best solution
regarding this criterion would be to only align the three best matching features, resulting
in a smaller RMSD than if one were to include even only one additional feature pair. For
this reason, alignments may be discarded as the algorithm favoured the perfect fit of
few features over the user defined model definitions. Methods optimizing for volume
overlap of pharmacophore features modelled by Gaussian volumes have the same inherent
problem since after optimization for maximum overlap, features may no longer fulfil
positional and/or directional constraints and will be considered non-matching. This is an
issue as the aim of the alignment, even for these algorithms, is to maximize the number
of matching features. This problem affects the results of virtual screening drastically as
the tested pharmacophore may be able to fit all of the features of a query pharmacophore
but may still not be found due to the optimization goal. For illustration, Figure 1 shows
two pharmacophore models that both consist only of features of the same type. Depending
on the primary search goal—optimum RMSD/volume overlap vs. maximum matching
feature count—different alignment results will be obtained (note that features are only
considered matching if the central point of one feature is within the tolerance sphere of
the other).
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(a) (b) (c)
Figure 1. Illustration of different pharmacophore alignment strategies and the thus obtained results
(b,c). For the sake of simplicity, pharmacophores (a) consist only of features of the same type. Different
colours are just used to distinguish the pharmacophores. (b) Result from RMSD- or volume-based
alignment. (c) Max. matching feature count-based alignment.

Another problem with the existing methods is how they deal with the allowed omis-
sion of user-defined less-critical “optional” features during pharmacophore alignment.
The RM algorithm, for example, performs a combinatorial sampling and generates all
possible combinations with #o missing features. If the models contain many features
and #o is large, this will lead to an explosion of computational complexity and results
in significantly longer runtimes. The generation of combinations based on omitted features
and using them purely with Kabsch alignment additionally leads to another unintuitive
issue: as the method may not identify a possible match without the omitted features due to
the nature of purely optimizing towards RMSD, computing an alignment for less features
may, by chance, find alignments where more of the features match. If aligning a larger
number of features did not result in a valid alignment, less features are tried, and the cen-
troid computed for the Kabsch alignment will be at a different place. With a different
centroid, the algorithm may now be able to find an alignment for which the previously
unmatched features match by coincidence. Thereby, allowing omitted features could lead to
finding alignments that actually should have been found without them or even completely
different alignments.

The treatment of exclusion volume spheres (see the methods section for details) is also
problematic. Existing methods compute the alignments without considering these features
and only discard the result post computation when they find exclusion volume constraints
to be violated. This can lead to solutions, possibly even very good ones, to be discarded
only because an exclusion sphere gets slightly touched. Visually, this would be an easy
problem to solve, as just slightly moving a molecule may yield a valid alignment.

In summary, the core issue with all the discussed methods is that the optimization
goal they follow is not in line with the intuition of pharmacophore models. As individual
features have a positional tolerance threshold for matching, the best alignment solution
may not be the one with minimal feature-pair RMSD or maximum volume overlap but the
one providing the largest number of matched feature pairs under the given feature position
and direction constraints. The latter criterion should be given preference especially when
pharmacophore models are used as virtual screening filters in order to reliably identify all
database molecules that provide a specific chemical feature pattern.

In the herein presented work, we address all of the above discussed main problems
of the existing pharmacophore alignment methods by introducing a new alignment algo-
rithm, Greedy 3-Point Search (G3PS), which aims at finding optimal alignments by using
a matching feature pair maximizing search strategy while at the same time being faster than
competing methods. The performance of the presented algorithm regarding its reliability in
the identification of possible pharmacophore matches and its computational efficiency was
assessed by screening several molecule datasets taken from the DUD-E database [28,29]
with query pharmacophores derived from the corresponding ligand–target complexes.
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To provide an impression of the advances that could be achieved with our new algo-
rithm, the obtained results are presented in direct comparison to the ones obtained with
the RM algorithm.

2. Methods

This section provides a detailed description of our new alignment algorithm G3PS.
Before presenting any details of the new algorithm, we first want to provide a definition of
the used pharmacophore representation, introduce important concepts regarding the good-
ness of fit of two pharmacophore models given an optimal transformation, and point out
additional aspects that are relevant for pharmacophore alignment.

2.1. Definitions and Concepts

Pharmacophores. Pharmacophores are a collection of labelled points representing
chemical features [1–3]. Commonly used features include aromatic rings, hydrogen-bond
acceptors/donors, and positive/negative ionizable and hydrophobic interactions, although
others exist and custom features may be designed. For a given pharmacophore A, we
denote feature i as Ai for i = [1, 2, . . . , |A|]. Features additionally contain a distance
threshold thresh(Ai) indicating how far the centres of matching features may be away and,
optionally, other restricting factors such as feature direction vectors.

Exclusion Volume Spheres. A pharmacophore A may contain additional features Ax,
which can be interpreted as “anti-features.” These features restrict the space where atoms
of the aligned molecule may occur, qualifying any alignment as invalid where atoms collide
with such feature shapes. More generally, their goal is to abstract the presence of binding-
site-environment atoms and model those locations, defining that there would not be enough
space left for atoms of a binding molecule. For performance and simplicity reasons, these
shapes are usually modelled as spheres, so we will use the terms “exclusion volume” and
“exclusion sphere” synonymously. This greatly simplifies the evaluation of the validity of
an alignment solution since just a check of the condition dist(a, Ax

i ) > thresh(Ax
i ) for all

atoms a and all exclusion spheres Ax
i needs to be performed. If the condition is true for all

combinations, the alignment is valid and can be kept.
Fully Fitting Models. For two models to fully fit, there must exist a transformation

from pharmacophore A to B (and B to A) that includes only translation and rotation
(no scaling) for which the following holds:

• There exists a mapping for all features of A and B where:

1. All individual features map uniquely to a feature of the other model,
creating index pairs (i, j).

2. The labels (feature types) of paired features are equal
(i, j) =⇒ label(Ai) = label(Bj).

3. The paired features distance is smaller than the larger distance threshold
(i, j) =⇒ dist(Ai, Bj) < max(thresh(Ai), thresh(Bj))

Maximum Fitting Models. Models with maximum fit may not meet the criterion of
all features mapping to pairs, but all features of the query pharmacophore do. In other
words, the pharmacophore that is used as a query will fully fit a subset of the other
pharmacophore. This is the best achievable fit two models of different size can have. If the
query pharmacophore is larger than the tested one, such a fit is not possible, and, at best,
a partial fit can be achieved by allowing features to be omitted.

Partially Fitting Models. Models fitting partially are ones for which less than the num-
ber of features in the query pharmacophore match. To define the bound for a sufficient
fit, a maximum number of omitted feature #o needs to be defined. If the best possible
transformation, where the largest number of features match, is missing at most #o features
of the query pharmacophore, the alignment is accepted, otherwise, the pharmacophores
are considered non-matching.

Quality of Model Fit. The goal of aligning two pharmacophore models is to find
a transformation that allows for the largest number of features to match. For this reason,
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the most important measure of quality is the number of matching pairs. A matching pair is
defined as two features, one from each pharmacophore, for which all restricting properties
are fulfilled, including having the same feature type and their distance being smaller than
the larger distance threshold. If the number of matching feature pairs is equal for two found
model alignment solutions, the quality of alignment can then be asserted by calculating
the RMSD of the matched pairs. We want to put additional emphasis on the fact that
the RMSD should only be considered regarding the alignment quality after determining
the maximum number of matching features, as aiming for the smallest possible RMSD
does not optimize towards finding the largest match. The best example for this is to only
consider the best matching pair for computing the root mean squared distance. Any model
(where at least one feature type matches) can achieve an RMSD of 0 if we only align one
feature pair. By extension, a smaller number of matching features is more likely to have
a small RMSD.

2.2. Greedy 3-Point Search (G3PS)

Our new alignment algorithm was implemented in a development version of Lig-
andscout [5,18] using the programming language Java and consists of two main parts
followed by a post-processing step. First, the features of both pharmacophores are en-
coded and compared to identify which features of one pharmacophore are likely to match
which features of the other pharmacophore. From this, first guesses are constructed using
exactly three pairs of features, as this is the minimum required for computing an unam-
biguous 3D transformation. In the second step, iterative refinement is performed for each
of the three-pair guesses. This refinement process collects additional pairs that do not
break the alignment created from all previously collected pairs and applies transformations
that optimize the alignment to better fit with the newly found pairs. Optionally, after this
second step, exclusion volumes can be considered. Final additional checks can then be
performed to filter out alignments for which more specific feature requirements are not met.

2.2.1. Finding Three Pairs

To find a starting point for iterative refinement, at least three points need to be fixed
in each of the pharmacophores, which allows to create an initial alignment. The number of
such three-pair guesses being generated is an important factor for the overall runtime of
the algorithm, as it defines how often refinement needs to be performed. Still, the downside
of only having one or few starting alignments is that the globally optimal alignment may be
missed. Therefore, we allow the user to define the maximum number of sampled guesses,
enabling them to trade computation time for accuracy.

Single Best Guess. To compute an initial guess that is likely to result in a globally
optimal matching, we computed a matrix describing how dissimilar each feature of one
pharmacophore is to the features of the other. The creation of this dissimilarity matrix is
performed by encoding each feature, taking its neighbourhood into account. Observing
a feature Ai, we captured which kind of feature is at what distance to the observed one,
looking at all features Aj where j 6= i. This list of labelled (by feature type) distances and
the type of the observed feature itself now represent the encoding used to compare features
and measure their dissimilarity.

Comparing these encodings for all features of one pharmacophore (rows) with all
features of the other (columns) will then result in the values of the matrix (see Figure 2 for
an example). If two encodings are representing features of different types, then the pair
is marked invalid, otherwise they are compared by solving a mathematical assignment
problem for which the algorithm of Jonker and Volgenant [30] is used. There, the difference
is computed for each pair of encoded distances, and entries with different labels are treated
as being maximally different. As too-different distances indicate that the features do not
match, and starting at some difference does not have discriminative value, this difference
has to be limited. For this reason, the distance difference is divided by the larger sum
of positional tolerances of the two compared feature pairs. If the resulting number is
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larger than 1, we know that the pairs are incompatible, and the value is set to exactly 1.
The total cost resulting from this assignment is then normalized by the number of features
in the larger pharmacophore and represents how dissimilar the two encoded features
are regarding their surroundings. This feature dissimilarity measure is used in the next
step as a pseudo-cost for the assignment of one feature to the other, allowing us to fill
the cost matrix.

(a) (b)
Figure 2. Visualization of neighbourhood comparison. Distances are measured for fixed features in
each pharmacophore (a) and compared to compute the deviation between corresponding pairs (b).
Colours = labels, coloured bars = encoded distances, gray bars = difference between distances.

From this matrix, we can obtain a guess by solving another mathematical assignment
problem and picking the three matches with minimal dissimilarity values. An example of
this can be seen in Figure 3.




X X 0.81 0.12 X 0.04
0.01 0.62 0.12 0.69 0.32 0.71
0.62 0.12 X 0.04 0.95 X
X 0.02 0.89 0.08 X 0.23
X 0.72 0.45 0.23 0.01 0.13
0.21 0.92 0.03 X X 0.17




→




X X 0.81 0.12 X 0.04
0.01 0.62 0.12 0.69 0.32 0.71
0.62 0.12 X 0.04 0.95 X
X 0.02 0.89 0.08 X 0.23
X 0.72 0.45 0.23 0.01 0.13
0.21 0.92 0.03 X X 0.17




Match:{(2, 1), (4, 2), (5, 5)}
Figure 3. Example matrix used for the assignment of matching pairs. X indicates feature mismatches,
marking a given pairing as impossible.

This guess should in theory represent the best option for running an iterative refine-
ment process. Still, as we abstracted the 3D information of where points are located relative
to each other to simple distances, our guess may not always result in the optimal solution
after refinement. This could, for example, be the case if the pharmacophores would only
fit after a symmetry transformation. To combat these non-optimal guesses, we propose
methods to obtain multiple starting combinations.

Multiple Guesses. To obtain an arbitrary number of guesses m, we can reuse the dis-
similarity matrix mentioned above. Iterating over this matrix, we can efficiently check
the feasibility of every combination of three pairs, keeping track of the m best ones. To com-
pute how good a guess is we simply sum up the dissimilarity values for the three pairs,
with a smaller sum indicating a better choice. Note that even though this process has an
algorithmic complexity of O(n6) (where n is the number of pharmacophore features), this
is in practice very fast, as permutations of the same three pairs can be ignored, and pairs
with incompatible feature types can be skipped. We also found that this guess-generating
process is negligible in runtime compared to the iterative refinement of the found guesses.

Trying All Possibilities. It is also possible to just use all combinations of three pairs as
starting points for iterative refinement. For this, we do not need to compute a dissimilarity



Molecules 2021, 26, 7201 8 of 20

matrix for features but just keep track that all pairs contain features of the same type. This
should result in the most accurate alignment, as the largest possible number of starting
combinations is sampled, but it has the downside of being more computationally expensive,
due to the time needed for refinement. Still, this should be faster than choosing a different
algorithm altogether as there are fewer three-pair combinations than if one computes all
possible combinations (of all sizes) for the features, as other methods may do.

2.2.2. Collecting Additional Pairs

For each initial guess of three matching pairs, iterative refinement is performed to
both align the collected pairs and to find additional pairs that fit. This idea is similar to
the Iterative Closest Point (ICP) algorithm [31], which is usually used to register unordered
point clouds from rigid objects by iteratively matching points, evaluating the quality of
the transformation and improving on it. Our implementation was modified to better repre-
sent the goal of maximizing the number of features with overlapping threshold spheres,
while having the same feature type. The concrete steps of the method are as follows:

• Given a list of starting matches P (three initial pairs),
• Align pairs P using the Kabsch Algorithm.
• Build a matrix F “forbidden” for all feature pairs.

– Mark pairs with different types forbidden.
– Mark columns and rows related to features in P forbidden.

• While F contains unmarked entries:

– Iteratively improve P.

• Return matching pairs and alignment matrix.

The matrix F tracks which pairs could be feasible to expand the matched feature
pairs and can indicate when the algorithm should be terminated. Each iteration, this
improvement process checks a possible addition to the matching pairs and computes a new
alignment while setting at least one entry of F as forbidden. Due to the strict increase
in marked entries, one can be sure that the method terminates. Additionally, one can stop
this process earlier if all features match or if we only care about finding any alignment,
while omitted features are allowed and have a sufficiently large matching. Each iteration
of the improvement performs the following steps:

• Find closest pair (by distance) ptest not marked in F.
• Create temporary pair combination Ptest = P ∪ ptest.
• Align pairs Ptest.
• If Ptest does not fulfill threshold,

– Try applying translation.

• If Ptest does still not fulfill threshold,

– Delete Ptest.
– Mark pair ptest as forbidden in F.
– Restore alignment of P.
– Continue.

• Otherwise,

– Set P = Ptest.
– Mark rows and columns related to ptest in F forbidden.
– Continue.

In many cases, it is not necessary to compute the alignment for all of the guesses
presented. After refining a guess, the contained tree-pair combinations are stored, and
subsequent guesses, starting with three points that were already collected by a previous
refinement, are skipped. This is done as in most cases, and refining from those pairs would
converge toward the same solution as was previously found.
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2.2.3. Post-Processing

In the post-processing step, additional requirements for a valid alignment are checked.
One of these checks is the collision with exclusion volumes (see Section 2.1), for which
adjustments can sometimes be made. Other than that, features may come with more
specialized requirements, for which we can only decide if they are met or not and thereby
keeping or discarding the solution. These restrictions on the results are especially useful
in screening, as reducing the number of results by using domain knowledge is beneficial
for further processing.

Dodging Exclusion Volume Spheres. If the resulting alignment includes atoms that
collide with exclusion volumes, additional translations (currently up to three) can be
applied to try to “dodge” those exclusion volumes to save the alignment. An example
for this is provided in Figure 4 where an exclusion volume would lead to discarding
an otherwise good alignment solution.

(a) (b) (c)
Figure 4. Illustration of exclusion volume clashes leading to an invalid alignment. For the sake of
simplicity, pharmacophores (a) consist only of features of the same type and atoms of one pharma-
cophore, shown as black circles. After an alignment of the pharmacophores, atoms may clash with
exclusion volumes (b), which can sometimes be fixed with a simple translation (c).

After those translations, if there are still collisions, the alignment has to be discarded,
otherwise the pharmacophore feature thresholds for matched pairs need to be checked
again. Based on whether or not the features still are within their allowed threshold
distances, the alignment may now be valid or not. This may save a solution that only
had a minor exclusion volume clash from being discarded even though it may have been
a reasonable alignment.

2.2.4. Other Requirements

Other requirements imposed by pharmacophore features could include a variety of
properties like direction vectors or plane normals. Here, as part of the model, one can
assume the direction in which the feature should point, and any matching features should
also roughly point in that direction after alignment. If this is not the case, the feature is
considered unmatched,, and if this leads to less-matched features than required, the solution
is discarded. This could also be an interesting topic for further investigation in a follow-up
work, as it may be possible to consider these direction vectors in the alignment process itself.

3. Results and Discussion
3.1. Benchmarking Methodology

To benchmark the number of found matches and the required computation time,
we implemented our alignment algorithm in a development version of LigandScout for use
in virtual screening. Here, the goal was to find molecules, abstracted by pharmacophores,
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matching one or more query pharmacophores. Since also a significant amount of completely
unfeasible pharmacophore combinations would be aligned in a typical virtual screening
run, pre-processing filters are usually applied to reduce the overall computation time [8].
This was not done in our benchmarks as we only cared to measure the time spent for
the actual alignment process.

To obtain more sensible results, the hits were again filtered after the alignment. Here,
alignments were discarded if the features did not meet additional requirements like the di-
rections of feature vectors not being sufficiently close. If there were still clashes with
exclusion volumes (after trying to fix those), the alignment was also discarded. The re-
mainder of the found solutions was then accepted and presented as the output hit-list.
This filtering based on model restrictions was performed equally for both of the bench-
marked algorithms.

Additionally, note that the pharmacophores benchmarked were not manually opti-
mized for separating actives from inactives/decoys. Even though this is what one wants to
achieve in practice, the type of retrieved molecules should only depend on the quality of
the model. In constrast, the alignment method (which was the focus of our benchmarks)
should be able to accurately retrieve all molecules that fit the query model. For this reason,
finding additional hits, regardless of if they are actives or decoys, indicates that the method
that did not find them was not able to fulfil the user query accurately and omitted results
the user asked for. As a side effect of using a more-accurate alignment method and retriev-
ing molecules that fit the query model more precisely, one may need to adjust the model as,
in expectation, more hits will be found. As this is often not desirable, reducing the size of
feature spheres or additionally filtering the hits with stronger restrictions after screening
may be advisable.

All computations for the measurements below were run multi-threaded on an AMD
Ryzen 9 5900X 12-Core (24 threads) 3.7 Ghz CPU in Windows 10, taking the average
of five runs. Before the first measured run, one full non-measured benchmarking run
was performed as a “warmup phase” to ensure the different methods and runs neither
benefited nor got punished for start-up-related factors like the CPUs branch prediction and
I/O caching.

3.2. Results

First, we assessed the impact of the chosen number of computed guesses for our G3PS
algorithm. For this, we compared different datasets in regard to the computation time
needed per guess and the number of hits found depending on the number of allowed
omitted features.

As can be seen in Figure 5 (using the CDK2 dataset as an example), the runtime of our
method did not depend on how many omitted features are allowed but purely the number
of computed guesses. As the number of guesses increases, the iterative improvement will
check combinations of features that it has seen before. Therefore, the increase in runtime is
less than linear in the number of guesses. To now find a good default value, we analysed
the number of hits with different parameter values.
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Figure 5. CDK2, runtime (full dataset) vs. computed guesses.

Figure 6 shows that, in practice, only a few guesses are needed to find the majority
of hits. In our experiments, we observed that 20 guesses lead to fast and accurate results,
while 300 guesses found the maximum amount of hits most of the time. In the following,
we call the 20-guess variant “G3PS Fast” and the 300-guess variant “G3PS Accurate”.

Figure 6. CDK2, number of hits vs. computed guesses.

During testing, we visually analysed differences between RM and G3PS. An example
can be seen in Figures 7 and 8, where the same two molecules were aligned based on
their pharmacophore features with both methods. The RM method found four matching
feature pairs and aligned the molecules according to those while G3PS (accurate) found
and aligned by seven matching feature pairs.
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Figure 7. RM method example alignment of two molecules; four matching feature pairs were found.
Orange circles = centre of matched features.

Figure 8. G3PS example alignment of two molecules; seven matching feature pairs were found.
Orange circles = centre of matched features.

We also found that many combinations of molecules could not be aligned with the RM
method as it could not identify three matching feature pairs. An example of such a com-
bination can be seen in Figure 9, where seven matching feature pairs were identified by
G3PS (accurate) and used for alignment.

Figure 9. Example of G3PS alignment with seven matching feature pairs where RMM failed due to
not finding three pairs. Orange circles = centre of matched features.
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For the benchmarking datasets, we selected 10 different targets from the DUD-E
database [28,29] and just used the known active ligand sets. For these molecules, up to
25 conformations were created using LigandScout’s iCon conformer generator [11]. For use
as query pharmacophores, structure-based models were created using DUD-E’s provided
receptor and co-crystallized ligand structure, removing excess features until hits could
be found. The exclusion volumes that were created in the modelling process were kept.
These pharmacophores were not further optimized for practical use and only served for
benchmarking the accuracy and performance of the methods, disregarding the selectivity
of actives vs. decoys (see Section 3.1). Images of the pharmacophores can be found in our
Supplementary Materials. The used DUD-E datasets and the number of pharmacophore
features (after removing excess ones) are shown in Table 1.

Table 1. Summary of benchmarking datasets.

Name Pha. Features Molecules Conformations

ACES 6 664 15,391
CDK2 6 798 17,740
DRD3 6 877 20,539
EGFR 6 832 19,899
FA10 5 792 19,786
GCR 9 563 9610

PDE5A 7 706 17,015
PGH1 5 251 4041
THRB 7 861 21,474
VGFR2 6 620 15,041

Note that we included the GCR dataset and used a pharmacophore with nine features
to also measure the performance and accuracy with comparatively larger models. Due to
this large number of features, the model was more selective than the ones from the other
datasets, and fewer found hits were expected regardless of the chosen alignment method.

In the following, all comparisons are made to the RM algorithm [15]. Both methods
use the same file back-end and processing pipeline.

The runtime and resulting hits for our virtual screening experiments without omitted
features can be seen in Figures 10 and 11. Our G3PS “Fast” variant was able to retrieve hits
more accurately than the RM method while still being faster. For the measured datasets,
this is a speed-up (time RMM/time G3PS Fast) of approximately 2.3× on average. Using
the “Accurate” variant settings, one can sometimes find additional hits at the cost of
a longer runtime. This may be a valid option for users that do not want to miss hits and
that are willing to accept longer computation times.

Starting at one omitted feature (Figures 12 and 13), the runtime of screening with
the RM method increased with the number of omitted features, while staying constant
with G3PS. Our “Fast” method still provided comparatively more hits while extending
its runtime advantage (on average, an 8.5× speed-up). Even our “Accurate” variant was
competitive in runtime, only being slightly slower for the PDE5A dataset. It still computed
an even larger amount of hits for all datasets, while now being faster than the reference
method for all other datasets.
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Figure 10. Screening benchmark runtimes without omitted features.

Figure 11. Screening benchmark hits without omitted features.
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Figure 12. Screening benchmark runtimes with one omitted feature.

Figure 13. Screening benchmark hits with one omitted feature.

Increasing the number of omitted features to two (Figures 14 and 15) again increased
the runtime of the RM algorithm. At this point, both presented presets for G3PS performed
better in regard to runtime and the number of found hits. G3PS “Accurate” was now on
average 4.6 times faster, and the “Fast” variant was 25.8 times faster.



Molecules 2021, 26, 7201 16 of 20

Figure 14. Screening benchmark runtimes with two omitted features.

Figure 15. Screening benchmark hits with two omitted features.

As already seen with two omitted features, three omitted features (Figures 16 and 17)
continued to show the independence of screening with G3PS to this number. At this point,
the RM method starts becoming unfeasible for practical use, like for fragment screening
where a larger number of omitted features is necessary. Even though the runtime increases
this drastically, it is again not able to retrieve hits as accurately as our “Fast” variant. Our
speed-up further increased to 70.7× and 12.3× for our “Fast” and “Accurate” variants,
respectively. Two datasets could not be benchmarked with three omitted features, as the
pharmacophores only contained five features, and removing three of those would result in
a pharmacophore for which a defined, unambiguous 3D alignment is not possible.
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Figure 16. Screening benchmark runtimes with three omitted features.

Figure 17. Screening benchmark hits with three omitted features.

3.3. Summary

The Greedy 3-Point Search method for alignment brings a variety of benefits over
existing methods. With translations applied in the iterative refinement and the general
method of collecting additional pairs based on three starting pairs, our algorithm was
able to optimize for maximum matching feature counts. In this way, alignments are
not missed that should actually be possible for the two given pharmacophore models.
As the algorithm looks for the largest possible match iteratively instead of computing
alignments for combinatorially generated feature subsets, the number of omitted features
does not impact the runtime, making it orders of magnitude faster than competing methods.
With this iterative refinement process, the problem that more omitted features could lead
to more found hits than with fewer omitted features due to feature centroid changes is also
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avoided. The independence from the omitted feature count makes our method especially
suitable for fragment screening where a larger model needs to be aligned to multiple very
small fragment pharmacophores, resulting in a high number of required omitted features.
The algorithm can also be tuned by the user for accuracy or performance by adapting
the number of sampled refinement starting points, while a small number of starting points
still finds the best alignment most of the time. Another commonly found weakness of
existing methods is that alignments may be discarded because exclusion volumes are
slightly touched, even though very minor changes would allow for a valid, possibly even
near-optimal solution. G3PS can avoid this problem in the post-processing step by applying
minor translations, thereby not dropping such good alignments.

3.4. Future Directions

A logical extension to the iterative refinement process could be to include additional
information like feature-direction vectors already in this stage. This would allow for
an earlier detection of feature pairings where not all constraints can be met and thus
could potentially achieve an improvement in runtime. Alternatively, one could try to
consider constraints like feature directions during the alignment itself. This could improve
the positioning in space such that these restrictions are more likely to be fulfilled without
additional intervention and could thereby reduce the number of guesses needed to find
a good alignment.

Further research could also be targeted at extracting parts of the method for GPU com-
putation. A large part of our algorithm consists of fundamental mathematical operations,
and additional performance can possibly be gained by using the computational resources
provided by graphics accelerators.

4. Conclusions

We presented a new algorithm, Greedy 3-Point Search, for aligning two pharma-
cophores in a way that the number of matching features is maximized. This avoids
the problem of missing valid alignments due to an unfit optimization target, resulting
in a higher number of solutions in agreement with the specified positional tolerances of
the pharmacophoric features. The new method iteratively refines starting guesses, finding
the largest match without having to consider the allowed number of omitted features.
For this reason, the runtime of the algorithm does not depend on omitted features but
only the number of starting guesses used. This allows a user to find a trade-off between
high accuracy of results and low execution time, while still obtaining good results when
the fast variant is chosen. For ease of use, we proposed two default parameter settings for
the number of starting guesses, which should cover the needs of most users. Additionally,
we touched on exclusion volume restrictions and how to recover from alignments that
were deemed invalid due to only barely violating exclusion volume constraints.

As our method is able to find hits more accurately, and thereby presents the user more
screening hits overall, it will be important to look into how this affects the way pharma-
cophores are usually refined by expert users. It may now be of benefit to reduce positional
tolerances or to narrow down allowed angle deviations for directed features to improve
a pharmacophore model’s ability to discriminate between active and inactive molecules.
Aside from its impact on virtual screening results, the higher probability to find valid align-
ments will also have an influence on the results obtained by other pharmacophore-based
techniques. For lead optimization tasks, the robustness of our algorithm will signifi-
cantly extend the possibilities when it comes to the structural modification of molecules.
Pharmacophore-guided replacements of chemical functionalities by bioisosteric groups
or even scaffold hops have a higher chance to succeed due to the largely reduced risk of
failures when attempting a realignment of the template pharmacophore. For ligand-based
pharmacophore modeling procedures, following a feature-count maximizing alignment
strategy will, on average, result in the perception of a higher amount of common training-set
ligand features than one would obtain using a pure RMSD-minimizing strategy. Unfor-
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tunately, the average impact of our new alignment algorithm on the outcome of these
pharmacophore-based techniques cannot be quantified easily since several other methods
and case-specific factors are also of influence and need to be accounted for. However, we
are confident that taking advantage of the robustness and the feature-count maximizing
search strategy of our new algorithm would be beneficial for any pharmacophore-based
technique relying on pharmacophore alignment and thus would contribute to its further
development.

Supplementary Materials: The following are available online. Images of pharmacophores used for
benchmarking: ACES, CDK2, DRD3, EGFR, FA10, GCR, PDE5A, PGH1, THRB, VGFR2
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