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Excessive production of free radicals can induce cellular damage, which is associated with
many diseases. RNA is more susceptible to oxidative damage than DNA due to its single-
stranded structure, and lack of protective proteins. Yet, oxidative damage to RNAs
received little attention. Accumulating evidence reveals that oxidized RNAs may be
dysfunctional and play fundamental role in the occurrence and development of type 2
diabetes (T2D) and its complications. Oxidized guanine nucleoside, 8-oxo-7, 8-
dihydroguanine (8-oxoGuo) is a biomarker of RNA oxidation that could be associated
with prognosis in patients with T2D. Nowadays, some clinical trials used antioxidants for
the treatment of T2D, though the pharmacological effects remained unclear. In this review,
we overview the cellular handling mechanisms and the consequences of the oxidative RNA
damage for the better understanding of pathogenesis of T2D and may provide new
insights to better therapeutic strategy.
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INTRODUCTION

Free radicals are the normal cellular products of energy metabolism (Kong and Lin, 2010). In living
organisms, radicals are mostly derived from reactive oxygen species (ROS) and reactive nitrogen
species (RNS). However, excessive production of free radicals may cause mitochondria dysfunction,
which could lead to the changing of energy metabolism and affect the normal equilibrium of cells
(Valko et al., 2007). Free radicals can damage the DNAs, RNAs and proteins as well as other cell
components (Haigis and Yankner, 2010; Majzunova et al., 2013; McArdle and Jackson, 2019).
Oxidative stress occurs when free radicals are over-produced or due to the decrease in the ability of
the antioxidant defense system. Indeed, oxidative damage exists widely in the body, which is mainly
manifested by the damage to the structure and function of biological macromolecules (such as DNA,
proteins, lipids, etc.), which leads to gene mutation, cell carcinogenesis, and aging. The pathogenesis
of some age-related diseases such as neurological disorders (i.e., Alzheimer’s disease, amyotrophic
lateral sclerosis, Parkinson’s disease) and atherosclerosis have also been attributed to the oxidation of
the chemicals induced by free radicals (Poulsen et al., 2012; Fimognari, 2015).

Nowadays, noncommunicable diseases (NCDs), including diabetes, cancer, and cardiovascular
diseases, are the major cause of death globally. NCDs account for 63 percent of all deaths worldwide
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every year. Diabetes is one of the most essential NCDs that
threatening human health in the world, the rapid growth of
diabetes has brought an alarming global burden to the social and
economic development (Jaacks et al., 2016). The international
diabetes federation (IDF) reported that the number of diabetes
patients could reach over six hundred million by 2040 (Ogurtsova
et al., 2017; Luo et al., 2019). In diabetes, Type 2 diabetes (T2D)
constitutes the main type (Ogurtsova et al., 2017). T2D could
cause a series of concomitant diseases, such as coronary heart
disease, lower limb arteriopathy, retinopathy, diabetic
nephropathy (Sung et al., 2018).

And now, there are many strategies for the treatment of T2D,
mainly includes surgery, drug therapy, exercise therapy, dietary
nutrition, and multifactorial treatment (Durrer Schutz et al.,
2019; Koch and Shope, 2021). However, due to the diversity of
disease factors in T2D, these methods cannot effectively reduce
the increase in morbidity and mortality. In addition, the level of
venous blood glucose and biomarkers like glycated hemoglobin
(HbA1c) also have limitations to be used as prognostic and
predictive biomarkers for mortality, especially for elders or
patients with hyperlipidemia (Durrer Schutz et al., 2019).
Therefore, much work remains to be done to understand the
underlying mechanism involved in the regulation of glucose
metabolism and insulin sensitivity, which will unveil a better
understanding of blood glucose homeostasis and find more
potential therapy targets.

In this review, we discuss the consequences and the
mechanism of intracellular response to RNA oxidation.
Furthermore, we review the relationship between the ROS and
T2D which may provide new intervention strategy for T2D.

THE HISTORY OF RNA FUNCTIONS AND
STRUCTURE

Although F. Miescher discovered the nuclein in 1868, it did not
attract much attention for more than half a century (Sankaran,
2016). In the 1920s and 1930s, it was confirmed that there were
two kinds of nucleic acids DNA and RNA in nature, and the
composition of nucleotides was clarified. In the decades that
followed, life sciences focused on the application and analysis of
the genomic DNA. In the 1980s, W. Gilbert et al. discovered that
RNA had the activity of catalytic enzymes, which opened a
window for the study of RNA (Sankaran, 2016). In addition to
transferring information from DNA to protein, RNA molecules
also play vital role in maintaining, regulating, and protecting the
genomes of all organisms and have more structural and
functional diversity than DNA (Sharp, 2009; Cech and Steitz,
2014).

Biomolecules have unique molecular structure, which is
essential for their function. However, we know very little
about the structure of RNA. The exploration of RNA structure
started from the Click coined the hypothesis that RNA played an
intermediary role in the transmission of genetic information to
proteins in 1953. And in 1965, Holly and his colleagues used
nuclease to sequence yeast tRNA (Holley et al., 1965). Noller and
Chaires found that kethoxal modifies affected the function of

rRNA in 1972 (Noller and Chaires, 1972). Subsequently, the
studies focus on the secondary and tertiary structures of RNA
(Peattie and Gilbert, 1980). High-throughput sequencing and
new computational methods to interrogate RNA structure are
beginning to provide new insights into RNA structures (Kertesz
et al., 2010; Underwood et al., 2010; Lucks et al., 2011). Driven by
technology and cognition, more and more structural changes,
modifications, and types of RNA have been gradually discovered.
At the same time, the remarkable diversity of RNA structure and
function revealed an enormous potential of RNA in future clinical
applications is gradually emerging.

THE GENERATION AND DAMAGE OF ROS
IN T2D

The theory of ROS in organisms was put forward in the 1950s
(Commoner et al., 1954; Newsholme et al., 2016). ROS can be
produced by exogenous and endogenous sources (Kohen and
Gati, 2000). Exogenous sources may include ultraviolet radiation
(Liu et al., 2020), ultrasound, drugs, radiation and exposure to
pollutants and toxic chemicals. Endogenous sources may include
neutrophils, cytokines (Obata et al., 2001), enzymes that directly
produce ROS. These enzymes mainly come from mitochondria,
such as dihydroorotate dehydrogenase, succinate dehydrogenase
and NADPH oxidases (NOX) (Le Bras et al., 2005; Ahmad et al.,
2017). Among those enzymes, NOX is an enzyme that localizes
on cell membrane and catalyzes the reduction of oxygen
molecules to superoxide anion (Dubois-Deruy et al., 2020;
Masselli et al., 2020). It is the main source of ROS generation.
As a coenzyme, NOX participates in cellular electron transfer and
servers as a second messenger in many signaling pathways (Bae
et al., 2011).

ROS have been reported to contributed the pathology of T2D
in many ways (Figure 1). High glucose intake in the body
increases mitochondrial production of ATP, which produces
large amounts of free radicals and increases ROS levels. And
excess sugar can bind to proteins to form advanced glycation
products (AGEs).

Accumulating studies demonstrated that ROS plays a vital role
in the occurrence and development of T2D by inducing insulin
resistance and beta cell dysfunction (Rochette et al., 2014; Liu
et al., 2016). A classical mechanism of insulin abnormality is
dysregulation of the insulin-regulated pathway, such as
inappropriate phosphorylation or inhibition of the insulin
receptor-associated proteins. The insulin binds to insulin
receptors will lead to phosphorylation of residues, resulting in
changes in receptor structure and triggering downstream signal
transduction. Excess free radicals can disturb beta cell function,
inhibiting proliferation and regeneration (Porte and Kahn, 2001;
Liang et al., 2016; White et al., 2016; Wang and Wang, 2017).

The insulin receptor substrate (IRS) proteins are the
cytoplasmic proteins that regulate growth and metabolism,
which response to some stimuli including hormones and
cytokines (Lee and White, 2004). The family of IRS was
compound of six type named IRS-1, IRS-2, IRS-3, IRS-4, IRS-
5, and IRS-6. Among them, IRS-1 and IRS-2 are the key control of

Frontiers in Physiology | www.frontiersin.org March 2022 | Volume 13 | Article 7259192

Chen et al. Oxidative Damage and Type 2 Diabetes

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


IR (Copps and White, 2012). ROS could induce IR by leading the
phosphorylation of the serine at serin 307 of IRS-1. Excess free
radicals could also reduce the migration and relocation of insulin-
dependent IRS (Yaribeygi et al., 2019). The high level of ROS can
also impair the insulin sensitivity by activating the IKKβ/NF-κB
and JNK pathway, resulting the degradation of IRS-1/2
(Nishikawa et al., 2000; Evans et al., 2005). ROS-mediated
activation of JNK signaling leads to decreased insulin secretion
via nucleocytoplasmic translocation of pancreatic and duodenal
homeobox-1 (PDX-1), a key transcription factor that binds to the
insulin promoter and induces insulin expression (Kajimoto and
Kaneto, 2004). High levels of intracellular oxidation can also
inhibit p38 MAPK pathway, PI3K/Akt/eNOS pathway, PI3K/
JUK pathway, JNK/SAPK pathway, modulate serine/threonine
kinases such as Akt (or PKB), GSK-3, AMPK, and mTOR, which
cause IR (Bloch-Damti and Bashan, 2005; Rains and Jain, 2011;
Yaribeygi et al., 2020).

Glucose transporter-4 (GLUT-4) have the function of
transporting the glucose into cells, any factor that reduces the
expression of GLUT-4 have a significant effect on the insulin
signal (Klip et al., 2019). Clinal researches showed the expression
of GLUT-4 was lower than the control in the patients with insulin
resistance (Hussey et al., 2012; Reno et al., 2017). ROS could
suppress the expression and relocation of GLUT-4 by inducing
the point mutation (Hurrle and Hsu, 2017). And some studies
reported that ROS also could suppress the GLUT-4 expression by

effecting the expression of its transcriptional factors such as
PPAR-γ, CEB/Ps, nuclear factor-1, p85, HIF-1α, MEF2, and
NF-κB (Cooke and Lane, 1999; Pessler et al., 2001; She and
Mao, 2011).

ROS is mainly derived frommitochondria, but can also in turn
lead to mitochondrial stress, mitochondrial dysfunction,
mitochondrial division, and cell apoptosis (Medda et al.,
2021). As noted above that the mitochondrial dysfunction
can affect the energy supply and indirectly affect insulin
secretion.

Endoplasmic reticulum (ER) is the main organelle for
intracellular modification and synthesis. The stimuli of
oxidative stress could disturb the function of ER and induce
the ER stress (Lemmer et al., 2021). ER stress could disrupt proper
protein folding leading to accumulation of misfolded proteins,
which can lead to reduced insulin synthesis and decreased insulin
stability in beta cells (Han et al., 2013). ER stress can suppress the
expression of GLUT-4 and relocation on the cell membrane
(Yang et al., 2010). Ozcan et al. (2004) reported the ER stress
could induce IR by directly suppressing the insulin pathway
through hyperactivation of c-Jun N-terminal kinase (JNK) and
subsequent serine phosphorylation of IRS-1 (Nakatani et al.,
2005). The accumulation of misfolded proteins in ER stress
may cause the unfolded protein response (UPR), which will
promote the cell death during the prolong stress (Fernández
et al., 2015).

FIGURE 1 | Schematic diagram of the effect of ROS toxicity on insulin secretion and insulin resistance signaling pathways. High level of ROS can modulate insulin
resistance by altering the insulin-signaling ways, such as Akt, P13K, and JNK. ROS also can inhibit the function of cell organelles, and then reduce the energy supply,
induce the apoptosis.
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Oxidative stress stimulates the inflammatory response, which
in turn worsens oxidative levels, and numerous studies have
shown that oxidative stress and inflammation are key factors
in the development of insulin resistance and the establishment of
T2D (Keane et al., 2015). ROS could increase inflammatory
responses which in turn induces insulin resistance in several
pathways, such as IKK, JNK and NF-κB signaling pathway (Cai
et al., 2005), IL-6, TNF-a/JNK/IRS-1 pathway (Akash et al., 2018).

THE INDICATOR OF RNA OXIDATION:
8-OXOGUO

Oxidation of RNA could cause strand breaks, lose the expression
of RNA, and then induce modified nucleobases, lipid, and sugar
(Li et al., 2006; Jacobs et al., 2010; Resendiz et al., 2012). The
oxidation products of RNA mainly include 5-hydroxycytidine, 5-
hydroxyuridine, 8-hydroxyadenosine and 8-oxoGuo. Among
various oxidation formations, the oxidized nucleobase 8-
oxoGuo in RNA is currently used as an essential indicator of
RNA oxidation because it appears to be abundant and mutagenic
(Li et al., 2006).

8-oxoGuo is an oxidative adduct produced by reactive
oxygen radicals such as hydroxyl radicals and singlet

oxygen that attack the carbon 8 of the guanine base in RNA
molecules (Figure 2). The degree of oxidative damage and
repair in vivo can be evaluated by the detection of 8-oxoGuo,
and the relationship between oxidative stress and RNA damage
(Schöttker et al., 2020). It is of great significance for the study
of degenerative diseases, aging mechanism, carcinogenesis
mechanism, the relationship between environmental toxins
and oxidative stress. It can also be used to evaluate the
efficacy of antioxidants in the treatment of RNA oxidative
damage.

As mentioned above, DNA was discovered and studied first,
and most previous studies were focus on the DNA oxidation. The
first report to assessed the level of 8-hydroxydeoxyguanosine in
urine was in 1962 (Loft et al., 1992). Franzke et al. (2018) found
that exercise, nutrition and cognitive training increased
antioxidant activity by measuring oxidative markers in blood
plasma. Larsen et al. (2019) pointed that clinical study must be
considered the study population and size, as many factors such as
environment can contribute to differences.

Several methods have been reported to detect RNA oxidation
levels. However, due to the lack in the RNA oxidation studies, the
methods need to be developed and updated. Nowadays, the
measure of oxidized RNA products is based on the chemical
structure or immune properties of oxidized nucleotides.

FIGURE 2 | Mode of the occurrence and consequence of RNA oxidation. Free radicals attacked the eighth carbon atom of RNA to turn G into 8-oxoGuo. Once
RNA is oxidized, the original function would become abnormal. Oxidized coding RNAs lead to decrease in the level and activity of protein synthesis and increase the non-
functional, incomplete protein, and mutated proteins. Oxidation of non-coding RNA could affect their regulatory functions. The green marked P ball represents a normal
protein, the notched sphere indicates non-functional or truncated protein. Rhombohedral sphere indicates mutated protein. RNA pol, RNA polymerase; P, protein;
OS, oxidative stress.
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Nucleosides and bases could be detected by high-performance
liquid phase chromatography coupled with tandem mass
spectrometry (HPLC–MS/MS) or ultraperformance liquid
chromatography-tandem mass spectrometry (UPLC-MS) (Fiala
et al., 1989; Shen et al., 2000; Hofer et al., 2006). Another
detection method relies on the interaction of antigens and
antibodies, including dot blot, ELISA, Northwestern blot,
immunoprecipitation, and immunohistochemistry (Nunomura
et al., 1999; Honda et al., 2005; Shan and Lin, 2006; Looi et al.,
2008; McKinlay et al., 2012). Elisa methodology is one of the
earliest, most widely used and relatively mature detection
methods, which benefit from the reaction between antibodies
(Cooke et al., 2001; Chiou et al., 2003). At present, there are a lot
of kits on the market to detect oxidized nucleic acid are based on
this principle (Chao et al., 2021). HPLC/UPLC-MS are relatively
mature methods for the detection of RNA oxidation products
(Wang et al., 2017; Jorgensen et al., 2018; Jørs et al., 2020). These
methods have high accuracy while requiring many samples.
ELISA and other biochemical reaction methods can detect
components in body fluids, but the operation is complex and
time-consuming. Since there is only one oxygen atom difference
between 8-oxoGuo and G in structure, it is a challenge for the
specificity of antibodies (Barregard et al., 2013). It is impossible
for DNA or RNA specific recognition antibodies to reach all
oxidative damage sites in nucleic acids, which could affect the
quality of experimental data.

Even though there are many methods to detect the content of
8-oxoGuo in different samples, it is still quite challenging to
measure it accurately. Because it will generate the uncontrollable
new oxidation reactions during nucleic acid extraction and
subsequent operations (Barregard et al., 2013). In order to
increase the accuracy of the results as much as possible, metal
chelation or antioxidants were added during the experiment to
decrease the false new RNA oxidative damage during the
experiment (Hofer et al., 2005). In addition, because the RNA
oxidation could impede reverse transcription, the rate of reverse
transcription is also used to assess the level of RNA oxidation
(Gong et al., 2006).

Further studies reported that oxidation did not affect the
association of RNA and polysome in the process of
transcription, but affect the properties of the product (Shan
et al., 2003; Shan et al., 2007). Oxidized coding RNAs lead to a
decrease in the level and activity of protein synthesis and
increase the non-functional, incomplete protein, and mutated
proteins (Figure 2). Oxidized non-coding RNAs can inhibit
their regulatory functions in the process of protein synthesis,
leading to cell apoptosis and cell death. For instance, the
microRNAs (miRNAs) are crucial member of non-coding
RNAs and have been recognized as the vital regulator in the
gene expression (Saliminejad et al., 2019; Kozak et al., 2020).
MiR-184 upon oxidative modification could mismatch the
3′UTR of Bcl-xL and Bcl-w resulting in their reduction and
this mismatch is involved in the initiation of apoptosis in vitro
and vivo (Wang et al., 2015). Oxidized miR-1 could
redirect the new targets in heart hypertrophy pathways
that influence the redox mediated gene expression (Seok
et al., 2020).

COPING WITH THE RNA OXIDATION

Living organisms need to reduce the risk of damage mediated by
RNA oxidation. The cells must have some protective mechanisms
to maintain the normal function and to survive under stress
conditions, such as monitoring and inhibiting the process of RNA
oxidation or keeping and reducing the excess oxidation
molecules. Unfortunately, little is known about any of the
mechanisms. Therefore, we discuss the progress and
hypothesize potential ways in which oxidized RNAs may be
involved in regulation (Figure 3).

Degradation
Degradation can play an important role in RNA metabolism and
eliminating oxidized RNA. This irreversibly eliminating pathway
is probably the major system dealing with oxidized RNA.
Ribonucleases have the degradation activity for oxidized RNA,
and it can eradicate aberrant RNAs. However, further studies
show that RNase is usually assisted by polyadenylation and RNA
helicase activity (Deutscher, 2006). Polynucleotide phosphorylase
(PNPase) is widely distributed across organisms of all kingdoms
(Das et al., 2011). In E.coli, PNPase could regulate many aspects of
RNA metabolism, including degradation of defective rRNA and
tRNA, etc. (Kushner, 2002; Basturea et al., 2011). Human PNPase
(hPNPase) is mainly localized in mitochondrial intermembrane
space (Piwowarski et al., 2003; Chen et al., 2006). In human
mitochondria, hPNPase and RNA helicase Hsuv3 form a
complex, which maintains the homeostasis of some mt-
mRNAs. And in cell culture, the hPNPase plays a vital role in
the degradation of mitochondrial mRNA, c-myc RNA, and
miRNAs. Several studies reported Apurinic/apyrimidinic
endonuclease 1 (APE1) could control the RNA quality and
degrade the oxidized RNA (Li et al., 2014).

Repair
At present, very little is known about the repair mechanisms of
oxidative RNA damage. It is very costly for cells to synthesize
RNAs because those pathways require energy. If the damage to
RNA is sublethal and can be repaired and reused, it could save
cells energy and be evolutionarily beneficial. Although RNA is
like DNA, RNA lacks a complementary strand; RNA-repair
pathways may be different from the DNA repair mechanisms.
Indeed, some studies have confirmed that RNA damage can be
repaired. For instance, the methyl-guanine-methyl transferases
(MGMT), which repair O6-mG (Kaina et al., 2007), and the
oxidative demethylases, such as A1KB, repair m1A and m3C
(Dinglay et al., 1998; Aas et al., 2003; Fu et al., 2010). The DNA-
repair enzyme APE/Ref-1 has rRNA quality control (Fu et al.,
2010).

Sequestration
The oxidized RNA may lose its original biological function, some
specific factors could discriminate and mark oxidized nucleotides
during RNA synthesis or translation (such as RNA polymerase,
etc.). And then, it will activate the recruitment of repair enzymes
or degradation reactions (Deutscher, 2006). Several proteins have
been demonstrated to recognize and bind oxidized RNAs. For
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instance, PNPase protein or hPNPase, which has a higher binding
affinity to 8-oxoGuo than other normal oligonucleotides
(Hayakawa et al., 2001; Hayakawa and Sekiguchi, 2006; Wu
and Li, 2008). Mammalian Y box-binding protein 1 (YB-1),
heterogeneous nuclear ribonucleoprotein D0 (HNRNPD),
splicing factor 3B subunit 4 (SF3B4), heterogeneous nuclear
ribonucleoprotein C1/C2 (HNRNPC) and splicing isoform 1
of DAZ-associated protein 1 (DAZAP1) also show affinity
comparable to hPNPase protein (Hayakawa et al., 2002;
Hayakawa et al., 2010).

Interdicting Incorporation of Oxidized
Nucleotides Into RNA
Oxidized nucleotides triphosphates from the nucleotide pools
can be metabolically incorporated into RNA through the

synthesis pathway, and oxidized nucleotides can be produced
by degrading oxidized RNAs (Li et al., 2006). Under oxidative
stress, nucleosides and nucleotides may be oxidized. RNA
polymerase could discriminate guanosine-5′-triphosphate
(GTP) and 8-oxo-7,8-dihydroguanosine-5′-triphosphate (8-
oxo-GTP) during the process of RNA synthesis. The rate of
misincorporation of 8-oxo-GTP into RNA was only 2% that of
guanine (Hayakawa et al., 1999). 8-oxo-7,8-dihydroguanosine
5′-monophosphate (8-oxo-GMP) can be transformed into 8-
oxo-7,8-dihydro-guanosine 5′-diphosphate (8-oxo-GDP) under
the catalysis of guanylate kinase (GK), similarly, 8-oxo-GDP can
be phosphorylated to 8-oxo-GTP through the nucleotide
diphosphate kinase (NDK) (Ishibashi et al., 2005; Sekiguchi
et al., 2013). Several enzymes can dephosphorylate oxidized
nucleoside triphosphates, thus preventing their incorporation
into RNA, have been identified. MutT homologue 1 (MTH1),

FIGURE 3 | The schematic diagram of coping with RNA oxidation. (A) The oxidized RNA may lose its normal function, it would be degraded into nucleoside
monophosphate by ribonucleases, PNPase or APE1. The nucleoside monophosphate can be reused in RNA synthesis. PNPase: Polynucleotide phosphorylase; APE1:
Apurinic/apyrimidinic endonuclease 1. (B) The pathway of RNA repair has not been reported yet, but there are many studies speculating that it exists. Under the action of
some substances, the oxidative damage of RNA will be repaired to perform its normal function. (C) Oxidized RNA molecules can be labeled with specific binding
proteins. Once identified, oxidized RNA can be separated from normal RNA. Sequestration may help recruit repair/degradation activities that will eventually eliminate
oxidized RNA. The orange ovals indicate binding proteins. (D) 8-oxoGuo containing RNA can be generated by oxidizing RNA and a few can be synthesis by 8-oxo-GTP.
8-oxo-GTP can be generated by oxidation of GTP as well as by phosphorylation of 8-oxo-GDP by NDK. 8-oxo-GDP can be generated by oxidation of GDP as well as by
phosphorylation of 8-oxo-GMPbyGK.MTH1,MTH2,MTH3 could hydrolyze 8-oxo-GDP and 8-oxo-GTP to 8-oxo-GMP. NUDT5, NUDT15, NUDT18 could hydrolyze 8-
oxo-GDP to 8-oxo-GMP. GK: Guanylate kinase; NDK, nucleotide diphosphate kinase; MTH1, MutT homologue 1; MTH2, MutT homologue 2; MTH3, MutT homologue
3; NUDT5, Nudix type 5; NUDT15, Nudix type 15; NUDT18, Nudix type 18. OS, oxidized stress; The red blot in the 8-oxoG containing RNA indicates the oxidized
nucleotide. Blue lines represent RNA molecules. Red “X” represents oxidized residues in RNA.
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MTH2, and MTH3 can hydrolyze 8-oxo-GDP or 8-oxo-GTP to
8-oxo-GMP (Hayakawa et al., 1999; Ishibashi et al., 2005; Takagi
et al., 2012). Nudix type 5 (NUDT5), NUDT15, NUDT18 can
hydrolyze 8-oxo-GDP to 8-oxo-GMP (Ishibashi et al., 2005).
And GK could also block the phosphorylation of 8-oxo-GMP to
8-oxo-GDP (Li et al., 2014).

RNA OXIDATION AND T2D

Many studies reported that T2D is associated with 8-oxoGuo.
The first research about the relationship of RNA oxidation
marker 8-oxoGuo and T2D was reported in 2011. Broedbaek
and his colleagues analyzed approximately fourteen hundred
diagnosed T2D patients and found that the level of 8-oxoGuo
was positively correlated with the mortality of patients
(Broedbaek et al., 2011). Moreover, Broedbaek confirmed
the association between 8-oxoGuo and the mortality of T2D
in the same cohort (Broedbaek et al., 2013). Besides, the levels
of 8-oxoGuo were independent of other risk factors. Those
findings suggest that the 8-oxoGuo could serve as a new
clinical biomarker in diabetes.

Later, some studies reported that high RNA oxidation is
associated with the risk of death in patients with all-cause,
cardiovascular and microalbuminuria in patients with T2D
(Kjær et al., 2017; Kjaer et al., 2018), and the imbalanced
redox system could be a molecular mechanism contributing to
the progression of T2D (Poulsen et al., 2019; Schöttker et al.,
2020). RNA oxidation occurs earlier than DNA oxidation and is
more closely associated with diabetic nephropathy. 8-oxoGuo
may represent a new and easily detectable biomarker for diabetic
nephropathy (Poulsen et al., 2019; Schöttker et al., 2020).
Interestingly, this association of 8-oxoGuo in T2D was weak
in younger patients, likely due to the higher tolerance to oxidative
stress in youth (Schöttker et al., 2020).

The etiology of T2D is complicated. Currently, the main drugs
include glipizide, biguanide, thiazolidinedione, and other oral
drugs, as well as insulin and insulin-like injection preparations,
were reported to decrease the level of oxidation. Long-term
clinical follow-up studies have found that taking anti-
hypertensive drugs such as losartan, valsrtan, and olmesartan
could reduce DNA oxidation markers compared with the placebo
(Kuboki et al., 2007; Ogawa et al., 2009; Nakamura et al., 2013;
Pan et al., 2015).

Interestingly, in the therapeutic aspect of RNA oxidation,
Broedbaek and his colleagues found that the usage of lipid-
lowering drugs was associated with lower RNA oxidation,
which could be the potential therapeutic drugs (Broedbaek
et al., 2011). Another study reported that in T2D patients, a
decrease of 8-oxoGuo was observed after treatment with
sevelamer, and the inflammatory factors IL-2 and IL-6 also
tended to decrease (Brønden et al., 2020). Biguanides and
sulfonylureas have been used to lower blood sugar, like
metformin, glimepiride, pioglitazone and dapagliflozin. In
clinical studies, hypoglycemic drugs can reduce the level of
oxidation in vivo while lowering blood glucose (Sova et al.,
2013; Wang et al., 2013; Shigiyama et al., 2017).

Environmental factors are also important influencing factors
for oxidation of organisms. Previous studies have found that
Mediterranean diet and carbohydrate-reduced high-protein
dietary intervention can also reduce the level of oxidation in
the body (Gutierrez-Mariscal et al., 2012; Skytte et al., 2020).
Consumption of Green tea catechin, watermelon powder, and
supplementation of paricalcitol and L-arginine also reduced
oxidative damage levels (Oyama et al., 2010; Glenn et al.,
2018; Fan et al., 2019). Although exercise can increase the
body’s energy metabolism, produce more potential oxidation
factors. Clinical and animal experiments have shown that
physical exercise can increase the activity of antioxidant
enzymes in cells and improve oxidative resistance (Radak
et al., 2007; Tweedie et al., 2011; Villaño et al., 2015; Franzke
et al., 2018; Larsen et al., 2020).

As we all know, T2D can cause many complications, and the
mortality rate of cardiovascular disease is very high. Shokri
suggested that increasing PON1 expression can reduce plasma
oxidized-LDL level, reduce the ability of macrophages to absorb
oxidized-LDL, and reduce cardiovascular complications in T2D
patients. Therefore, the strategy of raising or restoring PON1 level
is useful for reducing or preventing cardiovascular complications
(Shokri et al., 2020).

CONCLUSION

Oxidative stress has been advocated as an essential pathological
factor for many diseases, especially in aging and
neurodegenerative disorders. As noted above that pancreatic
islets and pancreatic B cells have a high metabolic reaction
and a low expression of antioxidant substances, so they are
vulnerable to oxidative free radicals (Shah et al., 2007). As
noted above that the oxidative stress in pancreatic B cells
could reduce insulin synthesis, even make the cell prone to
apoptosis (Keane et al., 2015; Poulsen et al., 2019).
Furthermore, oxidative stress can lead to insulin resistance by
disturbing the insulin receptor signaling pathway. Some
researchers reported that oxidative stress can activate the
proinflammatory signaling pathways of NF-kB and c-Jun
N-terminal protein kinase, which can cause serine
hyperphosphorylation in insulin receptor substrates (such as
IRS1 and IRS2) (Evans et al., 2005; Shah et al., 2007; Xie
et al., 2019). This may also suppress the function of GLUT-4
(Hurrle and Hsu, 2017).

Watson proposed T2D as a redox disease (Watson, 2014). In
the redox research, DNA oxidation has been attracted more
attention in the past few decades whereas a less focus on RNA
oxidation. However, RNA oxidation has become the focus of
current research because of its role in many diseases. RNA are
more susceptible to oxidation than DNA (Hofer et al., 2006),
which may be inferred from the following observations. First, its
single-stranded nature and widely distributed around the
mitochondria that produce reactive oxygen species, making it
vulnerable to free radical (Hofer et al., 2006; Nunomura et al.,
2012; Poulsen et al., 2012). Second, the repair mechanism of RNA
activity is not fully understood, degradation and elimination are
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the main ways that are coping with RNA oxidative damage.
Third, DNA is protected by proteins such as histones, and few
proteins bind to RNA (Hofer et al., 2006; Nunomura et al., 2012;
Poulsen et al., 2012).

8-oxoGuo is one of the products of RNA oxidation, so the
actual oxidation levels in the body would be higher than
measured. In the previous studies, 8-oxoGuo has the potential
role of diagnostic detection, prognosis, and treatment target.
Although there is strong evidence that oxidative stress has
pathophysiological effects and the antioxidant effects of existing
diabetes-related treatments have been proposed, however, the
clinical outcomes of antioxidant trials have been disappointing.
Many drugs cannot cure T2D fundamentally, they can only relieve
symptoms. Recently studies have found some drugs can reduce the
oxidation of T2D and reduce the incidence of complications, but its
mechanism is unclear and further studies are still required to
determine causality in T2D patients. Increasing intracellular
antioxidant defense and controlling the production of free
radicals may be helpful to the treatment of T2D, like
developing the new compounds that inhibiting the reactive
oxygen-producing enzymes. In this review, we summarize the

consequences and cellular handling mechanisms of the oxidative
RNA damage that may provide new insights to the pathogenesis of
T2D and lead to a better therapeutic strategy.
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