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Abstract

The Ising model does not have strictly defined dynamics, only a spectrum. There are differ-

ent ways to equip it with time dependence, e.g., the Glauber or the Kawasaki dynamics,

which are both stochastic, but it means there is a master equation that can also describe

their dynamics. These equations can be derived from the Redfield equation, where the spin

system is weakly coupled to a bosonic bath. In this paper, we investigate the temperature

dependence of the relaxation time of a Glauber-type master equation, especially in the case

of the fully connected, uniform Ising model. The finite-size effects were analyzed with a

reduced master equation and the thermodynamic limit with a time-dependent mean field

equation.

1 Introduction

Spin models are versatile because they are simple, yet able to demonstrate fundamental phe-

nomena, like phase transition [1–3]. The spin models originated from solid state physics,

where the interaction between the electron spins can be due to direct exchange [4], indirect

exchange [5], superexchange [6] or double exchange [7], but many other complex physical sys-

tems can be modelled using a simple Ising or Heisenberg model, like nuclear spins [8, 9], and

even social situations [10]. It is also important in modern applied physics since one branch of

adiabatic quantum computers—e.g. the D-Wave system [11]—are based on finding the global

minimum of an artificial spin system [12, 13].

The Ising model is defined via its energy or, in the quantum case, where it is called Heisen-

berg model via its Hamiltonian operator. All the equilibrium properties can be determined

from these quantities, e.g. heat capacity, magnetic moment, susceptibility etc., since they can

be derived from the partition function. On the other hand to calculate inequilibrium proper-

ties like the relaxation time, we need to know the dynamical equation of the system.

The Ising model does not have a natural dynamics, and although to the Heisenberg model

we can associate the Schrödinger or the Heisenberg equation, it will only generate a unitary

time evolution. Therefore it cannot be responsible for a final, thermal distribution. For this we

need some interaction with the surrounding environment.
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Close to thermal equilibrium it is often assumed, that the dynamics is driven by the gradient

of a mean field free energy, since at equilibrium it must be zero [14–17]. This phenomenologi-

cal approach can account for some dynamical critical behaviour, like the dynamical slowing

down, but like every mean field approximation it is valid only if the fluctuations are small. For

example in one dimension a master equation gives a better description [18].

A more fundamental approach is to derive the effective dynamical equations from a sys-

tem-plus-bath model, where the bath is a thermal reservoir. This method let us track how the

parameters of the macroscopic equation depends on microscopic properties. To describe such

a system we must use the tools of open quantum systems [19, 20] like the Redfield [21] and the

Lindblad equation [22]. These equations have countless applications in quantum biology [23,

24], quantum optics [19], cold atomic gases [25], chemical physics [26] as well as it also being

relevant in quantum computing [27–29].

In solid matter the interaction with the phonons is always present and the electrons, as

charged particles are coupled to the photons, thus we can assume that the spin system is in a

bosonic bath. Quantum dissipation and relaxation of spin systems in a bosonic bath as well as

in magnetic field have been investigated by many authors. [30–33].

In this paper the interaction between an adiabatic computer and its environment is meant

to be small, so the weak coupling Lindblad equation is be used, but of course, there are

improved methods to describe open quantum systems, like slippage initial condition [34, 35],

the Nakajima-Zwanzig equation [36, 37] or the polaron transformation [38].

The structure of this paper is the following. In section 2 we briefly summarize the derivation

of a Glauber-type master equation [39] based on the Redfield equation. Using this microscopic

approach we can see how the Fourier transform of the bath correlation function appears in the

final master equation. In section 3 we investigate the temperature dependence of the eigenval-

ues of the transition matrix because they contain relevant information on the time scales of the

system, e.g., the relaxation time. We also give an upper bound to the smallest nonzero eigen-

value. In section 4 the dynamics of the uniform, fully connected Ising model is investigated,

and we show that the relaxation time diverges in the thermodynamic limit as the temperature

approaches the critical temperature. In section 5 a time dependent mean field equation is revis-

ited, which is used in section 6 to extend the previous results to infinite sizes.

2 Master equation of quantum Ising system

In general if a system is connected to a bath, then its Hamiltonian operator is

Htot ¼ H þHB þ HI; ð1Þ

where H acts only on the system of interest, HB only on the bath, and HI is the interaction

between the two subsystems, it can be written as HI = ∑α Aα� Bα, where Aα and Bα are system

and bath operators respectively. The dynamics of the total system is described by the von Neu-

mann equation.

rtot ¼ � i½Htot; rtot� ð2Þ

After the Born and the Markov approximation an effective equation can be derived for the

density operator of the system of interest. (r≔TrBrtot).

_rðtÞ þ i½H; rðtÞ� ¼
X

a

ðAarðtÞT
y

a
� AaTarðtÞ þ h:c:Þ; ð3Þ

where Ta ¼
P

b

R1
0
dtCabðtÞAIbð� tÞ, A

I
b
ðtÞ is in interaction picture, CabðtÞ ¼ hBIaðtÞBbiB is the

bath correlation function, and h.c means hermitian conjugate. This is the Redfield equation in
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weak-coupling limit [21]. The Born approximation is valid if the interaction between the sys-

tem and the bath is small, and we can use the Markov approximation if the relaxation time of

the system of interest is much larger than the decaying time of the bath correlation function.

After the so called secular or rotating wave approximation [40] one can get to the Lindblad

equation [19, 22]:

_r þ i H þ HLS; r½ � ¼
X

ab

X

o

gabðoÞðAbðoÞrA
y

a
ðoÞ �

1

2
fAy

a
ðoÞAbðoÞ; rgÞ; ð4Þ

where AaðoÞ ¼
P

ijjiihijAajjihjjdo;εj � εi
and |ii is the eigenvector of H with eigenvalue εi. HLS is

the Lamb shift Hamiltonian, and γαβ(ω) is the Fourier transform of the bath correlation func-

tion.

gabðoÞ≔
Z 1

� 1

dteiothBy
a
ðtÞBbð0ÞiB ð5Þ

There are two standard bosonic baths: the bath of phonons and the bath of photons. For pho-

nons gohmðoÞ � e�
joj
oc o

1� e� bo, which is called Ohmic case and for photons gsupðoÞ �
o3

1� e� bo, which

is a super-Ohmic case. The frequency ωc is the cutoff frequency. If we assume, that ωc is large

compared to the energy distances of the system, then e�
o
joc j � 1. Fig 1 shows the main features

of the two γ functions. The main difference is that γohm is strictly increasing and γohm(ω = 0)

* kBT, but γsup is non-monotonic, and γsup(0) = 0. In the easiest case γαβ/ δαβ.

The advantage of the weak-coupling limit is that a master equation can be derived for the

diagonal elements of ρ.

_Pi ¼
X

j

MijPj �
X

j

WijPj �
X

j

WjiPi; ð6Þ

where Pi = ρii, Wij = ∑αβ γαβ(ωji)(Aα)ji(Aβ)ij and ωji = (εj − εi).
The system converges to the Boltzmann distribution if Wij satisfies the detailed balance con-

dition i.e., Wij = Wji exp(−β(εi − εj)). Both the Ohmic and the super-Ohmic bath satisfy it,

Fig 1. Fourier transform of the bath correlation function. β1 < β2 < β3. a) Ohmic bath. The γ function is monotonic, and γ(ω = 0) is finite. b) Super-

Ohmic bath. The γ function is nonmonotonic, and γ(ω = 0) = 0.

https://doi.org/10.1371/journal.pone.0264412.g001
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because

gð� oÞ ¼ e� bogðoÞ ð7Þ

If the system of interest is the Ising model, then a master equation can be derived

[41], which contains only the diagonal elements of the density matrix. The Hamiltonian

is

H ¼ �
X

ij
ði<jÞ

Jijs
z
is

z
j �
X

i

his
z
i ;

ð8Þ

where szi is the Pauli z-matrix and the corresponding eigenvectors are

jS i � jS1; S2; . . . ; SNi Si 2 f�1g ð9Þ

with eigenenergies

ES ¼ �
X

ij
ði<jÞ

JijSiSj �
X

i

hiSi ð10Þ

The easiest way to couple the system to the bath is via a Pauli matrix i.e., Aa ! sxi . Using σz in

the interaction instead of σx would not give any relevant dynamics since the system and the

interaction Hamiltonians would commute. The peculiarity of this system is that the popula-

tions decouple even without the secular approximation.

The sxi operator acting on |Si only flips the ith spin, so the WSS0 matrix element is

WS S0 ¼
X

i

gðoS0SÞðs
x
i ÞS0Sðs

x
i ÞS S0 ¼

gðoS0SÞ j if the Hamming distance

between S and S0 is 1

0 j otherwise:

8
>>>>><

>>>>>:

ð11Þ

With Eqs (6) and (11) we have a dynamics for the Ising model.

_PS ¼
X

S0
MS S0PS0 ; ð12Þ

where MS S0 ¼WS S0 � dS S0
P

S00WS00S0 is the transition matrix. This matrix is temperature

dependent, and it has at least one zero eigenvalue, which is the eigenvalue of the equilibrium

distribution:

PeqS ¼
e� bES

Z
ð13Þ

For constant temperature the general solution of (12) is

PS ðtÞ ¼
X

S0

X

m

e� lmtPR
m;SP

L
m;S0PSðt ¼ 0Þ; ð14Þ

where PR
m
s are the right, and PL

m
s are the left eigenvectors of M with −λμ eigenvalues. All the λμs

are nonnegative. If the system is ergodic, then there is only one zero eigenvalue, and the other

λs are positive. Let the smallest positive be λmin and the largest be λmax. The relaxation time is

tr = 1/λmin. This is the time scale in which all but the equilibrium mode dies out. The other
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relevant time scale is 1/λmax, which is the characteristic time of the fastest mode. If, for exam-

ple, this spin system is a quantum computer, then the fastest mode is more important because

if the computation is slower than this time scale, then the environment is not negligible. In

other words, λmin is important if we want the system to relax thermally, and λmax is important

if we want to avoid any thermal influence.

3 Temperature dependence of the eigenvalues

Both the smallest and the largest eigenvalues carry relevant information, and since M(β) is

temperature dependent λmin(β) and λmax(β) are too.

At high temperatures we can determine the temperature dependence of all λs by simply

Taylor expanding γ(ω; β) for small β.

gðo; bÞ ¼ Z
oa

1 � e� bo
� Z

oa� 1

b
; ð15Þ

where α = 1 in the Ohmic, and α = 3 in the super-Ohmic case. The transition matrix inherits

this temperature dependence: MSS0(β) * β−1, and hence λ* β−1.

Despite the high-temperature limit, where the elements of the dynamical matrix M
diverges, in the low-temperature limit they converge.

lim
b!1

gðo; bÞ ¼

0 j o � 0

Zoa j o > 0

:

8
<

:
ð16Þ

It means all the eigenvalues also converge. As a consequence, we cannot slow down arbitrary

all the modes by reducing the temperature. We have an upper limit in time for quantum com-

puting. Of course, this calculation is valid only for a time-independent system, but the main

features apply to more general cases.

Without an external magnetic field (h = 0) at zero temperature, the equilibrium Boltzmann

distribution prefers only the two spin configurations with the lowest energies:

PeqS ðT ¼ 0Þ ¼
1

2
ðdS ;Sg þ dS;� SgÞ; ð17Þ

where Sg and −Sg are the ground states. At zero temperature, there is one more eigenvector

with a zero eigenvalue:

PRmin;S ¼
1

2
ðdS ;Sg � dS;� SgÞ ð18Þ

The question is how λmin(β) behaves at low temperature. We can give an upper bound. First let

us introduce the following symmetric matrix:

~MS S0 ¼ MS S0

ffiffiffiffiffiffi
PeqS0
PeqS

s

� MS S0e� b
ES0 � ES

2 ð19Þ

This transformation doesn’t affect the eigenvalues, and the eigenvectors transform like

~PmS ¼
PR
m;S
ffiffiffiffiffiffi
PeqS

q : ð20Þ

Since ~M is symmetric its right and left eigenvectors are the same, and now the variational

PLOS ONE Relaxation of the Ising spin system coupled to a bosonic bath and the time dependent mean field equation

PLOS ONE | https://doi.org/10.1371/journal.pone.0264412 February 28, 2022 5 / 15

https://doi.org/10.1371/journal.pone.0264412


method applies to it:

lmin � �
X

S ;S0

~PS
~MS S0

~PS0 ; ð21Þ

where ~P is an arbitrary vector with
P

S
~P2

S ¼ 1, and it must be perpendicular to the equilib-

rium vector (~PeqS �
ffiffiffiffiffiffi
PeqS

q
), because λmin is the second smallest eigenvalue of ~M . Let

~P ¼ 1ffiffi
2
p ðdS Sg � dS � SgÞ. Then according to (21)

lmin � �
1

2
ð ~MSg ;Sg

� ~MSg ;� Sg
� ~M � Sg ;Sg

þ ~M � Sg ;� Sg
Þ

¼ � ~MSg ;Sg
¼ � MSg ;Sg

¼
X

S

WS;Sg

¼
X

S
dðS;SgÞ¼1

gðoSg ;S
; bÞ;

ð22Þ

where d(S, Sg) is the Hamming distance, and the S 7! −S symmetry was used. In the bosonic

bath

lminðbÞ �
X

S
dðS;SgÞ¼1

ZðDESÞ
a 1

ebDES � 1
;

ð23Þ

where DES≔ES � ESg > 0. At low temperatures this is the sum of some e� bDES functions, so

λmin(β) can be estimated from above with an exponential function.

Fig 2 shows λmin(β), λmax(β) and � MSg;Sg (the upper bound) for a 4 × 4, ferromagnetic, 2D

Ising model with Ohmic bath. The dashed vertical line marks the critical temperature

(bcJ ¼
lnð1þ

ffiffi
2
p
Þ

2
� 0:44). The left figure is in log-log scale, where we can see, that at low tempera-

ture the eigenvalues has a β−1 temperature dependence, and λmax(β) converges, and the right

figure with lin-log scale shows, that λmin(β) goes to zero exponentially.

Fig 2. Temperature dependence of λmin, λmax and MSg;Sg. The system is the 2D, ferromagnetic, 4 × 4 Ising model, with Ohmic bath, where J = 1 and η = 1. a) log-

log scale: At high-temperature all the eigenvalues have the λ/ β−1 temperature dependence. b) lin-log scale: At low-temperature λmin decreases exponentially.

https://doi.org/10.1371/journal.pone.0264412.g002
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4 Eigenvalues of the uniform Ising model

The M matrices are 2N × 2N large; therefore, we cannot see how the eigenvalues behave at the

thermodynamic limit. However, the uniform, fully connected Ising model is so symmetric that

an effective equation can be derived with the same relaxation time as the original equation.

The energy of the model is

ES ¼ �
J
N

XN

i;j¼1

ði>jÞ

SiSj: ð24Þ

The 1/N factor is to keep the energy extensive and J> 0. Given an S microstate, it consists of

N" spins with Si = 1 and N# spins with Si = −1. The number of spins is constant, i.e., N" + N# =

N = fix. The energy of such a configuration is

ES ¼ �
J
N

N"ðN" � 1Þ

2
þ
N#ðN# � 1Þ

2
� N"N#

� �

; ð25Þ

If N is fixed, then the energy is the function of only N". The symmetry of the system is that we

can permute the spins in any way, the energy and the M matrix remains the same. If in the

dynamics the initial condition also has this symmetry, then the PS will inherit this property.

The slowest mode propagates between the two deepest valleys of the energy landscape, which

are the " " . . ." and ## . . .#. Assume that initially P##. . .#(t = 0) = 1, and we want to determine

relaxation time, where P##. . .#(tr)� P" ". . ."(tr). Since both the equations and the initial condi-

tion have the permutation symmetry all the probabilities, which have the same up spin have

the same value, e.g. for 3 spins P"##(t) = P#"#(t) = P##"(t) 8t. The probability can only flow

between spin configurations if the Hamming distance between them is 1. Let us introduce the

following probabilities:

PN"
¼
X

S

0

PS ¼
N
N"

 !

P "..."
|{z}
N"

#...#
|{z}
N� N"

; ð26Þ

where the prime denotes that only such configurations count where there are N" up spin. We

can give a closed set of differential equations which only contain these new PN"
probabilities.

_PN"
¼ ðN � N" þ 1ÞWN" ;N"� 1PN"� 1

þðN" þ 1ÞWN" ;N"þ1PN"þ1

� ðN"WN"� 1;N"
þ ðN � N"ÞWN"þ1;N"

ÞPN"
;

ð27Þ

where

WN" ;N"þ1 ¼ gðEN"þ1 � EN"
Þ ¼ g �

2

N
ð2N" � N þ 1Þ

� �

: ð28Þ

This master equation has only N + 1 variables instead of 2N, thus is easy to simulate for large

systems. A comparison between the quantum and the thermal simulated annealing of the fully

connected Ising model was investigated by Wauters et al. using a similarly reduced master
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equation [42]. Eq (27) has the form

_PN"
¼
XN

N0
"
¼0

Mred
N" ;N0"

PN0
"
; ð29Þ

and we want to determine the lowest (nonzero) eigenvalue of Mred, which is the same as the

lowest (nonzero) eigenvalue of M. The matrix Mred is sparse, because it is a tridiagonal matrix,

i.e., only the main diagonal, the first diagonal below and above the main diagonal are nonzero.

Fig 3a shows the temperature dependence of λmin for different system sizes. As N increases we

can see, that around the critical temperature (which is βcJ = 1) the behaviour of the system

changes. At Fig 3b we can see better that above the critical temperature (T> Tc) for large N
values λmin converges, meaning for every system size there is a finite relaxation time. At the

critical temperature (T = Tc), it follows a power law (λmin/ N−0.5). Below the critical tempera-

ture (T< Tc) λmin goes to 0 for large N, but doesn’t follow a power law. This behaviour is the

famous critical slowing down phenomenon.

From the N!1 thermodynamic limit we can determine the dynamical critical exponent.

Fig 4 shows λmin(T, N!1) as a function of the reduced temperature (
T� Tc
Tc

). This follows an

easy power law, because λmin/ T − Tc. In the next section we will see that this result can be

obtained from the mean field approximation.

5 Time dependent mean field equation

Since the primary interest is the magnetization (mi≔ hSii), we would like to derive a differen-

tial equation for it. Penrose showed that with some approximations, this is possible [43], and

as the number of neighbors increases, this becomes more and more accurate.

Using the definition of mi and the master equation we get

_mi ¼
X

S

_PSSi ¼
X

S S0
WS S0PS0Si �

X

S S0
WS0SPSS

0

i

¼
X

S0S

WS0SPSðS
0

i � SiÞ
ð30Þ

Fig 3. Smallest eigenvalue of Mred of the fully connected, uniform Ising model. The parameters of the system are J = 1 and η = 1. a) λmin as a function

of the inverse temperature for different system sizes. b) λmin as a function of the system size for different temperatures. Above the critical temperature

the curves converge, the relaxation time is finite in the thermodynamic limit. Below the critical temperature the relaxation time diverges.

https://doi.org/10.1371/journal.pone.0264412.g003
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The WS0S matrix component is nonzero if the Hamming distance between S0 and S is one.

Introducing

LiðS; nÞ ¼
Si j i 6¼ n

� Si j i ¼ n

8
<

:
ð31Þ

we can rewrite the double sum in (30).

_mi ¼
X

S

XN

n¼1

WLðS ;nÞ;S PSðLiðS; nÞ � SiÞ

¼
X

S

WLðS ;iÞ;S PSð� 2SiÞ ¼ � 2hWLðS ;iÞ;SSii
ð32Þ

In the second step the (Λi(S, n) − Si) = 2Si δin identity was used. The nonzero elements of W
are a function of the energy difference:

WLðS ;iÞ;S ¼ gðES � ELðS ;iÞÞ

� gð� 2~hiSiÞ;
ð33Þ

where ~hi ¼
P

jJijSj þ hi, so this is still the function of the S random variable, but because Jii = 0

it is not a function of Si. Since Si can be only 1 or −1 the gð� 2~hiSiÞ as a function of Si must have

the

gð� 2~hiSiÞ �
gð� 2~hiÞ þ gð2

~hiÞ

2
þ
gð� 2~hiÞ � gð2

~hiÞ

2
Si ð34Þ

Fig 4. Critical behaviour of the fully connected Ising model above Tc.

https://doi.org/10.1371/journal.pone.0264412.g004
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form. Using (7) yields

gð� 2~hiSiÞ ¼ gð2~hiÞ
e� 2b~hi þ 1

2
þ
e� 2b~hi � 1

2
Si

" #

¼ gð2~hiÞ
e� 2b~hi þ 1

2
1 � tanhðb~hiÞSi
h i

;

ð35Þ

then substituting back to (32) gives

_mi ¼ � hgð2
~hiÞðe� 2b~hi þ 1ÞðSi � tanhðb~hiÞÞi: ð36Þ

Eq (36) is similar to the Callen equation [44, 45]ðhSii ¼ htanhðb~hiÞiÞ, where the averaging is

outside the hyperbolic function. In order to get a closed equation for the expected values, the

average must move inside, and instead of the Si random variables, their mi expected values

must be written.

_mi ¼ � g 2ðSjJijmj þ hiÞ
� �

1þ e� 2bð
P

j
JijmjþhiÞ

� �

� mi � tanhðbðSjJijmj þ hiÞÞ
� � ð37Þ

This mean field approximation is valid as long as the fluctuations are small, which holds if

every spin interacts with many other spins. This can be due to long range interaction or in

high spatial dimensions [46]. The right-hand side of Eq (37) contains the self-consistent equa-

tion from the equilibrium statistical physics; hence if the equation of state is satisfied, then

_mi ¼ 0.

Eq (37) contains both the real-time and the temperature of the bath. The temperature can

also be time-dependent, and in that case, we could get thermal annealing, but if the tempera-

ture is constant, we can determine the relaxation time and the dynamical critical exponent. If

m(t) = meq + δm(t), where meq is the equilibrium solution and δm(t) is small, then the linear-

ized equation of (37) is

d _mi ¼ � biðmeqÞ
X

j

(

dij �
bJij

cosh2
ðb
P

kJikm
eq
k þ hiÞ

 !

dmjg ; ð38Þ

where

biðmeqÞ ¼ gð2ðSjJijm
eq
j þ hiÞÞð1þ e

� 2bð
P

j
Jijm

eq
j þhiÞÞ: ð39Þ

Using the 1

cosh2ðxÞ � 1 � tanh2
ðxÞ identity, and the equation of state we get to

d _mi ¼ � biðmeqÞ
X

j

fðdij � bJijð1 � ðm
eq
j Þ

2
ÞÞdmjg: ð40Þ

Eq (40) contains the inverse susceptibility of the mean field Ising model.

w� 1
ij ≔

@
2FMFA

@mi@mj
¼ � Jij þ

Tdij
1 � m2

i

; ð41Þ
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where

FMFAðm; h;TÞ ¼ �
1

2

X

ij

Jijmimj �
X

i

himj

þT
X

i

1þmi

2
ln

1þmi

2

� �

þ
1 � mi

2
ln

1 � mi

2

� �� �

:

ð42Þ

Substituting the inverse susceptibility back into (40) yields

d _mi ¼ � biðmeqÞbð1 � ðm
eq
i Þ

2
Þ
X

j

w� 1

ij dmj � � Gi

X

j

w� 1

ij dmj: ð43Þ

This is a well-known equation in the theory of dynamical critical phenomena [47], but it is

usually derived from the _m ¼ � G@mFMFA phenomenological equation. Now we can see, how

it is related to a master equation and the spin-boson model. If the system is symmetric in a

sense, that all the spins behave the same, then (43) simplifies to

d _m ¼ � Gw� 1dm; ð44Þ

where w� 1 ¼
P

jw
� 1
ij .

6 Time dependent mean field equation for the uniform Ising model

As before in section 4 the uniform Ising model will be studied because in the equilibrium case

in the thermodynamic limit, it gives back the exact results. According to (42) the mean field

free energy is

FMFAðm; h;TÞ
N

¼ �
1

2
Jm2 � hmþ T

1þm
2
ln

1þm
2

� �

þ
1 � m

2
ln

1 � m
2

� �� �

; ð45Þ

and the time dependent mean field equation is

_m ¼ � gð2ðJmþ hÞÞð1þ e� 2bðJmþhÞÞ � ðm � tanhðbðJmþ hÞÞÞ: ð46Þ

If h = 0 the critical temperature is Tc = J, and above this temperature the equilibrium solution

is meq = 0. The inverse susceptibility is

w� 1 ¼ � J þ T � T � Tc; ð47Þ

therefore

lmin ¼ GðT � TcÞ; ð48Þ

where Γ = 2γohm(0; β)β = 2η in the Ohmic bath. In the super-Ohmic bath, this is zero because

γsup(0) = 0, i.e., there is no transition between states with the same energy. In a real physical

system it means that besides the Glauber dynamics some other effects are not negligible, e.g. 2

spin flips. Eq (48) is the same result that we have already seen in Fig 4. As in equilibrium statis-

tical physics, the mean field approximation gives back the exact result for the uniform model

in the thermodynamic limit.

At the critical temperature the inverse susceptibility is zero, the linear term vanishes, and

we need the higher order terms. Taylor expanding (46) at T = Tc around m = meq� 0 up to the

third order gives.

d _m ¼ �
2

3
ZJdm3 ð49Þ
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which has the

dmðtÞ / t� 1
2 ð50Þ

solution for large ts, which means there isn’t a characteristic time.

Below the critical temperature, the linearized equation is good again; only meq changes. On

the other hand Eq (46) can give a different solution from the (29) master equation. If we want

to compare these two equations, the initial condition must also be the same, which gives a

restriction to the initial condition of (29). In the mean field approximation, the probability is a

product of the one-particle probabilities:

PMFAS ¼
Y

i

1þmiSi
2

; ð51Þ

which means the initial probability of (29) is

PN"
ðt ¼ 0;mÞ ¼

N
N"

 !
1þm

2

� �N" 1 � m
2

� �N#

ð52Þ

If h = 0, then the master equation must converge to the m = 0 solution, but the time-dependent

mean field equation finds one of the minima of the free energy if initially m 6¼ 0. If h is finite

and m is in the valley of the global minimum (point A in Fig 5), then in the N!1 limit the

solution of the master equation converges to the mean field solution (Fig 6).

On the other hand, if initially, m is in the valley of the local minimum (point B in Fig 5),

then the solution of the mean field equation converges to this local minimum, but the solutions

Fig 5. Free energy of the uniform Ising model with finite external magnetic field.

https://doi.org/10.1371/journal.pone.0264412.g005
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of the master equation are different. The probabilities converge to the equilibrium

PeqN" ðh;NÞ /
N
N"

 !

e� bEN" ðh;NÞ ð53Þ

distribution, so they tend to approach meq for large N values in the t!1 limit, but as N
grows, so does the relaxation time. In the thermodynamic limit the relaxation time diverges as

in Fig 3. In the N!1 limit the solution of the master equation converges to the solution of

the mean field equation and none of them will approach the global minimum, because the

relaxation time will be infinite.

7 Conclusion

In this work, we have studied a Glauber-type master equation derived from the spin-boson

model. The most relevant dynamical properties are encoded in the eigenvalues of the transi-

tion matrix of the master equation. They are temperature dependent and behave significantly

differently below, above, and at the critical temperature as a function of the system size. In the

case of the uniform, fully connected Ising model, in the thermodynamic limit, above the criti-

cal temperature the relaxation time follows a power law: tr/ (T − Tc)−1.

Using the time-dependent mean field equation, we could also investigate the thermody-

namic limit. Its dynamics differ significantly from the finite size master equation if the initial

condition is close to a local minimum of the free energy, which means that the relaxation time

diverges. If it is close to the global minimum, then the solution of the finite size master equa-

tion converges to the solution of the time-dependent mean field equation.
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