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mimic the in vivo developmental process require some basic knowledge 
of female germ cell biology. In this review, we first examined what we 
have learned from in vivo studies and compared them to the progress 
made by using in vitro systems.

Primordial germ cell development
Primordial germ cells are the embryonic precursors of the gametes.8,9 
These cells are first identified in the proximal epiblast around the 
third week of human gestation.8 Then, the PGC population gradually 
proliferates during PGC migration to gonadal ridges at 4–5 weeks.10,11 
The transition of PGCs into gonocytes starts at 8 weeks of gestation, 
followed by sex-specific differentiation.12 In the female gonads, oogonia 
generally enter meiosis and remain quiescent in the first meiotic 
prophase during embryonic development around week 12, whereas in 
the male, spermatogonia arrest in G0/G1 of mitosis and do not enter 
meiosis until puberty.13–15

Primordial germ cells specification
Several studies have proposed the extragonadal location of PGCs in 
human embryos.8,16,17 Despite the first observations on the extragonadal 
location of PGCs, the exact mechanisms of signal interaction that 
controls the specification of PGCs in human is poorly understood. The 
mechanisms underlying PGC specification in mammals are relatively 
conserved.18–21 Evidence from mice studies has demonstrated that 
bone morphogenetic protein 4  (BMP4) and BMP8b released from 
the extraembryonic ectoderm and BMP2 from the proximal visceral 
endoderm induce the formation of nascent PGCs.21 Similar to these 
studies in mice, Childs et  al.20 demonstrated expression of genes 

INTRODUCTION
Although sperms and oocytes are derived from primordial germ 
cells  (PGCs) formed in human fetuses, the key steps of their 
developments differ considerably after the formation of spermatogonia 
and oogonia. Male germ cells are arrested at mitotic stage in the 
fetal testis until puberty. When spermatogonial stem cells start to 
differentiate and enter meiosis, the human testis can produce hundred 
millions of sperm daily. In contrast, female germ cells begin with an 
endowment of about 5 million oogonia and then proceed to meiosis in 
the fetal ovary. However, the female ovary only produces one mature 
oocyte per menstrual period, and the total number of oocytes ovulated 
is about 456 if an individual starts to ovulate at age 12 and menopause 
at age 50. Therefore, the depletion of oogonia has been thought to be 
caused by a lack of female germline stem cells (GSCs) in the adult ovary.

Our understanding of female germ cell biology is mostly 
extrapolated from model organisms such as mice. A human system 
will give us a more precise understanding of human female germ cell 
development since there are many differences between animal and 
human germ cells. In vitro production of germ cells from pluripotent 
stem cells, including human embryonic stem cells (hESCs) and induced 
pluripotent stem cells, has provided an unprecedented opportunity to 
explore the cellular and molecular mechanisms of human germ cell 
biology.1–7 Pluripotent stem cells are cells that can give rise to all three 
somatic lineages and the germ cell lineage. If these cells can be directed 
to differentiate into germ cell lineages, the process of germ cell biology 
can be studied from the early stages to the mature sperm or oocyte. On 
the other hand, developing and setting up an in vitro system that can 
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encoding BMP ligands with an increase in the expression of BMP2 
in the human fetal ovary. Human in vitro studies has also suggested 
that BMP4 along with BMP7 and BMP8b are necessary for human 
germ cell differentiation.18 WNT signaling is also involved in PGC 
specification.19 It has recently been reported that WNT3 and BMPs 
signaling pathway both contributed to activate BLIMP1 and PRDM14, 
which leads to the specification of PGCs.22 The expression of these 
factors may indicate conserved roles in PGC specification. Consistent 
with the mouse studies, BLIMP1 is expressed in human fetal gonads 
and hESCs-derived germline cells.23,24 Recent work suggested that 
BLIMP1 is co-expressed with OCT4 in human PGC precursors, but 
not with the late germ cell marker, VASA.25 Additionally, BLIMP1 
may modulate the induction of germ cell specification by turning off 
SOX2 during early human development.23 These findings suggest that 
BLIMP1 might act in a molecular switch to regulate the germline fates 
determination during early human development.

Migration
Primordial germ cells exit from the wall of the hindgut to incorporate 
into the extracellular matrix (ECM) of the dorsal mesentery.26,27 These 
cells are able to move actively through the ECM substrates to reach 
the gonadal crest. Several hypotheses explaining PGC migration to 
the gonad have been suggested. Migratory PGCs seem to interact with 
mesenchymal cells through ECM molecules, such as glycosaminoglycan 
and fibronectin.26 These different types of proteoglycans may facilitate 
the migration of the PGCs. Chemoattractants, stem cell factor 
(SCF or c-Kit ligand) and stromal-derived factor-1, are also implicated 
in guiding PGCs to the gonad.28,29  Support for this hypothesis was 
provided by c-Kit receptor staining, which revealed that the receptor of 
c-Kit ligand is expressed in human PGCs.29 A recent study has shown 
that human PGCs move together with autonomic nerve fibers and 
Schwann cells, and it is proposed that these nerve fibers may support 
the PGC migration.30 During migration, human PGCs proliferate by 
mitotic divisions and they enter into a process of cell differentiation 
after colonization, and are known as oogonia and spermatogonia.31,32

Sex determination and transition from primordial germ cells to oogonia
Sex determination in humans is not well understood at the molecular 
level. Mammalian sex determination is dependent on genetic control 
primarily induced by the chromosomal set with the presence or absence 
of a particular gene on the Y chromosome, SRY.33 The malfunction of 
SRY is most likely responsible for some human XY disorders of sexual 
development.34–36 For example, the reduction of WT1, a potential regulator 
of SRY, is associated with XY sex reversal (a case of Frasier syndrome).36 
Mouse studies showed that the expression of SRY in the genital ridges 
initiates testis formation by directing precursors of supporting cells 
to Sertoli cells rather than granulosa cells.33,37,38 In addition, Foxl2 and 
Rspo1 seem to play important roles in female sex determination.39–41 In 
experimental models, both XX Rspo1−/− gonads and XX Foxl2−/− gonads 
are associated with female-to-male sex reversal.40–42 The regulation of 
germ cell proliferation is associated with forming of the functional 
unit of the ovary termed primordial follicle.43,44 Activin A, a member 
of the transforming growth factor-b family, has been shown to increase 
transiently the number of PGCs during the developmental period leading 
up to primordial follicle formation in human.44 Hereafter, oogonia in the 
primordial follicle generally enter prophase of the first meiotic division, 
while spermatogonia do not enter meiosis until puberty.45,46

In vitro induction of human primordial germ cells
Human embryonic stem-based systems that can recapitulate basic 
mechanisms of PGC specifications will provide a valuable platform 

to study human germ cell development.1,3,5–7 The in vitro cell culture 
system of differentiation also gives us new chances to test extrinsic 
factors essential during human germ cell development, including 
growth factors that may induce germ cell formation or specifications. 
Studies in mice have demonstrated that the formation and specification 
of the mouse PGC precursor population are dependent on BMP2, 
BMP4 and BMP8b.47–49 Additionally, mouse ESCs bearing BLIMP1 
and Stella transgenes were induced into PGC-like cells by BMP signals 
and underwent oogenesis in reconstituted ovaries.50 Using hESCs, 
researchers found that the signaling pathway of BMPs also functions 
to induce human PGCs. One study shows that BMP4, BMP7, BMP8b 
can promote PGC formation from hESCs in vitro.18 In other studies, 
stimulation with other factors such as fibroblast growth factor 2 (FGF2), 
SCF or WNT3A also can enrich the germ cell-like population.7,51,52

Induction of PGCs in differentiated hESCs opens the door to study 
human PGC in vitro, but it is necessary to isolate the PGC populations 
from a mixed population of different cell lineages. A reporter system, 
in which the promoter of a germ-cell specific gene, VASA (or DDX), is 
connected to a fluorescent protein, was constructed to accomplish this 
goal.3 Under BMP induction, about 5% of the differentiated population 
expressed green fluorescent protein (GFP) and also express other PGC 
markers. These in vitro derived human PGCs were hypomethylated 
and proliferated slowly on inactivated mouse embryonic fibroblasts. 
Using this system, the researchers determined the genetic requirement 
of PGC formation and found that human DAZL was required for PGC 
formation. Another study showed that ectopic expression of VASA 
in human ESCs promoted PGCs formation and progression through 
meiosis.53

Meiotic progression
From late primordial germ cells to initiation of meiosis
Two independent groups reported that retinoic acid  (RA) plays an 
important role in initiating meiosis in mice.54,55 RA, which is produced 
by the mesonephros of both sexes, may play a role in the initiation of 
meiosis.56 RA induces Stra8, the meiotic gatekeeper gene, in ovarian 
germ cells, while in the testicular germ cells this is prevented by 
the RA-degrading enzyme CYP26B1. However, a recent study with 
Raldh2−/− mice lacking RA activity has shown that Stra8 and meiosis 
markers, SYCP3 and gH2AX, were detectable in the fetal ovary.57 The 
authors suggested that CYP26B1 might inhibit the meiosis initiation 
by degrading an unknown inducer of Stra8 other than RA in the testis. 
Although meiosis seems to be a prerequisite event of folliculogenesis, 
a recent study in mice using Stra8 knockout mice indicated that the 
folliculogenesis can proceed in the absence of the meiosis initiation.58 
The principal mechanisms and potential inducers other than RA that 
govern meiotic initiation and folliculogenesis remain to be elucidated.

Only a few studies have reported meiotic initiation in human fetal 
gonad.32,46,59 In contrast to mice, the developmental stages of the germ 
cells in the human fetal ovary are much less synchronized. Recent 
findings in the fetal human gonad suggested that RA is a possible 
intrinsic factor involved in meiosis entry in the human ovary.46,59 
Subsequently, STRA8 was up-regulated in response to RA, followed 
by the induction of SYCP3 and DMC in the fetal human gonad. 
Surprisingly, the expression of CYP26B1 was not significantly different 
between ovaries and testes. This suggested that the role of CYP26B1 in 
the regulation of meiosis may not be the major mechanism of meiosis 
inhibition in the human fetal testis. One previous study investigated 
the expression pattern of DMRT1 in the human fetal ovaries.32 These 
results suggested that there is a transient up-regulation of DMRT1 in 
human fetal ovary prior to initiation of meiosis. Taken together, these 
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findings hint that the detailed mechanisms of meiosis in humans might 
be different from that previously described in mice.

Meiotic recombination
Once meiosis is initiated, meiotic recombination is promoted by 
meiosis-specific regulatory networks. Genes involved in the formation 
of a chromosomal scaffold and recombination, such as REC8, SPO11, 
DMC1, SYCP1, SYCP2, SYCP3, and MLH1 are essential for meiotic 
progression.32,60,61 During the first meiotic division, double-strand 
breaks (DSBs) in DNA can induce crossing over between homologous 
chromosomes, followed by the recruitment of meiotic-specific proteins 
to DSBs sites that are involved in meiotic recombination.62 PRDM9 
has recently been identified as the major determinant in specifying 
meiotic recombination hot spots in mouse and human.63,64 Further 
study showed that the variation in the zinc finger domain of PRDM9 
affects DSB loci distribution and outcomes of meiotic recombinations 
in human sperm.65 Zheng et al.66 analyzed the global functional network 
by integrating diverse genomic datasets to understand the meiotic 
initiation and progression in the human fetal ovary. The authors 
found that meiosis-specific genes are highly clustered with themselves 
compared to low clustering of meiosis-nonspecific genes. Interestingly, 
DAZL was identified as a novel meiotic-initiation gene in this study, 
in accordance with its role in mice. Very recently, DAZL and BOULE 
were found to show distinct spatio-temporal expression patterns during 
meiosis in human fetal ovaries, in contrast to their co-expression 
pattern in mouse fetal ovaries.67 Again, these recent studies found a 
common principal of meiotic progression in mouse and human ovary, 
but subtle differences were also significant.

In vitro induction of meiosis
Until date, a few studies reported successful in vitro induction of meiotic 
progression from undifferentiated human stem cells. Clark et  al.1 
observed an increase in transcriptional expression of meiotic makers 
when hESCs were induced to differentiate by fetal bovine serum, but 
failed to detect clear synaptonemal complex formation and MLH1 foci. 
Meiotic initiation marked by gH2AX and meiotic prophase indicated by 
elongated SYCP3 staining were detected in an independent study when 
DAZL, BOULE or DAZ was overexpressed in hESCs.3 Moreover, a small 
percentage of haploid spermatids could be isolated in the differentiated 
cultures, suggesting a completion of meiosis in the male cell lines. In 
the same study, about 20% of female hESCs were induced to enter into 
meiotic prophase, but no follicle-like cells was detected.

Folliculogenesis
The primary oocytes that are arrested at the prophase stage of the first 
meiotic division synthesize and accumulate RNAs and proteins for 
oocyte growth and maturation.68,69 Byskov et al. found that a group of 
sterols, termed meiosis activating sterols, were able to induce oocyte 
maturation in vitro.70,71 These sterols are most likely acting downstream 
of follicle-stimulating hormone (FSH) signaling pathway to induce oocyte 
maturation. In addition, communication between oocytes and their 
surrounding granulosa cells are crucial at all stages of folliculogenesis, both 
for oocyte maturation and for granulosa cells differentiation.72,73 Oogonial 
nests surrounded by somatic cells and those cells may have consequences 
for the activating cues in primordial follicle formation.44 Communication 
between oocyte and surrounding granulosa cells through autocrine, 
endocrine, and paracrine manners coordinate further development of 
ovarian follicle.74–76 Subsequently, primordial follicles are activated and 
further develop into primary follicle or more mature follicles.77

During the transitions from primordial to antral follicles, 
many molecular mechanisms must be tightly controlled in order to 

produce mature and functional oocytes.78–80 The phosphoinositide 
3 kinase  (PI3K)-protein kinase B  (Akt) signaling pathway leads to 
primordial follicle survival and growth, whereas PTEN is a negative 
regulator of the PI3K pathway.79,80 In a mouse model, a deficiency in 
NOBOX, an ovary-specific gene, leads to decreased expression of 
many major oocyte transcripts, such as OCT4, FGF8, Zar1, growth 
differentiation factor 9  (GDF9), Bmp15, and H1foo.69,81 Consistent 
with the mouse studies, misregulation of NOBOX is associated with 
premature ovarian failure (POF) in human.82 Thus, both PTEN/PI3K 
signaling pathway and NOBOX are crucial in the regulation of early 
oogenesis and folliculogenesis. Until date, only a few transcriptional 
factors, such as FIGLA and NOBOX, have been associated with oocyte 
development.83,84 It has been reported that TATA-binding protein 
2 (TBP2) is involved in mouse oocyte development.85,86 TBP2-deficient 
mice show a decreased number of secondary follicles and reveal an 
altered expression of GDF9, Bmp15, ZP3, and H1foo. Although the 
role of TBP2 has not yet been elucidated in human, enrichment of 
TBP2 in the ovary is conserved in vertebrates. Altogether, the above 
studies suggest a potential role for TBP2 in the human folliculogenesis.

Bidirectional communications of oocyte and granulosa cells
The bidirectional communication between oocytes and its surrounding 
somatic cells is essential for the differentiation and maturation 
of ovarian follicle compartments.72,73 The complex intraovarian 
mechanisms have been implicated in this process as ovarian paracrine 
or autocrine regulators. In particular, GDF9 and BMP15 are principal 
participants of follicular development and fertility.87–89 In humans, 
missense mutations in GDF9 and a point mutation in BMP15 have 
been associated with POF.89–91 Extensive studies of GDF9 and BMP15 
have been carried out in mutant animal models. GDF9-deficient mice 
exhibit growth arrest at the primary follicle stage similar to the human 
phenotype;92 in contrast, Bmp15 knockout mice are subfertile, but 
patients carrying mutations of BMP15 exhibit severe reproductive 
defects.89,93 The differences in mutants phenotype of mice versus 
phenotypes associated with human BMP15 mutations might be owing 
to specie-specific differences between monoovulatory human and 
polyovulatory mice.94 Granulosa cell proliferation and antral cavity 
accumulation within preantral follicles ultimately give rise to antral 
follicles. Unlike in earlier stages, growing follicles in their late stages 
express functional FSH and luteinizing hormone (LH) receptors which 
are able to respond to gonadotropins.95 The surge of gonadotropins, 
FSH and LH, initiate a cascade of events leading to follicular rupture 
and oocyte release.96

In vitro derivations of oocytes
Although in vitro derivation of human oocytes or follicles from stem 
cells is a much anticipated advance in human reproduction, there has 
been no successful report so far. Even in mouse studies, only a few 
studies have shown progress in deriving oocytes from mouse stem cells. 
The first exciting report was done by Hübner et al.97 in 2003, in which 
follicle-like aggregates were found in the suspension of a spontaneously 
differentiated culture. These aggregates expressed GDF9 mRNA 
transcript and estradiols. The isolated oocyte-like cells also expressed 
zona pellucida proteins ZP2 and ZP3; however, no offspring was 
reported in this study. The most recent report by Hayashi et al. showed 
the generation of fertilizable oocytes from PGC-like cells derived from 
mouse ES cells.50 This was achieved by isolating PGC-like cells induced 
from mouse epiblast stem cells, followed by their aggregation with 
fetal ovaries and transplantation into mouse ovarian bursa. Moreover, 
offspring were produced by in vitro fertilization of the derived oocytes. 
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Hence, the later report required an aggregation and transplantation 
step that would not be feasible if this were to be extended to human 
oocyte derivations.

Despite reported studies performed with human ES cells, human 
oocyte-like cells have a limited capability to generate mature and 
functional oocytes. For instance, Liu et al. suggested that pluripotent 
human amniotic fluid cells (HuAFCs) have the potential to differentiate 
into oocyte-like cells in vitro.98 Furthermore, the oocyte-like cells from 
HuAFCs express DMC1, SCP3, DAZL, ZP3 and GDF9. Many attempts 
need to be carried out to achieve in vitro derivations of functional 
oocyte or follicles.

Existence of female germline stem cells in adult ovary
Recently, the central dogma of female reproductive biology has been 
challenged by some surprising observations. Female GSCs exist in 
lower species, such as invertebrates, fish, and birds, and possess the 
capacity to provide a reservoir of oogonia to generate new oocytes 
in the adult ovaries;99,100 however, no GSCs have been found in the 
mammalian adult ovary. In 2004, Johnson et  al.101 concluded that 
female GSCs existed in the postnatal mammalian ovary and that 
this population can give rise to functional oocytes under certain 
conditions. A study was done in mice and is based on the morphological 
appearance and immunological detection of the germline-specific 
marker (mouse VASA homolog, also known as VASA homolog) to 
isolate a fraction of GSCs from dispersed ovaries. Follow-up studies 
documented rare mitotically active cells with germline characteristics 
in post-menopausal woman that spontaneously form oocyte-like cells 
in  vitro and in  vivo.102 Zou et  al.103 offered additional evidence for 
the existence of GSCs in the adult mammalian females, by allowing 
a retrovirus to carry the expression of GFP in female GSCs prior to 
transplantation. Another follow-up study showed that GFP-expressing 
oocytes were observed in chemo-ablated mice transplanted with 
female GSCs;104 and the authors concluded that the oocytes came from 
circulating GSCs from bone marrow. However, these results raised 
doubts and generated debates on whether the methods used to examine 
the existence of GSCs were reliable.105 Following these initial reports 
supporting the existence of GSCs in postnatal ovaries, many researchers 
attempted to verify the results but found opposite conclusions. First, 
Eggan et al.106 found no circulating ovulated oocytes from circulating 
cells of bone marrow by using the parabiotic mouse model approach.
Two other studies looking for mitotically active GSCs in mice also 
clearly showed that there are no postnatal GSCs in mouse ovaries.107,108 
Byskov et al. described that oogonia and some diplotene oocytes exists 
in the first-trimester human ovaries.109 In perinatal ovaries, a few 
oogonia, numerous diplotene oocytes, and follicles formation were 
observed. However, the researchers found no oogonia in postnatal 
human ovaries older than 2 years. Therefore, the existence of GSCs in 
postnatal ovary remains ambiguous.

FUTURE PERSPECTIVE
Studies of in vitro derived germ cells, using different methodologies, 
have made possible to delineate some functional signatures indicative 
of human female germ cell development.2,110–120 However, there 
are technical challenges to overcome and to develop in the in vitro 
differentiation system. For instance, the efficiency of derivation of 
PGCs from hESC and completion of meiosis are still relatively low 
in in vitro systems. Finally, somatic cells surrounding germ cells in 
gonads may be needed for in  vitro maturation of human gametes. 
Stepwise construction of an in vitro differentiation system consisting 
of germ cells and somatic cells may yield the most fruitful progress 

to mimic in vivo development of human germ cells. Indeed, a more 
detailed understanding of the mechanisms of human germ cell 
development and its interaction with the gonadal niche is central to 
develop more effective differentiation systems. Meanwhile, studies 
using model organisms such as mice and conventional studies of 
human reproductive biology may help us to build the in vitro system.
Even though the advance of in vitro systems for human reproduction 
is still limited, efforts to improve the efficiency should be continued 
because of the unprecedented opportunity we can explore to 
understand human germ cell biology, as well as for the therapeutic 
potential in regenerative medicine.
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