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The morpho/functional discrepancy  
in the cerebellar cortex: looks alone  
are deceptive
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In a recent report we demonstrated that stimulation of cerebellar mossy fibers synchronously 
activates Purkinje cells that are located directly above the site of stimulation. We found that 
the activated Purkinje cells are arranged in a radial patch on the cerebellar surface and that 
this organization is independent of the integrity of the inhibitory system. This arrangement of 
activity is counterintuitive. The anatomical structure with the extensive parallel fiber system 
implies that mossy fiber stimulation will activate Purkinje cells along a beam of parallel fibers. 
In this short review we highlight this discrepancy between anatomical structure and functional 
dynamics and suggest a plausible underlying mechanism.

Keywords: climbing fiber, mossy fiber, Purkinje cell, parallel fibers

IntroductIon
The cerebellum, with its extraordinarily stereotyped 
morphology, has been hailed as the epitome for 
morphology based neuronal circuit analysis. Indeed, 
the striking geometrical collimation between the 
isoplanar Purkinje cell dendrites and the beams of 
parallel fibers is nothing short of astonishing. The 
intuitive view emerging from this unusual geom-
etry is that mossy fibers that activate the parallel 
fiber system, will activate Purkinje cells sequentially, 
enabling the generation of accurate time intervals. 
This intuitive view has been the basis for theories 
of cerebellar function that will be reviewed below. 
In contrast, physiological evidence point to a radial 
organization of the mossy fiber input, i.e. patches 
of Purkinje cells are synchronously activated. This 
apparent discrepancy between anatomical structure 
and functional dynamics is the focus of this short 
review. We will briefly describe the cytoarchitecture 
of the cerebellar cortex and summarize morphologi-
cally inspired theories of cerebellar function. We will 
then focus on physiological evidence for the radial 
organization of the mossy fiber input and its func-
tional implications.

the cytoarchItecture  
of the cerebellar cortex
The cerebellar cortex is a continuous sheet of 
repeating neuronal networks elongated in the 
 rostro-caudal direction and folded in an accor-
dion like fashion into folia for space conserva-
tion reasons. Its cytological architecture has been 
extensively studied and is summarized in the 
seminal work of Palay and Chan-Palay (1974). 
The most striking architectural feature of the 
cerebellar cortex is the orthogonal organization 
of almost all its neuronal elements. Purkinje cells, 
molecular layer interneurons, and climbing fib-
ers are all oriented in parasagittal planes, while 
the parallel fibers are oriented in the medio-lat-
eral axis. The preservation of this architecture 
through vertebrate evolution suggests that it is 
of outmost importance, either functionally, or 
for packing efficiency. Classically, the cerebellar 
cortex is divided into three layers: the superficial 
molecular layer, the deep granule cell layer and 
between them a single cell deep Purkinje cell layer 
(Figure 1). The latter is composed of the somata 
of the principal elements of the cerebellar cortex: 
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the Purkinje cells (Figure 1, black). The axons 
of these strangely flat neurons, whose  dendrites 
are organized in parasagittal planes next to each 
other as pages in a book, are the sole output of 
the cerebellar cortex.

Two main types of input reach the cerebellar 
cortex: The mossy fibers and the climbing fibers. 
The numerous mossy fibers (Figure 1, brown) 
that originate in both lower and higher levels of 
the neuraxis innervate the granule cells (Figure 1, 
red). Granule cell axons ascend through the cer-
ebellar cortex and then bifurcate to form the 
parallel fiber system. These fibers run about 
5 mm (Brand et al., 1976; Harvey and Napper, 
1988; Mugnaini, 1983) along the medio-lateral 
axis of the cerebellar cortex forming en-passant 
excitatory connections with about 600 Purkinje 
cell dendrites (Harvey and Napper, 1988). About 
200,000 parallel fibers cross the dendritic field 
of every Purkinje cell, each establishing a single 
synaptic connection (Napper and Harvey, 1988). 
Climbing fibers (Figure 1, magenta) originate 
exclusively in the inferior olivary nucleus and 
terminate directly on Purkinje cells and also on 
Golgi cells (Shinoda et al., 2000). Each Purkinje 
cell is innervated by a single climbing fiber that 
establishes multiple synaptic contacts with the 

lower two-thirds of its dendrite. The climbing 
fiber system is organized parasagittally both in 
the macro and in the micro levels. At the micro 
level it is structured to fit the Purkinje cell den-
drites, while at the macro level all collaterals of a 
single olivary neuron are restricted to a narrow 
rostrocaudal plane  covering many folia.

Two types of inhibitory interneurons are 
located within the cerebellar molecular layer: the 
stellate (Figure 1, red) and basket cells (Figure 1, 
orange). They form a chemically and electrically 
interconnected network that receives excitatory 
input from granule cell axons (Mann-Metzer 
and Yarom, 1999; Sotelo and Llinas, 1972). Their 
axons run along the rostro-caudal axis and inhibit 
Purkinje cell dendrites (stellate) and somata 
(basket).

The third type of cerebellar inhibitory interneu-
ron is the Golgi cells (Figure 1, green) whose 
somata lie in the upper granule cell layer. They 
receive input from mossy fibers, both directly, 
and through granule cell axons, and inhibit mossy 
fiber-granule cell inputs at their junction, form-
ing a complex glomerulus (knot). These are the 
only three dimensional neurons in the cerebel-
lar cortex, i.e. their dendrites and axons extend 
both rostro-caudally, and medio-laterally forming 

Figure 1 | The cytoarchitecture of the cerebellar cortex. A parasagittal cut through the cerebellar cortex shows  
the arrangement of the cell types. Black – Purkinje cells. Blue – granule cells. Green – golgi cell. Red – stellate cell.  
Orange – basket cell. Mossy and climbing fibers are shown in brown and magenta, respectively.



Frontiers in Neuroscience www.frontiersin.org December 2008 | Volume 2 | Issue 2 | 194

Rokni et al. Cerebellar morpho/functional discrepancy

radial cylindrical dendritic and axonic trees, in the 
molecular and granule cell layers respectively.

Two other types of cerebellar cortical neurons 
that have been more recently incorporated into 
the classical cerebellar cortex circuit are the exci-
tatory unipolar brush cells and the inhibitory 
Lugaro cells, both of which are located within the 
granular layer. Unipolar brush cells are mostly 
found in the vestibulocerebellum and mediate 
interactions between mossy fibers and granule 
cells. Lugaro cells receive mossy fiber input and 
inhibit Golgi cells.

It is the remarkable conserved orthogonal 
arrangement of the parasagittal Purkinje cell 
dendrites and the coronal parallel fibers that 
prompted cytoarchitecture-based theories on 
the function of the cerebellar cortex.

anatomy-InspIred theorIes  
of cerebellar functIon
Various theories of cerebellar function and its 
mode of operation have been proposed in past 
and present decades (Albus, 1971; Braitenberg and 
Atwood, 1958; Marr, 1969; Ohyama et al., 2003; 
Thach et al., 1992; Wolpert et al., 1998). Although 
the anatomy of the cerebellar cortex subserved as a 
building block in all of these theories, only a subset 
of them can be regarded as anatomically inspired 
theories, where a major role was attributed to the 
unique relationships between the parallel fibers 
and Purkinje cells. Some accredited parallel fibers 
the role of maximizing the number of possible 
connections between granule cells and Purkinje 
cells (Albus, 1971; Marr, 1969; Thach et al., 1992), 
while others emphasized the sequential activa-
tion of Purkinje cells, as a possible mechanism to 
generate accurate time intervals (Braitenberg and 
Atwood, 1958). Three examples of such theories 
are shortly reviewed below.

Marr (1969), in his seminal work, suggested 
that the cerebellar cortex anatomy enables it to 
discriminate between similar input patterns. In 
his view the divergence of the mossy fiber input 
in the granule cell layer and the convergence of 
granule cell axons on single Purkinje cells increase 
the dimensionality of the mossy fiber input onto 
Purkinje cells and thus can increase the differ-
ences between similar mossy fiber inputs and 
facilitate differential responses. Here the empha-
sis is on maximizing the convergence of granule 
cells onto Purkinje cells that is brought about by 
the parallel fibers.

Thach et al. (1992) assumed that Purkinje cells 
that are organized along the medio-lateral axis 
control motor behavior of different body parts. 
In order to perform a coordinated movement a 
common input to these cells is needed. It was sug-

gested that this common input is provided by the 
parallel fibers. Complementary to Marr’s theory, 
here the authors emphasized the divergence of 
single granule cell axons onto many Purkinje 
cells.

Braitenberg and Atwood (1958) stated that the 
unique anatomy of the cerebellar cortex suggests 
that it serves as a transformer of spatial into tem-
poral patterns. Action potentials that propagate 
along the parallel fibers will, according to this view, 
sequentially activate Purkinje cells with accurate 
time intervals and thus the distance  travelled by 
action potentials will be coded by the time of 
the Purkinje cell response. After acknowledging 
the difficulties in finding sequential activation 
of Purkinje cells (as will be reviewed below), 
Braitenberg formulated the “tidal wave” theory. 
The cerebellar cortex was now attributed the 
role of transforming spatio-temporal patterns of 
mossy fiber input into spatio-temporal patterns 
of Purkinje cell output (Braitenberg et al., 1997). 
The main idea of the modified hypothesis was that 
in order to activate a significant number of the 
parallel fibers that impinge on a specific Purkinje 
cell, it is necessary to activate many groups of gran-
ule cells with time intervals that fit parallel fiber 
conduction velocity. In its most simplistic form 
this type of input could code for a movement of 
a stimulus along a body part.

As stated, the above theories all derive from 
the geometrical arrangements of the neuronal 
elements in the cerebellar cortex. Indeed Marr’s 
theory, as well as the early form of Braitenberg’s 
theory was formulated at a time when knowledge 
about the physiological properties of cerebellar 
neurons were rather limited. Most importantly, 
the properties of parallel fiber – Purkinje cell syn-
apses and their spatial organization were scarcely 
described.

functIonal organIzatIon of the mossy 
fIber Input to the cerebellar cortex
The beam like activity of Purkinje cells evoked by 
parallel fibers was initially supported by numer-
ous studies where surface stimulation directly 
activated the parallel fibers (Chen et al., 1998; 
Cohen and Yarom, 1999; Eccles et al., 1966). 
However, activating the mossy fiber system, 
either directly or by peripheral stimulus, failed 
to invoke beams of Purkinje cell activity (Bower 
and Woolston, 1983; Shambes et al., 1978) but 
see Garwicz and Andersson (1992). Furthermore, 
even the expected correlations between Purkinje 
cells located along the parallel fibers could not be 
detected (Ebner and Bloedel, 1981; Eccles et al., 
1972; Heck et al., 2007), but see Bell and Grimm 
(1969). In all these studies extracellular record-
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ings of Purkinje cell spiking activity were used. 
This technique severely limits the characteriza-
tion of the spatial organization of synaptic input. 
First, spatial resolution is limited by the distance 
between recording electrodes. Second, the inabil-
ity to detect subthreshold activity confines the 
conclusions to synapses that are strong enough to 
generate suprathreshold activity. More recently, 
the use of voltage sensitive dye  imaging was 
implemented in an attempt to overcome these 
limitations (Cohen and Yarom, 1998, 1999, 2000; 
Rokni et al., 2008). In our previous  publications 
(Cohen and Yarom, 1998; Rokni et al., 2008) we 
used this technique in combination with the iso-
lated cerebellar preparation (Llinas et al., 1981). 
This experimental system provides a much 
finer spatial resolution, it is extremely sensi-
tive to subthreshold postsynaptic activity, and it 
greatly simplifies experiments, while preserving 
the three dimensional structure of the cerebel-
lum (Cohen and Yarom, 1999). Using this tech-
nique we  demonstrated that direct stimulation 
of mossy fibers at the level of the white matter, 

activates Purkinje cells that lie in radial patches 
of cerebellar cortex (Figure 2A). Postsynaptic 
activity that propagates along the parallel fiber 
axis could readily be recorded when parallel fibers 
were directly activated at the surface of the cer-
ebellar cortex (Figure 2B). These results, which 
provided direct support for the radial organi-
zation of cerebellar cortical response to mossy 
fiber input as proposed by Llinas (1982), are 
in sharp contrast to what is expected from the 
anatomy. Hence, although the anatomical struc-
ture is most certainly a crucial component in our 
understanding of any brain region, a lesson from 
the  cerebellum teaches us it is not enough – looks 
alone can be deceptive.

Two mechanisms were suggested to resolve 
the mossy fiber morpho/functional discrepancy. 
Llinas (1982) suggested that the major granu-
lar input onto Purkinje cells is provided by the 
ascending portion of granule cell axons and not 
by the parallel fibers. According to this view the 
mossy fiber input into the cerebellar cortex is most 
effective when it activates the ascending portion 

Figure 2 | Color coded surface presentations showing the spatial organization of cerebellar cortical responses to 
mossy (A) and parallel (B) fiber stimulation. Data obtained from the isolated Guinea pig cerebellum using voltage 
sensitive dye imaging. Responses were recorded with a 128 photodiode array, and spatially filtered.
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of the granule cells axons that innervate a given 
Purkinje cell. The multiple synaptic connections 
between the ascending axons and Purkinje cells, 
as well as the synchrony of activation, will maxi-
mize the response of this group of Purkinje cells. 
Purkinje cells that are located laterally along the 
parallel fibers will be weakly activated not only 
because of the single en-passant synaptic connec-
tions but also because of the non-synchronous 
volley due to variable conduction velocities of the 
different parallel fibers. The finding that synaptic 
junctions along these ascending segments have 
higher release probability (Sims and Hartell, 
2005), accentuates the differences between the 
two parts of granule cell axons. Furthermore, 
Isope and Barbour (2002) demonstrated that up 
to 85% of the parallel fiber – Purkinje cell syn-
apses do not generate any functional connections. 
Hence from a functional point of view, the paral-
lel fibers are far less efficient than the ascending 
portion of the granule cells axon in activating 
Purkinje cells.

A different mechanistic explanation for the 
radial organization was proposed by Bower 
(2002). He suggested that the radial activation of 
Purkinje cells results from the suppression of on 
beam Purkinje cells by disynaptic inhibition from 
the molecular layer interneurons. Santamaria 
et al. (2007) demonstrated that normally sensory 
stimulation evokes responses in Purkinje cells in 

a restricted cerebellar cortical patch, whereas, 
after blocking inhibitory transmission responses 
could be recorded at sites that are located distally 
along the parallel fiber axis. Since the latency of 
these distal responses is in accordance with the 
parallel fiber propagation velocity, it has been 
concluded that they were evoked by parallel 
fiber input. To reexamine Bower’s hypothesis we 
recorded responses to mossy fiber stimulation 
both in control conditions and in the presence 
of the GABA

A
 blocker GABAzine, and quantified 

their spatial organization (Rokni et al., 2008). Our 
results were in sharp contrast with Santamaria 
et al. (2007). Although GABAzine significantly 
prolonged responses to mossy fiber stimula-
tion, it did not change their spatial organization. 
Namely, propagating beams of Purkinje cell activ-
ity did not emerge. The disagreement between 
our results and those of Santamaria et al. (2007) 
could be explained, either by the sparse sampling 
of Purkinje cells by the extracellular electrodes, 
or by the insensitivity of our imaging system to 
minute voltage changes. The latter is unlikely 
as the effects of inhibition blockade within the 
responding area were easily detected. It is thus rea-
sonable to conclude that the major mechanistic 
explanation for radial organization of the mossy 
fiber input resides in the differences between the 
synapses of the ascending and parallel portions 
of granule cell axons.

Figure 3 | A schematic representation of the activation of Purkinje cells by mossy fiber and climbing fiber inputs. 
A mossy fiber input activates a group of granule cells. These, in turn activate the Purkinje cells right about them via 
synapses along the ascending axon, and may also sparsely activate Purkinje cells via synapses of the parallel fibers. 
Climbing fibers on the other hand, activate a Purkinje cells that are organized along a parasagittal band. Activated Purkinje 
cells are depicted in orange. 
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What are the parallel fIbers good for?
The radial organization of the mossy fiber input 
raises a fundamental question: What is the role 
of parallel fibers in cerebellar function? It seems 
inconceivable that the parallel fibers, so extremely 
conserved throughout vertebrate evolution, do 
not activate Purkinje cells. So why is it that their 
effect on Purkinje cells cannot be measured? And 
what is the advantage to be arranged in parallel 
lines? It is important to stress that the demonstra-
tion of the radial organization of the mossy fiber 
input does not by any means imply that Purkinje 
cells can never be activated by the parallel fibers in 
natural conditions. What it implies is that gran-
ule cells will mainly activate Purkinje cells via the 
ascending axon but it does not exclude sparse acti-
vation of Purkinje cells along the parallel fibers. 
This is schematically illustrated in Figure 3. The 
differences between the ascending axons and the 
parallel fibers that were outlined above, strongly 
suggest that there is a fundamental functional dif-
ference between them. This is further supported 
by the recent finding (Sims and Hartell, 2006) that 
synapses of the ascending axon are resistant to 
classical forms of parallel fiber – Purkinje cell long 
term synaptic plasticity (LTD and LTP). It follows 
from this study that a mossy fiber input mainly 
activates Purkinje cells via hardwired granule cell – 
Purkinje cell synapses. Additional Purkinje cells 
that are activated via the parallel fibers could be 
selected by mechanisms of synaptic plasticity that 
have been extensively studied (Coesmans et al., 
2004; Ito and Kano, 1982; Lev-Ram et al., 2003). 
Such ability of the system to activate Purkinje cells 
along the beam following a plasticity protocol has 
been demonstrated (Jorntell and Ekerot, 2002). 
Thus the two segments of granule cell axons serve 
two distinct functions: innate control (ascending) 
and acquired control (parallel).
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