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Abstract

Recent advances in reconstruction and analytical methods for signaling networks have spurred the development of large-
scale models that incorporate fully functional and biologically relevant features. An extended reconstruction of the human
Toll-like receptor signaling network is presented herein. This reconstruction contains an extensive complement of kinases,
phosphatases, and other associated proteins that mediate the signaling cascade along with a delineation of their associated
chemical reactions. A computational framework based on the methods of large-scale convex analysis was developed and
applied to this network to characterize input–output relationships. The input–output relationships enabled significant
modularization of the network into ten pathways. The analysis identified potential candidates for inhibitory mediation of
TLR signaling with respect to their specificity and potency. Subsequently, we were able to identify eight novel inhibition
targets through constraint-based modeling methods. The results of this study are expected to yield meaningful avenues for
further research in the task of mediating the Toll-like receptor signaling network and its effects.
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Introduction

Toll-like receptors (TLRs) are a group of conserved pattern

recognition receptors that activate the processes of innate and

adaptive immunity [1]. Recent activity has focused on the

characterization of the TLR network and its involvement in the

apoptotic, inflammatory, and innate immune responses [1–3].

TLR signaling is a primary contributor to inflammatory responses

and has been implicated in several diseases including cardiovas-

cular disease [4,5]. Indeed, even in cases of desired inflammatory

response, excessive activation of signaling pathways can lead to

septic shock and other serious conditions [6].

As such, there is much interest in the development of methods

to attenuate or modulate TLR signaling in a targeted fashion. For

example, one approach involves the inhibition of specific reactions

or components within the TLR network that will dampen

undesired signaling pathways while not adversely affecting other

signaling components [7,8]. These reactions or components should

ideally be highly specific to the TLR network and also to one

transcription target. Therefore, the available, comprehensive data

sets of the TLR network need to be put into a more structured,

systematic format that enables better understanding of the

associated signaling cascades, pathways, and connections to other

cellular networks. Such a systemic approach is necessary to

achieve the ultimate goal of mediating the effects of Toll-like

receptor signaling upon the inflammatory, immune, and apoptotic

responses. This need is particularly important given the amount of

experimental data about TLR signaling that is already too large to

be analyzed by simply viewing the complex web of overlapping

interactions. So far, relatively few attempts have been made to

organize the plethora of experimental data into a single unified

representation [9]. Hence, there is clearly a need to investigate the

function and capabilities of this network using a computational

model, particularly to yield further insights into the mechanistic

action of the TLRs and their immunoadjuvant effects.

Constraint-based reconstruction and analysis (COBRA) meth-

ods represent a systems approach for computational modeling of

biological networks [10]. Briefly, all known biochemical transfor-

mations for a particular system (e.g., metabolic network, signaling

pathway) are collected from various data sources listing genomic,

biochemical, and physiological data [11,12]. The reconstruction is

built on existing knowledge in bottom-up fashion and can be

subsequently converted into a condition-specific model (see below)

[10,13] allowing the investigation of its functional properties

[14,15]. This conversion involves translating the reaction list into a

so-called stoichiometric matrix by extracting the stoichiometric

coefficients of substrates and products from each network reaction

and placing lower and upper bounds (constraints) on the network

reactions. These constraints can include mass-balancing, thermo-

dynamic considerations (e.g., reaction directionality), and reaction

rates (e.g., maximal possible known reaction rate) [14]. Addition-

ally, environmental constraints can be applied to represent

different availabilities of medium components (e.g., various carbon

sources). Many computational analysis tools have been developed

[14], including Flux balance analysis (FBA). FBA is a formalism in

which a reconstructed network is framed as a linear programming

optimization problem and a specific objective function (e.g.,

growth, by-product secretion) is maximized or minimized [14].

COBRA methods are well established for metabolic networks and

both reconstruction and analysis tools are widely used [16].

PLoS Computational Biology | www.ploscompbiol.org 1 February 2009 | Volume 5 | Issue 2 | e1000292



Furthermore, these methods have been successfully applied to

other important cellular functions such as transcription and

translation [17], transcriptional regulation [18], and signaling,

including JAK-STAT [19] and angiogenesis [20].

In this study, we present an extended and reformulated model

for the TLR network, reconstructed based on the publicly

available TLR map [9] and the COBRA approach [11,12].

Signaling networks have been analyzed using extreme pathway

(ExPa) analysis [19] and FBA [20]. However, since ExPa analysis

becomes computationally challenging in large-scale, mass-balanced

networks [21], we could not apply this method to the TLR network.

In contrast, network modularization has been established as a

method for reducing large-scale networks into more manageable

units [22–24]. Another approach for reducing network complexity

is to focus on input–output relationships [20,25]. We used FBA to

simplify the mesh of network reactions into ten functionally distinct

input–output (DIOS) pathways, which show different patterns of

signal activation control. Furthermore, we used this modular

representation of the complex TLR signaling network to determine

control points in the network, which are specific for a DIOS

pathway. These control points allow for the modulation of TLR

signaling in a targeted fashion, which will induce a change in

undesired signaling while not having an adverse effect on other

signaling components. Taken together, we show in this study how a

signaling network reconstruction and FBA can be used to identify

potential candidates for drug targeting.

Results

Reconstruction Approach
The basis for the network reconstruction was the recently

published Kitano-TLR map, which visualizes the TLR network in

great detail [9]. Since we intended to apply COBRA methods

[14,26], the Kitano-TLR map had to be converted into a self-

consistent, mass- and charge balanced reaction network. Conse-

quently, various modifications and extensions needed to be made

in order to represent the TLR network comprehensively in the

stoichiometric reaction format (Figure 1). These extensions were as

follows:

(a) Kinase and phosphatase reactions were added to quantify the

energy (ATP/GTP) consumption by the network reactions.

(b) The addition of ubiquitin ligase components and their

substrate binding allowed for an explicit representation of

the ubiquitination reactions. Additionally, internal transport

reactions were added to enable the transport of network

component between the cellular compartments.

(c) Binding proteins, which induce activation by conformational

change, were added to accurately represent all requisites of a

network reaction.

(d) The Kitano-TLR map represented some reactions in a

manner unsuitable for COBRA modeling purposes by

requiring a number of inputs jointly to activate a certain

output whereas in vivo any single input can trigger the

downstream output. The corresponding reactions were

updated to allow the signal transfer from any ligand to the

corresponding output.

These changes were necessary to create a more biologically

relevant model and also to take into account the metabolic and

transport requirements of signaling networks. The resulting model

is able to make predictions in the context of environmental and

energy constraints. Taken together, the conversion to the

stoichiometric representation of the TLR network required

intensive literature search to clarify the status and function of

proteins in the Kitano-TLR map, thereby leading to a

comprehensive curation process. The resulting network was

deemed ihsTLR v1.0, where ‘i’ stands for in silico, ‘hs’ for homo

sapiens and v1.0 is the version number of this in silico TLR

network. The formalism underlying ihsTLR v1.0 is in analogy to

that of metabolic networks and thus enables the usage of COBRA

methods [14,26].

The use of COBRA methods is heavily dependent on the

configuration of network constraints that model biochemical

properties of the network. For example, in metabolic networks,

enzyme suppression can be modeled by constraining the

appropriate reaction to carry zero net flux. However, in signaling

networks, such as the TLR network, many reactions involve

activation/inactivation of a signaling complex via phosphoryla-

tion. In these cases, the mechanism involves the transfer of a

phosphate group from the kinase to the signaling complex

followed by re-activation of the kinase by the appropriate ATP-

driven reaction (Figure 1B and 1C). When coupled with

dephosphorylation of the signaling complex after signaling, this

mechanism introduces a number of loops into the network

whereby an adequate supply of ATP would seemingly induce

active signaling without actually requiring the presence of a ligand.

Therefore, in order to perform constraint-based analyses on the

TLR network, we manually added constraints on such loop

reactions to require both ATP-fueled phosphorylation as an

energy source and ligand-based signaling input to drive active

signaling (see Materials and Methods).

Reconstruction Content
The ihsTLR v1.0 reconstruction comprised 909 reactions,

which linked 752 distinct chemical species into a self-consistent

network (Table 1). The reconstruction accounted for 14 Toll-like

receptors, 49 ligands, and 6 outputs (see Figure 2 and Tables S1,

S2, S3, S4). A confidence level was assigned to each network

reaction on a scale from one to five, with one being a lack of

conclusive literature evidence and a five being strong, conclusive

literature evidence including review articles (see Materials and

Methods). The average confidence level for the entire network was

3.21, with a total of 306 unique article citations (see Table S7).

Chemical formulae and cellular localization information were also

included. For instance, each species was assigned a chemical

Author Summary

The human innate immune system, as the first line of
defense against pathogens, is a vital component of our
survival. One component of the innate immune system is
the Toll-like receptor signaling network, which is respon-
sible for transmitting activation signals from the outside of
the cell to molecular machinery inside the cell. The innate
immune system must be properly balanced, as excessive
activation can lead to potentially lethal septic shock.
Therefore, there is much interest in developing drugs that
can mediate Toll-like receptor signaling so as to alleviate
effects of excess activation. We present an in silico
reconstruction of the Toll-like receptor signaling network
and convert it into a mathematical framework that is
suitable for constraint-based modeling and analysis. This
approach leads to the identification of potential candi-
dates for drug-based mediation. In addition to identifying
targets for drug mediation of the Toll-like receptor
network, we also supply a network model that may be
continually updated and maintained.

Potential TLR Mediation Targets
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formula for the covalent modification groups (e.g., phosphate,

ubiquitin), which accounted for the metabolic costs of signaling. A

total of six compartments (extra-organism, cytosol, nucleus,

lysosome, endoplasmic reticulum, and vesicle) were considered

to accurately represent the intracellular trafficking. These

additions allowed for a more biologically accurate representation

of the TLR network and for finer control over the network fluxes

through transport and metabolic reactions.

Network Map
To visualize the network content we created a map of the

ihsTLR v1.0 reconstruction using SimPheny (Genomatica) soft-

ware. All six compartments were represented in the map, with the

appropriate localization for the reactions and components.

Internal transport reactions allowed for the transfer of network

components between the compartments and these reactions were

explicitly positioned on the boundaries of the compartments within

the map. In many cases, reactions that shared substrates or

products were joined on the map to show the interconnections

between the reactions of the TLR network. Overall, an

organization of the map was chosen that enabled the visualization

of the parallel structure of TLR signaling from the extra-cellular

ligand to the transcription-level targets (signal output). The

complete network map can be found in Figure S1.

Network Connectivity
The topological properties of the ihsTLR v1.0 network were

assessed by determining its node connectivity distribution. The

node distribution defines the degree to which a particular network

component is connected to the entire network, and can be easily

Figure 1. ihsTLR v1.0 reconstruction process. (A) Flowchart illustrating the necessary steps to convert the Kitano-TLR map [9] into a
stoichiometric, mass-balanced model that can be functionally characterized using COBRA method and FBA. Using these computational tools, it was
possible to determine a set of critical network reactions that are highly-specific candidates for TLR signaling mediation as changes in their activity
attenuate the flux through their corresponding discrete input–output signaling (DIOS) pathways but have no adverse effect on the TLR network
reactions. (B) The transfer of functional groups, such as phosphate groups, is very common in signaling pathways. We accounted for proteins
explicitly in the corresponding network reaction. This created cycles that are artifacts of the modeling and decouple the phosphorylation/
dephosphorylation reactions. Panel B illustrates such a case. The dephosphorylation of PK* to PK can run completely independently of the
phosphorylation reaction of AP to AP* since AP is recovered in a subsequent step. The downstream signaling output is thus not dependent on the
presence of PK*. (C) This panel illustrates how we circumvented this issue during the modeling by creating a sink reaction for AP* and thus
interrupting the cycle formerly present. Since the modeling is only qualitative, the simulation result (e.g., signal yes/no) is not affected by this trick.
doi:10.1371/journal.pcbi.1000292.g001
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computed. The three most highly connected species were ATP,

ADP, and H+, which participated in 57, 57, and 68 reactions,

respectively (Figure 3). Furthermore, inhibitor of kappa light

polypeptide gene enhancer in B cells kinase (IKK), a non-

metabolic component, was found to participate in 24 reactions,

implying its central role in TLR signaling. Other highly connected

non-metabolic species were a phosphorylated version of IKK and

the MyD88 dimer, which is known to be a key TLR adaptor

protein. Additionally, although both metabolic and non-metabolic

species followed the general power law distribution (Figure 3), it is

notable that most of the more highly connected (participating in

more than 24 reactions) species were metabolites, highlighting the

importance of mass- and charge- balancing of a signaling network

to accurately represent its biological properties.

The normalized connectivity centralization is a commonly used

index of the node connectivity distribution and measures the

extent to which certain nodes are more central than others

independent of actual network size [27,28]. The centralization is

measured from 0 to 1 with a higher value corresponding to the

presence of more highly connected nodes. For the TLR network,

we calculated a centralization index of 0.08, which indicated a

lower level of centralization. For comparison, the centralization

indices of the core metabolic networks of S. pneumoniae and P.

furiosus have been calculated to be 0.24 and 0.10, respectively [28].

This observation suggests that the network contains fewer nodes

critical for the network functionality and that deletion of these

nodes may disrupt the entire network functionality.

Input–Output Relationships
Input–output (I/O) relationships define the set of possible

outputs from a defined set of input cues regardless of the internal

paths connecting the inputs and outputs. As the characterization of

external ligands with their respective TLRs is well established [29–

31], the I/O relationships were considered rather on the level of a

receptor input to a transcription level output. The I/O

relationships were calculated using FBA.

The results of the I/O relationship analysis identified NF-

kappa-B to be the most commonly activated output, as it was

induced by all signaling inputs except for TLR3 (Figure 2). Indeed,

seven of the ten functionally distinct DIOS pathways (discussed

below) resulted in NF-kappa-B activation. The other outputs had

varying degrees of expression, with IRF7 being a single output that

required multiple inputs for activation. Consequently, these in silico

results suggest a relative prevalence of the network to promote NF-

kappa-B activation caused by pathway redundancy.

Furthermore, some ligands can bind to multiple receptors,

which can lead to the activation of an overlapping set of outputs

(Figure 2). For instance, lipopolysaccharide (LPS) binds to TLR2

and TLR4; however, TLR2 activates NF-kappa-B, AP-1, CRE,

and reactive oxygen species (ROS) production, while TLR4

activates the same outputs except for the ROS production, which

is replaced by the IRF3 activation. This redundancy from the

overlapping I/O relationship confers robustness to the network,

since LPS could activate an output, e.g., NF-kappa-B, despite

inhibition of a receptor. An example of this robustness might be

the activation of the NF-kappa-B output in the presence of both

the LPS ligand and a decoy soluble TLR2 receptor. In contrast to

the observed overlapping activation of some outputs, IRF7 was

found to be the only output requiring multiple receptor-ligand

binding for activation (TLR3/4 and TLR7/8/9) (Figure 2). IRF7

has been shown to play a role in the transcriptional activation of

interferon beta chain genes. The reason for the multiple ligand

input is the functional overlap of two activation pathways: complex

formation of MyD88 and IRF7 followed by TRAF6-dependent

phosphorylation of IRF7 and dissociation of the ubiquitinated

TRAF6-MyD88 complex [32–35]. This transactivation induction

mechanism suggests a high level of control for this output.

Distinct I/O Signaling Pathways—DIOS Pathways
We wished to identify candidates for mediation in the TLR

signaling network. To qualify as competent drug targets these

candidates were required to attenuate the TLR signaling in a

targeted fashion, i.e., by inducing changes in the target signaling

pathway while not having an adverse effect on other signaling

components in the TLR network. Subsequently, our calculated I/

O relationships could be used to determine such mediation

candidates as they represented the structure of the complex TLR

signaling network. To further modularize and simplify the

network, we applied FBA to identify sets of signaling reactions

associated with a given input. In a further step, we grouped these

sets of signaling reactions based on their intermediate products. By

doing those, we obtained 10 functionally distinct groups of

signaling reactions, the so-called distinct I/O signaling pathways, or

DIOS pathways. The signaling pathways summarized within one

DIOS pathway thus share the same input, same output, and some,

but not necessarily all, intermediate reactions. In contrast, two

DIOS pathways differ by an input, an output, or an intermediate

reaction (determined by function and experimental evidence). The

10 DIOS pathways triggered signaling from 14 receptors (inputs)

to 6 outputs within the TLR network (Figure 4). Whereas some

signal outputs could be activated by numerous overlapping DIOS

pathways (e.g., NF-kappa-B), other signal outputs (e.g., IRF7)

required multiple receptor-ligand binding events along one single

DIOS pathway for signal mediation. This functional grouping of

network reactions led to a dramatic reduction in complexity by

introducing the DIOS pathways as functional modules of the TLR

signaling network.

Ligand-Linked Reaction Deletion
As defined above, potential signaling mediation targets should

be unique to a DIOS pathway and alteration of the flux through

such targets should affect the performance of the entire DIOS

pathway. Note that such flux alteration will not affect the

remaining TLR signaling network. To identify such control

Table 1. Statistics of ihsTLR v1.0.

Total number of network reactions 909

Number of internal network reactions 641

Number of exchange reactions 268

Average confidence level 3.21

Total number of network species 752

Number of ligands 49

Number of receptors 14

Number of metabolites 23

Number of kinases 158

Number of phosphatases 16

Number of outputs 6

Total number of discrete signaling pathways 10

The addition of kinases, phosphatases, and binding proteins as well as the
stoichiometric accounting of metabolites, greatly increased the number of
reactions and species from the Kitano-TLR map [9]. This increase in complexity
was necessary to enable the usage of COBRA methods.
doi:10.1371/journal.pcbi.1000292.t001
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points, we again employed FBA by determining essential network

reactions along the DIOS pathways. This approach enabled us to

focus on one activation pathway by disregarding alternate

signaling routes that may be activated by a ligand. Therefore, by

limiting the scope of analysis to individual pathways, the

redundancy inherent in the TLR network was bypassed and

control points in the pathway could be readily identified. These

essential network reactions, or control points, are suitable

candidates for TLR signaling mediation. A further subset of the

essential network reactions was determined by requiring the

reactions to have the properties of (i) being specific to a DIOS

pathway, (ii) not affecting the flux through other DIOS pathways,

and (iii) being capable to completely control the flux through a

particular DIOS pathway. This refined subset comprised the so-

called critical network reactions of the TLR network, and

represents the best candidates for TLR signaling mediation.

A total of 41 essential network reactions were found along the

10 DIOS pathways (see Table S6). After applying our specificity

requirements, a subset of eight critical network reactions was

identified to be present in the ihsTLR network along three DIOS

pathways (Figures 5, 6, and 7). These critical network reactions as

well as their known potential as candidates for TLR signaling

mediation are discussed in the following.

ROS production. Reactive oxygen species (ROS) have been

implicated in a variety of cellular processes including proliferation,

differentiation, and apoptosis [36]. In our analysis of the ihsTLR

network, we identified three critical network reactions in the ROS

production DIOS pathway (Figure 5). Two of these reactions,

Vav1-Rac1/GDP binding and Rac1 phosphorylation, were associated

with the activation of the Rho family GTPase Rac1, which has

been shown to be involved in the production of ROS [37]. The

third critical network reaction, gp91-p22 binding, has been shown to

be necessary for the assembly of NADPH oxidase, which in turn

produces ROS [38]. Deletion of any of these three critical network

reactions reduced the ROS production output through this DIOS

pathway to zero. Additionally, none of the three reactions was

found to have an effect on other DIOS pathways. As such, these

three reactions are strong candidates for mediation of TLR-

induced ROS production.

IL-1. The various members of the interleukin-1 (IL-1) family

have been implicated in many processes including inflammation,

hematopoiesis, and apoptosis [39]. Various inhibitory factors such

as IL-1R2, soluble IL-1R, and IL-1R antagonist have been

identified and shown to mediate the effects of IL-1 signaling

[40,41]. However, none of these factors can mediate specific IL-1

signaling targets. To this end, we identified three critical network

reactions local to the IL-1 DIOS pathway that could specifically

mediate the IL-1 induced activation of NF-kappa-B (Figure 6).

The three critical network reactions were Ajuba-mediated IRAK1-

PKCz binding, SQST1-PKCz binding, and PKCz phosphorylation (see

Figure 7). Ajuba and SQST1 have been previously shown to

influence IL-1 induced activation of NF-kappa-B [42,43].

Autophosphorylation of the Thr-560 residue on PKCz has also

been independently shown as a prerequisite for enzymatic activity

[44]. Importantly, deletion of any of the three critical network

reactions completely inhibited NF-kappa-B activation via IL-1

signaling without disruption of the IL-1 receptor. Therefore, these

three reactions are suitable candidates for the mediation of IL-1

induced NF-kappa-B activation.

MyD88. MyD88 has been well characterized as an essential

adaptor protein for TLR signaling, and has been linked with both

NF-kappa-B and AP-1 activation [1,32]. Indeed, MyD88 has been

Figure 3. Node connectivity in ihsTLR v1.0. The rank-ordered results were separated for metabolic and non-metabolic species. The non-
metabolic species include: ligands, receptors, signaling proteins, outputs (see also Table 1). The three most highly connected species were ATP, ADP,
and H+, which participated in 57, 57, and 68 reactions, respectively. In contrast, no non-metabolic species participated in more than 24 reactions. The
node connectivity distribution of metabolic and non-metabolic species followed a power law distribution. The fact that the higher connectivities
were associated with metabolites illustrates the importance of mass- and charge- balanced network reconstructions for biological accuracy.
doi:10.1371/journal.pcbi.1000292.g003
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shown to associate with all known TLRs except for TLR3, and

thus the MyD88 DIOS pathway is of vital importance to the

overall TLR signaling. Our analysis identified two critical network

reactions in the MyD88 pathway (Figure 7). These two reactions,

MyD88 dimerization and TRAF6/IRAK1 ubiquitination, were both

local to the MyD88 DIOS pathway and did not affect the flux

through other pathways. Moreover, deletion of either of the two

reactions resulted in a complete abrogation of the flux through the

MyD88 pathway, which in turn disrupted the NF-kappa-B and

AP-1 outputs.

Taken together, the identification of critical network reactions

in ihsTLR compiled a list of strong candidates for TLR signaling

mediation. Moreover, most of these candidates were non-obvious

targets for signaling mediation as they were not distinguishable

simply by their node connectivities.

Discussion

In this study, we presented the first large-scale, stoichiometric

reconstruction of the human TLR signaling network, ihsTLR. The

initial reconstruction was based on the Kitano-TLR map [9] and

manually converted into a format suitable for steady-state

constraint-based modeling by (i) mass- and charge balancing

network reactions, and (ii) adding proteins and energy currency to

the reactions, where appropriate, using TLR-specific literature

(Figure 1 and Table 1). ihsTLR was subsequently converted into a

mathematical model and analyzed with respect to network

connectivity, input–output relationships, and discrete input–

output signaling (DIOS) pathways. A total of 10 DIOS pathways

were identified and 8 critical network reactions were found along

these pathways representing candidates for TLR signaling

mediation. We showed that the combination of signaling network

reconstruction with constraint-based modeling techniques can lead

to highly relevant functional and topological insight into the

network and identification of potential high-specificity drug

targets.

The presented network ihsTLR v1.0 is a comprehensive

reconstruction of the TLR signaling pathways and adjacent

signaling pathways. In addition, metabolic cost associated with

signaling was accounted for by including metabolites, such as

ATP, in the network reactions and by creating transport and

exchange reactions for the metabolites. This will enable future

integration of the TLR signaling network with the existing human

metabolic network [23]. Integrated models of metabolism and

signaling have been recently published for small scale networks

[45,46]. Furthermore, the network was analyzed in terms of

pathway activation or inactivation (i.e., ‘on’ versus ‘off’); hence, the

magnitudes of the fluxes through the reactions were not a focus of

the analysis nor were they necessary to determine I/O

relationships. In the future, if data for signaling fluxes through

different pathways become available, they can be directly applied

to the network for more nuanced analysis of pathway activation/

inaction.

To date few signaling networks have been reconstructed and

modeled using COBRA approaches. Dasika et al. [20] presented

recently how FBA can be successfully applied to study signaling

Figure 4. An overview of the discrete signaling (DIOS) pathways defined in the TLR network. There were a total of ten pathways that
signaled from input receptor signals to output transcription-level objectives. These ten pathways shared fourteen receptor signals and five output
objectives. The most redundant objective was NF-kappa-B activation, which was the target for a majority of the pathways. Indeed, four of the
pathways—RIP1, NOD1, NOD2, and RIP2/TRIP6/TRAF2—signaled only to NF-kappa-B. However, also note that IL-1 and a large subset of the TLRs
signaled to multiple objectives through a variety of pathways such as PI3K, IL-1, and MyD88. Overall, this receptor-pathway-output format allowed for
a better understanding of the TLR network and its input–output relationships, and also for the calculation of essential reactions as candidates for
signaling mediation. Red: A summary of the eight critical network reactions identified through our analysis (see text). These control points were
located within the ROS production, IL-1, and MyD88 pathways. Although some essential network reactions were identified for the other discrete
signaling pathways, they were unsuitable for selective inhibition due either to their role in other signaling processes or their lack of specificity to a
particular pathway.
doi:10.1371/journal.pcbi.1000292.g004
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networks. Here, we presented a related method to structure the

complex network content and obtain insight into the functional

network topology. Extreme pathway analysis (ExPa), which was

useful for the topological characterization of the JAK-STAT

network [19], could not be applied to ihsTLR, as the size of the

network and the connectivity of the species made it infeasible. The

number of ExPas correlates to the size and complexity of the

network [21], rendering the enumeration of the ExPas computa-

tionally challenging in large networks. The determination of

input–output (I/O) relationships is a great simplification of

complex signaling networks as it treats the network as a ‘‘black

box’’ and asks the simple question of which input instances

activate which output targets [25,47]. Overlapping I/O relation-

ships illustrate a network’s redundancy and robustness within this

black box [46]. In the reconstructed TLR network, we considered

14 distinct input receptors and 6 distinct signaling outputs

(Figure 2). The transcription factor NF-kappa-B was activated by

all but one Toll-like receptor upon ligand binding. This functional

redundancy illustrates the importance of this signaling output for

the entire network, and greatly reflects the involvement of the

TLR signaling network in the inflammatory response, as NF-

kappa-B plays a key role in immune response regulation. In

contrast, the interferon regulatory factor 7 (IRF7) needed the

ligand binding of two independent TLRs for activation, which

Figure 5. A simplified illustration of the reactive oxygen
species (ROS) production DIOS pathway. The three critical
network reactions are highlighted in red. Although there were over
forty reactions in the ROS production pathway, most were associated
with the TLR-induced activation of various phox proteins by the protein
kinases PDK1 and PKCz. However, because PDK1 and PKCz work in
parallel, none of these reactions could control the flux through the
entire pathway, and therefore were not critical network reactions. On
the other hand, the three critical network reactions Vav1-Rac1/GDP
binding, Rac1 phosphorylation, and gp91-p22 binding, produced the two
other components that comprised the final phox protein complex, and
were therefore critical to the overall output ROS production. Note also
that these critical network reactions were localized to the ROS
production pathway and did not interfere with other cellular processes.
Thus, they represent ideal targets for mediation of TLR-induced ROS
production.
doi:10.1371/journal.pcbi.1000292.g005

Figure 6. A simplified illustration of the IL-1 DIOS pathway.
There were three critical network reactions that controlled the IL-1
induced activation of NF-kappa-B. Uninhibited IL-1 signaling induced
formation of a TRAF6/Ajuba/PKCz/SQST1 complex followed by autop-
hosphorylation at the Thr-560 residue of PKCz. This activated complex
then signaled downstream to NF-kappa-B via IKK phosphorylation. The
three critical network reactions inhibited IL-1 induced NF-kappa-B
activation by preventing the formation and subsequent autopho-
sphorylation of the TRAF6/Ajuba/PKCz/SQST1 complex. Unlike inhibi-
tors such as IL-1R2 and soluble IL-1R, which mediate IL-1 signaling by
preventing the activation of the IL-1 receptors, the three critical
network reactions worked by disrupting other components of the IL-1
DIOS pathway and did not affect the activation of IL-1 receptors.
doi:10.1371/journal.pcbi.1000292.g006
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implies stringent regulation of this factor’s activity. This transcrip-

tion factor IRF7 has been found to be directly involved in immune

response to viral infections by activating IFN-a/b genes [48].

These I/O relationships, in conjunction with FBA, were used to

identify the specific reactions involved in triggering the signal

between an input and an output. Hereby, input-specific reaction

subsets were identified and grouped based on common interme-

diate products identified through previous experimental valida-

tion. We deemed these reaction sets discrete I/O signaling (DIOS)

pathways, as they spanned the entire signaling network and

modularized the reaction mesh to clearly defined subsets that

could be studied independently (Figure 4). All network reactions

were grouped into 10 DIOS pathways, illustrating again the

redundant, overlapping structure of the TLR network. These

DIOS pathways were then analyzed for essential reactions to

identify control points, or critical network reactions, that allowed

for attenuation of the overall flux through the DIOS pathways.

These critical network reactions controlled the flux through a

DIOS pathway but did not affect the flux through other pathways,

and are therefore ideally suited to the method of selective

inhibition. Selective inhibition of TLR-specific signals involves

mediation of output fluxes without the disruption of components

that are known to play a role in other cellular processes. For

example, the IL-1 inhibitors IL-1R2, soluble IL-1R1, and IL-1R1

antagonist are not suitable for selective inhibition because they

disrupt IL-1 signaling on the whole instead of targeting specific IL-

1 targets. The critical network reactions identified in the IL-1

DIOS pathway can be used for selective inhibition because they do

not disrupt IL-1 signaling, but rather prevent the products of IL-1

signaling from reaching their output objective (in this case, NF-

kappa-B) (Figure 6). Selective inhibition of TLR signaling is

especially important because it is essential for maintaining the

innate immune response and also for enhancing the adaptive

immune response; over-inhibition could lead to a reduction in the

body’s defenses against pathogens, whereas dysfunctional inhibi-

tion can lead to various autoimmune disorders. Therefore, it is

crucial that mediation targets be highly specific.

Our analysis yielded a total of eight critical network reactions

along three of the DIOS pathways (ROS production, IL-1, and

MyD88). A summary of these critical network reactions can be

seen in Figure 4. Although these critical network reactions can

completely mediate the flux through a specific DIOS pathway,

they do not always completely zero out an output. For example,

because NF-kappa-B is a highly activated target, disruption of the

MyD88 pathway does not completely stop NF-kappa-B activation,

as it still occurs via the IL-1 and other pathways (Figure 4). Only in

the absence of other DIOS pathways, the disruption of the MyD88

pathway completely abrogates NF-kappa-B activation. Addition-

ally, the ROS production target is also incompletely inhibited by

disruption of a single DIOS pathway. This robustness appears to

come at a price of specificity as ROS production will be enabled in

multiple environments. However, the two DIOS pathways that

lead to ROS production have different ligand effectors, and are

therefore specific to certain TLRs. The ROS production pathway

has TLR3 as an input, whereas the MyD88 DIOS pathway does

not. Recent studies have shown that TLR3 is vital in host defense

against a variety of infections including West Nile virus [49], and

this DIOS pathway specificity may hold clues as to why TLR3

plays such an important role. We believe that the inherent

redundancy of the TLR network leads to such crosstalk between

pathways and therefore makes necessary the development of

inhibition combinations that can effectively mediate multiple

DIOS pathways.

One such case may be the atypical protein kinase PKCz, which

is found in two of the reactions (in the ROS production and IL-1

pathways). Removal of the PKCz component from the TLR

network resulted in complete abrogation of both ROS production

and IL-1 induced NF-kappa-B activation, showing that PKCz has

the ability to control multiple objective outputs. In both pathways,

PKCz enzymatic activity is activated by phosphorylation at critical

residues [44]. Disruption of this process would be the physical

equivalent of removing the PKCz component from the TLR

network and could have a powerful inhibitory effect on both ROS

production and IL-1 induced NF-kappa-B activation.

Our constraint-based analysis allowed us to characterize the

aforementioned eight critical network reactions as targets for

selective mediation. Next, we looked to validate these predictions

by searching for experimental evidence of inhibitory roles for

species involved in these critical network reactions. For example,

Vav1, which plays a critical role in the ROS production pathway

in our model, was recently shown to be required as an upstream

signaling protein for NADPH oxidase activity [50]. The role of the

PKCz isozyme in the NF-kappa-B pathway and downstream

cellular functions such as apoptosis has also been heavily studied

[51,52]. Overall, our model is strongly consistent with published

evidence regarding inhibition targets within the TLR signaling

Table 2. Clinical correlates of DIOS pathways.

DIOS Pathway Intermediate Species Related Diseases References

ROS production Rho family GTPases Pro-cancer/neoplastic processes, vascular disease [57,58]

IL-1 IL-1 Rheumatoid arthritis, ankylosing spondylitis, Alzheimer’s disease [59–61]

MyD88 MyD88 Malaria, pneumococcal infections [62–64]

Disruption of the TLR pathways can result in a wide range of pathophysiological conditions. This table summarizes some of the conditions and diseases in which
particular intermediate species are involved, supported by in vivo human and animal studies. The corresponding DIOS pathways are listed in the far left column.
doi:10.1371/journal.pcbi.1000292.t002

Figure 7. A simplified depiction of the MyD88 DIOS pathway. The two critical network reactions MyD88 dimerization and TRAF6/IRAK1
ubiquitination are highlighted in red. Formation of the MyD88 homodimer favors recruitment of IRAK1 into a complex with TRAF6 [65]. The MyD88
dimer then dissociated from this complex to be either degraded or reused. The second critical network reaction, TRAF6/IRAK1 ubiquitination, occurred
via the ubiquitin-conjugating enzymes Ubc13 and Uev1A, and was necessary for activation of NF-kappa-B and AP-1 through canonical IKK
phosphorylation. Either of the two critical network reactions could completely abrogate the flux through the MyD88 pathway even though the TIR- or
TIRAP-dependent TLR signaling was almost always active.
doi:10.1371/journal.pcbi.1000292.g007
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network, but also predicts several novel targets that have not been

well studied. Experimental investigation of these critical network

reactions may yield important methods for mediating TLR

signaling and its inflammatory and immune responses. Some

examples of known intermediates involved in diseases are listed in

Table 2. These examples highlight the relevance and importance

of computational characterization of the complex TLR signaling

network to promote further understanding of its role in common

diseases. Additionally, continued curation of the ihsTLR model as

the TLR network is elucidated will allow for further functional

insights into the TLR signaling process. Future additions to this

model may include quantitative fluxes that would allow for the

characterization of relative attenuation quantities and signaling

thresholds. Another avenue of interest would be to study the

dynamics of the TLR network in order to better understand the

temporal nature of the signaling cascade.

Materials and Methods

Network Reconstruction
The TLR network was reconstructed using SimPheny, version

1.12.0.0 (Genomatica), based on a previously described recon-

struction approach [11,12]. An initial framework of reactions and

species was retrieved from a previously published TLR map [9].

Additional reactions and species were manually added to this

framework with the goal of achieving greater biological relevance

and accuracy. Most of the additions made were taken directly

from literature sources. Some sink and source reactions were

added to eliminate gap conditions and provide for system

boundaries. Chemical formulae were assigned where appropriate:

the generic R group was used for any network compound that was

involved in a mass transfer equation, and all modifications (i.e.,

phosphorylation, ubiquitination, and dimerization) were also

included in the formulae. Additionally, because all of the network

compounds were cellular species, the R group could also be

interpreted as a general fatty acyl chain. Six different compart-

ments were associated with all of the network components and

necessitated the addition of internal transport reactions. These six

compartments were extra-organism, cytosol, nucleus, lysosome,

endoplasmic reticulum, and vesicle. Components that participated

in reactions in multiple compartments were represented by

separate species (e.g., ATP[c], ATP[n], etc.).

Confidence scores were assigned on a scale from zero to five to

every reaction to represent the reliability of the literature sources.

The scale is shown in Table 3.

All of the network reactions were mass- and charge-balanced

and were labeled as either reversible or irreversible. Most of the

transport and all of the exchange reactions were irreversible, and

all of the internal reactions were irreversible on the basis of

corresponding thermodynamic considerations. A list of the

network content can be found in Table S1, S2, S3, S4.

Constraint-Based Modeling
The reconstructed network was represented by a stoichiometric

matrix, S (m6n), where m was the number of network

components (metabolites, proteins, and complexes) and n was

the number of network reactions. Reactions within the network

were mass-balanced such that S?v = 0, where v was a steady-state

flux vector [53,54]. Additional constraints on each reaction had

the form ai#vi#bi, where ai and bi represented the lower and

upper limits of the corresponding reaction flux. These additional

constraints were added to reactions that allowed for loops in the

model due either to the recycling of various kinases and

phosphatases or to internal feedback cycles such as those present

in the MAPK pathway (Figure 1B and 1C). These loops occurred

when the activation of a signaling complex was linked with kinase-

driven phosphorylation. Because kinases are recycled for re-use

inside the cell, each kinase-driven phosphorylation reaction was

linked to another reaction that involved the re-activation of the

kinase by either autophosphorylation or some other mechanism as

given in literature (Figure 1B and 1C). When these two reactions

were added to the network, a loop resulted and therefore required

the additional of these manual constraints to prevent false negative

signaling. In non-loop cases, the lower limits ai were set to zero for

irreversible reactions; whereas bi were used to vary the constraints

on internal network reactions, and to limit the amount of

metabolite available through exchange reactions. For reversible

reactions, ai was set to -bi. The unit for each reaction flux was

defined to be mmol/gprotein/min. The TLR network model,

including some simulation constraints, can be found in Dataset S1.

Network Connectivity
The network connectivity was calculated by converting the

stoichiometric matrix S into a binary matrix Ŝ such that: Ŝij = 0, if

Sij = 0 and Ŝij = 1, if Sij?0. From here, the network connectivity

for each network component xi was calculated simply by summing

over all j for the row Ŝij.

The distribution of the network connectivity can be represented

by the normalized connectivity centralization, given by

Centralization~
n

n{2

max kð Þ
n{1

{Density

� �
&

max kð Þ
n

{Density

where n is the number of network components and k is a vector of

the node connectivity values. The density is a measure of the mean

off-diagonal adjacency and is given by

Density~

P
i

P
j=i aij

n n{1ð Þ ~
S1 kð Þ

n n{1ð Þ~
mean kð Þ

n{1

These network properties are well established and have been

discussed recently [27]. The normalized connectivity centralization

ranges from zero to one, with a higher value indicative of the

presence of nodes that are far more central than other nodes.

Input–Output Analysis
The I/O relationships were calculated using the flux balance

analysis (FBA) encoded in the COBRA toolbox [26]. This analysis

Table 3. Confidence scores for network reactions.

Confidence
Score Interpretation

0 No literature support. Reaction is added for gap closure.

1 Conflicting/unsubstantiated literature evidence.

2 Some literature support on an assay level—no mechanistic
characterization.

3 Some literature support including mechanistic characterization.

4 Strong literature support with repeated results.

5 Conclusive literature support.

These scores represent the reliability of the experimental evidence for a given
reaction in the model.
doi:10.1371/journal.pcbi.1000292.t003
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takes as input a single objective reaction and then attempts to

optimize for this objective while maintaining a set of manually

determined constraints. We performed this analysis independently

for six objective reactions—NF-kappa-B phosphorylation, IRF3/ISRE

binding, IRF7/ISRE binding, PKC-induced Phox complex formation, Fos-

Jun-AP1 binding, and CREB-CRE site binding. These six objective

reactions were selected on the basis of their importance as

products of TLR signaling and their role in physiological

symptoms. Baseline flux values were first obtained for each

objective reaction by performing FBA with zero ligand input.

Then, for each objective reaction, we iterated over the set of single

receptor inputs and recorded the objective flux values for each

receptor input with the receptor input flux constrained to

vi = 1.0 mmol/gprotein/min. These values were then compared

with the baseline flux through the objective reaction that existed

even without ligand input. Any net positive gain in the flux

through the objective reaction was interpreted to be active

signaling. The input–output relationships of the network were

represented in a matrix format, with each column corresponding

to an objective reaction and each column corresponding to a single

receptor input.

Discrete Input–Output Signaling (DIOS) Pathways
The DIOS pathways were calculated using the same six

objection reactions as in the I/O analysis (see above), and with

the 14 input receptors as defined in Table S3. For each receptor-

output pair, we used FBA to optimize for the output flux. Each vi

for the receptor input was set to be 1.0 mmol/gprotein/min. The

optimized network fluxes were then filtered by removal of loop

reactions (reactions that carried flux even without ligand input).

These loop reactions exist because some enzymes and binding

proteins are recycled after a reaction and therefore are necessary

to accurately represent the TLR network. These loop reactions are

also thermodynamically infeasible without some external balance,

and therefore warrant the application of manual constraints

[55,56]. The effect of these removals is negated by the addition of

sources for any component that may be affected. Thus, control of

the components that participate in loop reactions in essentially

shifted from the loop to a source reaction in our model. For each

loop, we constrained the corresponding enzyme/binding protein

deactivation reaction to vi = 0 mmol/gprotein/min. This deleted the

feedback mechanism that would trigger false signaling. A sink

reaction si was added to the model using SimPheny for the

deactivated protein to construct a complete network. From this

modified model, a baseline set of network fluxes was then obtained

by FBA. We then iterated FBA over the set of input–output pairs

without these constraints and subtracted the baseline set to obtain

a reduced set of network fluxes. The reduced set of network fluxes

was then the set of network reactions differentially activated by the

presence of a receptor input. This set was then broken down into

DIOS pathways according to the experimentally verified inter-

mediate components found in a pathway. For example, the

MyD88 DIOS pathway utilizes the MyD88 adaptor protein to

signal downstream. A complete list of these intermediate

components is given in Table S5. Visual inspection of this

differentially activated set was sometimes necessary to distinguish

parallel pathways in which one receptor signaled to the same

output through different DIOS pathways. The process of

identifying DIOS pathways is summarized in the following pseudo

code:

for each receptor input

for each output objective

optimize for maximum objective flux using FBA

remove loop reactions by subtracting baseline reaction set

visual inspection (if necessary) to identify parallel pathways

reduced set of network reactions is a DIOS pathway

end

end

This process was carried out using the SimPheny Simulation

module. All transport and metabolite exchange fluxes were

constrained to the arbitrary values of vmin = 2500 mmol/gprotein/

min and vmax = 500 mmol/gprotein/min. All internal reaction fluxes

were constrained to vmin = 0 mmol/gprotein/min and vmax = 10 mmol/

gprotein/min. The objective function was defined to maximize for the

output flux.

Critical Network Reactions
Intermediate reactions were selected to represent the flux

through each DIOS pathway. The intermediate reactions selected

were unique to a single DIOS pathway, and accurately

represented signaling through the pathway (see Table S5 for list

of intermediate reactions). Ligand-linked reaction deletion was

then used to analyze each DIOS pathway. Ligand-linked reaction

deletion differed from the typical reaction deletion study in that

only a single DIOS pathway was considered per study, and all

other reactions were constrained to vmin = 0 mmol/gprotein/min

and vmax = 0 mmol/gprotein/min. All reactions included in the

DIOS pathway were constrained to vmin = 0 mmol/gprotein/min

and vmax = 10 mmol/gprotein/min, and all transport and metabolite

exchange reactions were constrained to vmin = 2500 mmol/

gprotein/min and vmax = 500 mmol/gprotein/min. The objective

function was defined to be the intermediate reaction. This new

approach allowed us to bypass the redundancy of the TLR

network and focus on identification of critical network reactions

for each DIOS pathway. For each DIOS pathway, reaction

deletion was performed for each reaction and the flux values of

the intermediate reaction were recorded. These flux values were

then compared with the baseline flux value obtained under

normal conditions. Any reaction that resulted in a complete

impairment of the objective flux value was label to be a critical

network reaction.

All calculations for this study were done using Matlab (Math-

works, Natick, MA) with Tomlab (Tomlab Optimization, Inc,

Pullman, WA) as the linear programming solver.

Supporting Information

Dataset S1 TLR_model in Matlab format (zip file)

Found at: doi:10.1371/journal.pcbi.1000292.s001 (0.05 MB ZIP)

Figure S1 Map of the reconstructed TLR signaling network

Found at: doi:10.1371/journal.pcbi.1000292.s002 (3.29 MB PDF)

Table S1 TLR network species

Found at: doi:10.1371/journal.pcbi.1000292.s003 (0.39 MB PDF)

Table S2 TLR network reactions

Found at: doi:10.1371/journal.pcbi.1000292.s004 (0.30 MB PDF)

Table S3 TLR network inputs

Found at: doi:10.1371/journal.pcbi.1000292.s005 (0.02 MB PDF)

Table S4 TLR network outputs

Found at: doi:10.1371/journal.pcbi.1000292.s006 (0.01 MB PDF)

Table S5 Intermediate reactions

Found at: doi:10.1371/journal.pcbi.1000292.s007 (0.01 MB PDF)
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Table S6 Critical network reactions

Found at: doi:10.1371/journal.pcbi.1000292.s008 (0.01 MB PDF)

Table S7 Reaction references

Found at: doi:10.1371/journal.pcbi.1000292.s009 (0.36 MB PDF)

Author Contributions

Conceived and designed the experiments: FL IT NJ BØP. Performed the

experiments: FL. Analyzed the data: FL IT NJ. Contributed reagents/

materials/analysis tools: FL. Wrote the paper: FL IT NJ BØP.

References

1. Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin

Immunol 117: 979–987; quiz 988.

2. Hoebe K, Jiang Z, Georgel P, Tabeta K, Janssen E, et al. (2006) TLR signaling

pathways: opportunities for activation and blockade in pursuit of therapy. Curr

Pharm Des 12: 4123–4134.

3. Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate

immune defence. Nat Rev Immunol 7: 179–190.

4. Mullick AE, Tobias PS, Curtiss LK (2006) Toll-like receptors and atheroscle-
rosis: key contributors in disease and health? Immunol Res 34: 193–209.

5. Stoll LL, Denning GM, Weintraub NL (2006) Endotoxin, TLR4 signaling and

vascular inflammation: potential therapeutic targets in cardiovascular disease.
Curr Pharm Des 12: 4229–4245.

6. Verstak B, Hertzog P, Mansell A (2007) Toll-like receptor signalling and the

clinical benefits that lie within. Inflamm Res 56: 1–10.

7. Liew FY, Xu D, Brint EK, O’Neill LA (2005) Negative regulation of toll-like

receptor-mediated immune responses. Nat Rev Immunol 5: 446–458.

8. O’Neill LA (2006) How Toll-like receptors signal: what we know and what we
don’t know. Curr Opin Immunol 18: 3–9.

9. Oda K, Kitano H (2006) A comprehensive map of the toll-like receptor signaling

network. Mol Syst Biol 2: 2006.0015.

10. Palsson BO (2006) Systems Biology: Properties of Reconstructed Networks. New
York: Cambridge University Press.

11. Reed JL, Famili I, Thiele I, Palsson BO (2006) Towards multidimensional

genome annotation. Nat Rev Genet 7: 130–141.

12. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of

biochemical networks in microorganisms. Nat Rev Microbiol 7: 129–143.

13. Thiele I, Palsson BO (2007) Bringing genomes to life: the use of genome-scale in
silico Models. In: Introduction to Systems Biology. Choi S, ed. Totowa, New

Jersey: Humana Press. pp 14–36.

14. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells:
evaluating the consequences of constraints. Nat Rev Microbiol 2: 886–897.

15. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific

and practical use. Nat Biotechnol 12: 994–998.

16. Thiele I, Vo TD, Price ND, Palsson B (2005) An expanded metabolic

reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-

scale characterization of single and double deletion mutants. J Bacteriol 187:
5818–5830.

17. Thiele I, Jamshidi N, Fleming RMT, Palsson BO. Genome-scale reconstruction
of E. coli’s transcriptional and translational machinery: a knowledge-base, its

mathematical formulation, and its functional characterization. PLoS Comput

Biol, In press.

18. Gianchandani EP, Papin JA, Price ND, Joyce AR, Palsson BO (2006) Matrix

formalism to describe functional states of transcriptional regulatory systems.

PLoS Comput Biol 2: e101. doi:10.1371/journal.pcbi.0020101.

19. Papin JA, Palsson BO (2004) The JAK-STAT signaling network in the human

B-cell: an extreme signaling pathway analysis. Biophys J 87: 37–46.

20. Dasika MS, Burgard A, Maranas CD (2006) A computational framework for the
topological analysis and targeted disruption of signal transduction networks.

Biophys J 91: 382–398.

21. Yeung M, Thiele I, Palsson BØ (2007) Estimation of the number of extreme
pathways for metabolic networks. BMC Bioinformatics 8: 363.

22. Thiele I, Price ND, Vo TD, Palsson BO (2005) Candidate metabolic network

states in human mitochondria: impact of diabetes, ischemia, and diet. J Biol
Chem 280: 11683–11695.

23. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, et al. (2007) Global

reconstruction of the human metabolic network based on genomic and bibliomic
data. Proc Natl Acad Sci U S A 104: 1777–1782.

24. Yoon J, Si Y, Nolan R, Lee K (2007) Modular decomposition of metabolic

reaction networks based on flux analysis and pathway projection. Bioinformatics
23: 2433–2440.

25. Urbanczik R, Wagner C (2005) An improved algorithm for stoichiometric

network analysis: theory and applications. Bioinformatics 21: 1203–1210.

26. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, et al. (2007)

Quantitative prediction of cellular metabolism with constraint-based models: the

COBRA Toolbox. Nat Protoc 2: 727–738.

27. Dong J, Horvath S (2007) Understanding network concepts in modules. BMC

Syst Biol 1: 24.

28. Ma HW, Zeng AP (2003) The connectivity structure, giant strong component
and centrality of metabolic networks. Bioinformatics 19: 1423–1430.

29. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive

immune responses. Nat Immunol 5: 987–995.

30. Pasare C, Medzhitov R (2004) Toll-like receptors and acquired immunity.

Semin Immunol 16: 23–26.

31. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:
335–376.

32. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13: 816–825.

33. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, et al. (2004) Interferon-a
induction through Toll-like receptors involves a direct interaction of IRF7 with
MyD88 and TRAF6. Nat Immunol 5: 1061–1068.

34. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, et al. (2003)

Triggering the interferon antiviral response through an IKK-related pathway.
Science 300: 1148–1151.

35. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N (2001) IRF family of

transcription factors as regulators of host defense. Annu Rev Immunol 19:
623–655.

36. Fujisawa T, Takeda K, Ichijo H (2007) ASK family proteins in stress response

and disease. Mol Biotechnol 37: 13–18.

37. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J
348: 241–255.

38. El-Benna J, Dang PM, Gougerot-Pocidalo MA, Elbim C (2005) Phagocyte

NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch
Immunol Ther Exp (Warsz) 53: 199–206.

39. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:

2095–2147.

40. Lang D, Knop J, Wesche H, Raffetseder U, Kurrle R, et al. (1998) The type II
IL-1 receptor interacts with the IL-1 receptor accessory protein: a novel

mechanism of regulation of IL-1 responsiveness. J Immunol 161: 6871–6877.

41. Mantovani A, Locati M, Vecchi A, Sozzani S, Allavena P (2001) Decoy

receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends
Immunol 22: 328–336.

42. Feng Y, Longmore GD (2005) The LIM protein Ajuba influences interleukin-1-

induced NF-kB activation by affecting the assembly and activity of the protein
kinase Cf/p62/TRAF6 signaling complex. Mol Cell Biol 25: 4010–4022.

43. Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-

interacting protein p62 channels NF-kB activation by the IL-1-TRAF6 pathway.
EMBO J 19: 1576–1586.

44. Standaert ML, Bandyopadhyay G, Kanoh Y, Sajan MP, Farese RV (2001)

Insulin and PIP3 activate PKC-f by mechanisms that are both dependent and
independent of phosphorylation of activation loop (T410) and autophosphoryla-

tion (T560) sites. Biochemistry 40: 249–255.

45. Min Lee J, Gianchandani EP, Eddy JA, Papin JA (2008) Dynamic analysis of
integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4:

e1000086. doi:10.1371/journal.pcbi.1000086.

46. Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic,

transcriptional regulatory and signal transduction models in Escherichia coli.
Bioinformatics 24: 2044–2050.

47. Shinar G, Milo R, Martinez MR, Alon U (2007) Input–output robustness in

simple bacterial signaling systems. Proc Natl Acad Sci U S A 104: 19931–19935.

48. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, et al. (2005) IRF-7 is the
master regulator of type-I interferon-dependent immune responses. Nature 434:

772–777.

49. Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008) Toll-like
receptor 3 has a protective role against West Nile virus infection. J Virol 82:

10349–10358.

50. Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, et al.
(2008) Stimulus-dependent regulation of the phagocyte NADPH oxidase by a

VAV1, Rac1, and PAK1 signaling axis. J Biol Chem 283: 7983–7993.

51. Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, et al.
(2000) Protein kinase C isozymes and the regulation of diverse cell responses.

Am J Physiol Lung Cell Mol Physiol 279: L429–L438.

52. Win HY, Acevedo-Duncan M (2008) Atypical protein kinase C phosphorylates
IKKab in transformed non-malignant and malignant prostate cell survival.

Cancer Lett 270: 302–311.

53. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis.

Curr Opin Biotechnol 14: 491–496.

54. Edwards JS, Ramakrishna R, Schilling CH, Palsson BO (1999) Metabolic flux

balance analysis. In: Metabolic Engineering. Lee SY, Papoutsakis ET, eds. New

York: Marcel Deker.

55. Beard DA, Liang SD, Qian H (2002) Energy balance for analysis of complex
metabolic networks. Biophys J 83: 79–86.

56. Price ND, Thiele I, Palsson BO (2006) Candidate states of Helicobacter pylori’s

genome-scale metabolic network upon application of ‘‘loop law’’ thermody-
namic constraints. Biophys J 90: 3919–3928.

57. Fruehauf JP, Meyskens FL Jr (2007) Reactive oxygen species: a breath of life or

death? Clin Cancer Res 13: 789–794.

58. Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative
stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc

Med 17: 48–54.

59. Braddock M, Quinn A (2004) Targeting IL-1 in inflammatory disease: new
opportunities for therapeutic intervention. Nat Rev Drug Discov 3: 330–339.

Potential TLR Mediation Targets

PLoS Computational Biology | www.ploscompbiol.org 13 February 2009 | Volume 5 | Issue 2 | e1000292



60. Rojo LE, Fernandez JA, Maccioni AA, Jimenez JM, Maccioni RB (2008)

Neuroinflammation: implications for the pathogenesis and molecular diagnosis
of Alzheimer’s disease. Arch Med Res 39: 1–16.

61. Sims AM, Timms AE, Bruges-Armas J, Burgos-Vargas R, Chou CT, et al.

(2008) Prospective meta-analysis of interleukin 1 gene complex polymorphisms
confirms associations with ankylosing spondylitis. Ann Rheum Dis 67:

1305–1309.
62. Ghosh S, Hayden MS (2008) New regulators of NF-kB in inflammation. Nat

Rev Immunol 8: 837–848.

63. Ropert C, Franklin BS, Gazzinelli RT (2008) Role of TLRs/MyD88 in host

resistance and pathogenesis during protozoan infection: lessons from malaria.

Semin Immunopathol 30: 41–51.

64. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, et al. (2008) Pyogenic

bacterial infections in humans with MyD88 deficiency. Science 321: 691–696.

65. Loiarro M, Capolunghi F, Fanto N, Gallo G, Campo S, et al. (2007) Pivotal

advance: inhibition of MyD88 dimerization and recruitment of IRAK1 and

IRAK4 by a novel peptidomimetic compound. J Leukoc Biol 82: 801–810.

Potential TLR Mediation Targets

PLoS Computational Biology | www.ploscompbiol.org 14 February 2009 | Volume 5 | Issue 2 | e1000292


