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Abstract
Cognitive control is required in situations that involve uncertainty or change, such as when

resolving conflict, selecting responses and switching tasks. Recently, it has been suggested

that cognitive control can be conceptualised as a mechanism which prioritises goal-relevant

information to deal with uncertainty. This hypothesis has been supported using a paradigm

that requires conflict resolution. In this study, we examine whether cognitive control during

task switching is also consistent with this notion. We used information theory to quantify the

level of uncertainty in different trial types during a cued task-switching paradigm. We test

the hypothesis that differences in uncertainty between task repeat and task switch trials can

account for typical behavioural effects in task-switching. Increasing uncertainty was associ-

ated with less efficient performance (i.e., slower and less accurate), particularly on switch tri-

als and trials that afford little opportunity for advance preparation. Interestingly, both mixing

and switch costs were associated with a common episodic control process. These results

support the notion that cognitive control may be conceptualised as an information processor

that serves to resolve uncertainty in the environment.

Introduction
Cognitive control over thoughts and actions facilitates adaptation to our often uncertain envi-
ronment, by enabling selective, goal-directed behaviours (e.g., [1–4]). Models of cognitive con-
trol posit a multi-process mechanism, subserved by complex frontal networks and activated
under a range of contexts that require choice under conflict. These contexts can include detect-
ing and resolving conflict [1], selecting responses, shifting between tasks, updating relevant
rules [3,5], and learning novel associations [6].

Recently, Mackie, Van Dam & Fan (2013) [7] proposed that prioritisation of information
processing may be the overarching mechanism by which cognitive control facilitates goal-
directed behaviour. Given the limited capacity of the human attentional system, offering goal-
relevant information privileged access to processing may contribute to efficient allocation of
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cognitive resources. Brain networks associated with cognitive control are consistent with privi-
leged access through complementary systems. For instance, sustained control under demand-
ing conditions is linked to sustained activity in medial frontal and insular regions, whereas
transient control associated with rapidly changing goals is linked to activity in a distributed
frontoparietal network [8–10]. Mackie and colleagues argue that when multiple actions are
possible, a process of prioritisation may ensure that relevant information is processed expedi-
ently. As the number of action alternatives increases, so does the level of uncertainty, resulting
in greater need for prioritisation. Many cognitive control paradigms involve high levels of
uncertainty often as a result of conflict between multiple stimulus or response properties (e.g.,
distracting stimuli dimensions in Stroop tasks). Prioritising goal-relevant information in these
tasks (e.g., word colour) may reduce uncertainty by limiting the influence of any additional
conflicting features (i.e., word name).

From an information theory perspective, uncertainty is a measure of the information
entropy that a given signal contains (c.f. [11]). More specifically, greater uncertainty arises
from higher entropy or disorder within a signal. The level of entropy in a signal is typically
measured in bits and is proportional to the number of possible states the signal could exist in.
This is formalised in Eq 1:

HðXÞ ¼ �
Xn

i¼1

pðxiÞlog2pðxiÞ ð1Þ

Here, the entropy (Η) of X is equal to the sum of the probability mass functions (p(Xi)log2p
(xi)) for each possible value of X. As an example, consider two possible sets as below:

f x x x x x g fy y x y y g

In the first set, there is certainty that element x will be selected at random (i.e., probability of
x being selected is 1) and so the entropy of x is zero. In the second set, the chance that x will be
chosen randomly is only 0.2, giving x an entropy value of 2.32 bits. Therefore, in the first set, as
the probability of selecting x is high and entropy is low, choosing x requires little information
processing. However, in the second set, the probability of selecting x is low and entropy is high.
Hence, selecting x requires an additional computational load to prioritise processing of relevant
information. Thus, the concept of entropy may be useful in quantifying the computational load
required to bring the system to the desired end-state.

Information entropy can be applied to typical interference paradigms (e.g., flanker tasks),
by conceptualising interference as producing uncertainty and cognitive control as a computa-
tional mechanism that prioritises processing of information to resolve this uncertainty. For
instance, in the example above, the two sets could be imagined as trials with congruent and
incongruent flankers, respectively. The latter has greater entropy and hence cognitive control is
required to prioritise processing of the central position in order to increase the probability that
x will be selected. Fan, Guise, Liu, and Wang (2009) [12] used a Majority Function Task
(MFT), where participants decide which direction the majority of arrows are facing, to quantify
entropy as a function of arrow set size and congruence (the ratio of left vs. right pointing
arrows). Reaction time increased linearly with congruence but not stimulus set size, so that
high information entropy (i.e., small difference between the number of left and right pointing
arrows) produced longer RTs irrespective of set size. This finding is consistent with the argu-
ment that increased entropy leads to more uncertainty and consequently the need for greater
computational load to achieve the desired end-state. If cognitive control involves prioritising
information to achieve task goals, the additional computational requirements for low congru-
ence stimuli should manifest as longer RT (or processing time), as is seen in these data.
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In this study, we examine whether this information-processing framework is also consistent
with the variability in need for cognitive control within the context of task-switching paradigms.
Dual modes of control models (e.g., [2]) argue that cognitive control can be activated both proac-
tively, e.g., setting up the system in anticipation of a change in goal (proactive control) and reac-
tively, e.g., to control interference and implement the goal (reactive control). Most interference
paradigms (e.g., MFT, flanker) require reactive cognitive control. However, the task-switching
paradigm requires both proactive and reactive cognitive control modes. Task-switching para-
digms provide two indices of cognitive control. When alternating between two tasks in the same
block of trials (i.e., mixed-task block), switch trials have slower RT and higher error rate than
repeat trials (see [13–14]). This switch cost is at least partially attributed to a transient increase in
cognitive control on switch trials in order to deal with the need to update goals and implement
the new task set. Repeating the same task in a mixed-task block also has a cost compared to
repeating in a single-task block. Thismixing cost is at least partially attributed to a sustained
increase in proactive cognitive control on mixed-task vs. single-task blocks. In the cued-trials var-
iant of the task switching paradigm, a cue is presented prior to target onset and validly signals
whether to switch or repeat task. Given a sufficiently long cue-target interval (CTI), proactive
control can prepare the system to switch or repeat task in anticipation of target onset, resulting in
a reduction in both switch cost and mixing cost. However, even with long CTIs, a residual cost
remains, indicating that the need for reactive control to deal with target-driven interference pro-
cesses (see [15,16]). Further, varying the information provided by the cue and the degree of con-
flict elicited by the target can manipulate the degree of task certainty at target onset. Thus, the
cued-trials task-switching paradigm is well-suited to quantify the role of uncertainty on both pro-
active, preparatory control processes and target-driven, reactive processes.

In the task-switching paradigm used here, the opportunity for proactive control was manip-
ulated by varying the information value of the cue, whereas the need for reactive control was
manipulated by varying level of interference at target onset (Fig 1; [17]). Experiment 1 manipu-
lates the level of task certainty provided by the cue, so that different cues afford different oppor-
tunity for proactive control. Experiment 2 also manipulates the level of task certainty at target
presentation, so that there is a greater need for reactive control than in Experiment 1. This
resulted in various combinations of cue-level and target-level information entropy. The aim of
this paper is to determine if variations in task uncertainty that impact on either the opportunity
for proactive control or the need for reactive control contribute to behavioural costs and may
therefore be suggestive of information prioritisation. We predicted that information entropy
arising either because of differences in the level of preparation afforded by the cue (proactive
control) or differences in task interference arising from the target (reactive control) would
influence behavioural performance during task-switching. Specifically, if fully informative cues
(i.e., cues that identify the upcoming task and allow advance task uploading) result in less
entropy than partially informative or non-informative cues, they should be associated with less
computational requirements and thus have faster RT and increased accuracy. Likewise, if
ambiguous targets have high entropy (i.e., because they do not explicitly signal the relevant
task), they will require higher computational allocation and result in slower RT and lower accu-
racy than unambiguous targets. These relationships between behavioural performance and
information entropy would then account for switch cost andmixing costs in task-switching.

Methods

Participants
Experiment 1 included ninety-four community volunteers (mean age 23.76 ± 5.44 SD, range
17–35 years, 34 male) and Experiment 2 included 19 undergraduate students (mean age
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Fig 1. Cued-trial task switching paradigm. A) Timeline of a specific trial. Response-cue interval (RCI) and cue-target interval are fixed at 400 ms and 1000
ms, respectively. On each trial, the cue highlights two of the six segments of the circle and indicates that the target will appear in one of these two segments.
In this instance, the cue covers both ‘letter task’ segments, and the participant can prepare to apply the ‘letter’ task rules on the upcoming target. When the
target (e.g., A4) appears in a letter task segment, participants must respond to the task-relevant feature of the target (e.g., the letter A is a vowel, respond with
left hand), and ignore the task-irrelevant feature of the target (e.g., the number 4). B) The progression from trial N-1 to trial N defines the trial type. i) If, having
completed the letter task on trial N-1, the same segment is highlighted on trial N, it is a repeat trial and the participant will repeat the letter task. ii) If the cue
highlights both segments of one of the other tasks, it is a switch-to trial. The target will appear in one of the two highlighted segments, and the participant can
use the CTI to update the new task rules (e.g., digit task, in this example). iii) If the cue highlights adjoining segments of the two tasks not completed on trial
N-1 (e.g., digit and color), it is a switch-away trial. The target is equally likely to appear in the digit and color segments and the participant can prepare to
switch task (e.g., not repeat the letter task), but does not know which task to upload until the target appears. The position of the target indicates which task to
complete. iv) If the cue highlights one segment from the task completed on trial N-1 (e.g., letter task) and one from another task (e.g., digit task), it is a non-
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19.42 ± 1.67 SD, range 18–24 years, 1 male). All participants reported no current psychiatric or
neurological disorder.

Ethics Statement
Both studies were approved by the University of Newcastle Human Research Ethics Committee
(H-2012-0157), and complied with the Declaration of Helsinki. All participants provided
informed written consent (approved by the University of Newcastle’s Human Research Com-
mittee) prior to participation in the respective studies and written parental consent was
obtained for participants under 18 years of age.

Task and Stimuli
For both experiments, participants were continuously presented a dark grey circle (5° visual
angle) divided into six wedges. Pairs of adjacent wedges were marked with thicker lines to
denote three task sections: letter, digit, and colour (Fig 1; see [17]). The target was a pair of
characters consisting of combinations of a letter, a digit or a non-alphanumeric symbol and
was presented either in grey or in colour. Each target (e.g., grey A4) consisted of three dimen-
sions: one relevant to the currently cued task (e.g., the letter A mapped to left hand response),
one selected randomly from one of the two alternative tasks and incongruently mapped with
the relevant task (e.g., the digit 4 mapped to right hand response) and one that was neutral
(e.g., letter and digit presented in grey that was not mapped to any response). In this way, tar-
gets always comprised identical levels of uncertainty regardless of trial type. The same target
could not appear on successive trials.

One of four possible cue types preceded each target presented with equal probability in a
pseudo-random sequence (i.e., same cue type was not repeated on more than four consecutive
trials; Fig 1). The target always appeared in one of the two adjacent segments highlighted by
the cue. Repeat cues indicated that the same task would be repeated. Switch-to cues indicated
that the task would change and defined the new task. Switch-away cues indicated that the task
would change, but did not specify which of the other two tasks would be relevant (i.e., the cue
overlapped two segments mapped to tasks that were not relevant on the previous trial). Non-
informative cues indicated that a switch or a repeat trial was equally likely (i.e., the cue over-
lapped two segments, one mapped to the previously relevant task and the other to a task that
was not relevant on the previous trial). For both switch-away and non-informative cues, only
the location of the target defined which task would be performed. Non-informative cues
resulted equiprobably in a switch or a repeat trial.

Experiment 2 used an identical task, but with greater interference at target onset. As shown
in Fig 1D, the target contained both the imperative stimulus (a bivalent stimulus which was rel-
evant to the cued task and that required a response) and a distractor (a bivalent stimulus which
was not relevant to the cued task and needed to be ignored). The distractor appeared in one of
the non-cued task areas and comprised an additional pair of characters. The task-relevant fea-
ture of the distractor (e.g., the digit 4 if the distractor was in the digit segment) corresponded to
the opposite hand of response to the target feature (e.g. the letter A in the letter segment, see
Fig 1D). Hence, Experiment 2 had the same variation in entropy across trial types for the

informative trial. The target is equally likely to appear in the letter or the digit segment, and require either a repeat (non-informative repeat) or a switch (non-
informative switch) in task. C) Each major segment of the wheel is consistently mapped to one of the three tasks: letter, digit and color. The table shows the
eight exemplars used for each task and an example of stimulus-response mappings. D) Exemplar differences between a repeat trial for Experiment 1 and
Experiment 2, whereby an additional bivalent distractor is presented at target onset in a non-cued section of the wheel during Experiment 2.

doi:10.1371/journal.pone.0131556.g001
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imperative stimulus as Experiment 1, but greater entropy at target onset as a result of the
distractor.

Procedure
Participants received training on both single-task and mixed-task blocks (a total of 1320 across
both training sessions) in order to minimise learning effects on performance in the experimen-
tal session. The first training session was no longer than 14 days prior to the experimental ses-
sion, and the second immediately preceded the experimental session. In Experiment 1, the
experimental session consisted of ten mixed-task blocks (72 trials, plus five warm-up trials, per
block) and three single-task blocks (48 trials, plus five warm-up trials, per block; one block per
task). The single-task blocks were presented successively in a fixed order (e.g., letter, digit, col-
our) and were positioned randomly among the 10 blocks of the mixed-task sequence.

Each trial began with a cue that was replaced by the target (CTI 1000 ms). The target
remained on screen until a response was issued or 5000 ms had elapsed. Errors were followed
by a feedback tone. After each block, RT and accuracy feedback were provided and participants
were encouraged to use this to maximise performance. A longer break was provided mid-way
through testing to minimize fatigue. In Experiment 2, participants performed twelve mixed-
task and three single-task blocks.

Data Analyses
Warm-up trials and trials with RT less than 200 ms or more than three standard deviations
above a participant’s mean RT were excluded from analyses. Following Fan et al. (2009) [12],
we analysed RT and accuracy separately for Experiments 1 and 2. Note, task efficiency (i.e.,
accuracy/RT (in seconds)) produced results consistent with our other behavioural measures
and with those of [12]. Behavioural data were extracted using MATLAB 2011b (The Math-
works Inc.) and statistical analyses undertaken in SPSS 21 (IBM). Data were analysed using a
one-way repeated measures ANOVA with 6 levels of trial type and Greenhouse-Geisser correc-
tions. To examine differences between switch and repeat trials as well as the use of informative
cues, we performed the following planned contrasts on behavioural data: single-block-repeat
vs. mixed-repeat, mixed-repeat vs. switch-to, mixed-repeat vs. non-informative repeat, switch-
to vs. switch-away, switch-to vs. non-informative switch, switch-away vs. non-informative
switch and non-informative repeat vs. non-informative switch. Bonferroni corrections were
applied to these planned comparisons (.05/7 = p< .007).

Analysis of task switching mental operation algorithms
To determine if differences in entropy during cued-trials task switching could account for dif-
ferences in performance, we computed the information entropy for each trial type in both
experiments. We adopted the algorithms proposed by [3] that quantify information entropy
associated with cognitive control (Eq 2)

HðaÞ ¼ Iðs; aÞ þ QðajsÞ ð2Þ
where the total amount of information required for selecting an action H(a) is equal to the sum
of the information entropy associated with sensorimotor processes I(s,a), (s, stimulus and a,
action) and cognitive control Q(a|s). These sensorimotor processes correspond to the amount
of information that is exchanged between a stimulus (s) and the action (a). In the task-switch-
ing paradigm, the well-mapped information corresponding to target features and the appropri-
ate response to be executed can be considered using sensorimotor control processes. Further,
within cognitive control, Koechlin and Summerfield distinguish between information
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associated with contextual control (i.e., a context signal like a cue) and that associated with epi-
sodic control (i.e., previous events) as shown in Eq 3:

QðajsÞ ¼ Iðc; ajsÞ þ Qðajs; cÞ ð3Þ
where contextual control I(c, a|s)measures the total amount of entropy conveyed by contextual
signals c independent of s; and episodic control Q(a|s, c)measures the remaining entropy asso-
ciated with past events independent of contextual signals. In task-switching, contextual control
is captured by cues that provide information about the upcoming task whereas episodic control
is other information provided in addition to these cues. For instance, in task-switching, the pre-
vious trial provides additional information beyond the cue to influence performance. That is, a
repeat trial is defined not only by the contextual cue (e.g., a letter task) but by the information
carried over by the previous trial (i.e., a letter task was just performed).

Application of algorithm to other task switching studies
In order to examine the generality of the model, we applied the above algorithm to other stud-
ies that use variants of the cued-trials task switching paradigms. We searched the literature
using PUBMED, ScienceDirect, PsychInfo, PsychArticle, PsychExtra and Google Scholar data-
bases with terms “TASK SWITCHING”, “TASK SWITCHING AND CUE” and “SWITCH
COST AND CUE” to find other cued-trials task switching paradigms published between Janu-
ary 2000 and December 2013. Studies were included if: 1) the target was preceded by a cue, 2)
trials were not presented in a predictable order (i.e., either random or pseudorandom presenta-
tion), 3) the study reported mean RTs and 4) the paradigm did not include additional cognitive
manipulations (e.g., a cued-trials task switching paradigm which included no-go trials). These
criteria allowed us to compute uncertainty for switch and repeat trial types using the mental
algorithm presented here. We report the regression values and study characteristics. Note that,
for simplicity of analysis given a broad range of CTIs, a CTI of less than 200 ms was classified
as a non-informative condition (nb. this applied to the following studies: [18–24]). Addition-
ally, for [25] we merged the data from the younger age groups into a single young age group.

Results

Behavioural Results
For Experiment 1, there were significant main effects of trial type for mean RT and accuracy
(F(5,465) = 307.53, p< 0.001, F(5,465) = 16.42, p< .001, respectively). As shown in Table 1,
there was a significant difference between repeat trials on single-task and mixed-task blocks
on RT (t(93) = -12.31, p< .001) but not accuracy. Mixed-repeat trials were faster than both
switch-to (RT; t(93) = -11.32, p< .001) and non-informative repeat trials (RT; t(93) = -16.66,
p< .001). Fully informative switch trials (i.e., switch-to) were faster than partially informative
switch trials (i.e., switch-away; RT; t(93) = -21.4, p< .001) and non-informative switch trials
(RT; t(93) = -18.31, p< .001). There were no significant differences between switch-away and
non-informative switch trials for RT, but the former were more accurate (t(93) = 5.76, p< .001).

For Experiment 2, there was a significant main effect of trial type on RT (F(5,90) = 88.93,
p< 0.001), but not on accuracy (see Table 2). Despite having a much smaller sample size than
Experiment 1, Experiment 2 produced highly compatible RT outcomes. RT was faster for
repeat trials in single-task than mixed-task blocks (t(18) = -5.73, p< .001). Mixed-repeat trials
were faster than both switch-to (t(18) = -6.08, p< .001) and non-informative repeat trials (t
(18) = -8.59, p< .001). Fully informative switch trials (i.e., switch-to) were also faster than par-
tially informative switch (i.e., switch-away; RT; t(18) = -10.69, p< .001) and non-informative
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switch (t(18) = -11. 43, p< .001) trials. Finally, non-informative repeat trials were faster than
non-informative switch trials (t(18) = -5.03, p< .001).

Information Entropy
Entropy was determined for each trial type across both experiments using Koechlin & Sum-
merfield’s (2007) [3] cognitive control algorithms. Table 3 shows the implementation of these
algorithms and the resulting information entropy for each condition. Following [12], each
component of the control algorithm was provided a representative value to reflect level of
input for each of the three factors considered by the algorithm (i.e., sensorimotor, contextual
and episodic control). For example, for repeat trials in single-task blocks in Experiment 1, there
is one level of input into the contextual stage (i.e., one task is cued) and two levels of sensorimo-
tor input (i.e., one task-relevant feature of the target to process, and one response hand based
on that target feature). In comparison, for repeat trials in the single-block in Experiment 2,
there are four levels of input for the sensorimotor component, as there were two combinations
possible depending on appropriate use of the contextual cue (i.e., two inputs associated with
the target and two with the distractor). Note that these values represent the amount of input
rather than a specific parameter that is extracted for the algorithm, so that an input of zero
does not represent a complete lack of input. As such, in the single-task block, episodic demands
are limited as the same task is repeated and thus task-set maintenance across a block can be
represented by a zero value for episodic control.

As seen in Table 3, information entropy for each condition in Experiment 1 was smaller
than the equivalent condition in Experiment 2 because in the latter paradigm, the distractor
caused additional sensorimotor entropy. Moreover, within each experiment, repeat trials in
mixed-task blocks had higher entropy than repeat trials in single-task blocks; switch trials had
higher information entropy than repeat trials in mixed-task blocks and partially informative
(switch-away) and non-informative trials had higher entropy than fully informative trials
(repeat and switch-to trials).

Table 1. Task switching RT (ms) and accuracy (%) with standard error (SE), for all conditions in the standard task switching paradigm.

Block Condition RT ± SE (ms) Accuracy ± SE (%)

Single Repeat 570 ± 8.5 98.9 ± 0.1

Mixed Repeat 673 ± 14.48 97.9± 0.2

Switch-to 796 ± 20. 93 96.6 ±0.2

Switch-away 918 ± 20.14 96.0 ± 0.2

Non-informative repeat 782 ± 13.36 97.2 ±0.2

Non-informative switch 923 ± 20.46 95.3 ±0.3

doi:10.1371/journal.pone.0131556.t001

Table 2. Task switching RT (ms) and accuracy (%) with standard error (SE), for all conditions in the distractor task switching paradigm.

Block Condition RT ± SE (ms) Accuracy ± SE (%)

Single Repeat 597 ± 19 97.4 ± 0.3

Mixed Repeat 709 ± 30.8 97.1 ± 0.2

Switch-to 837 ± 47.3 96.9 ± 0.4

Switch-away 1022 ± 52.2 96.8 ± 0.4

Non-informative repeat 889 ± 41.4 97.3 ± 0.3

Non-informative switch 1004 ± 48 96.6 ± 0.4

doi:10.1371/journal.pone.0131556.t002
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We performed linear regression for the average behavioural performance within each trial
type and information entropy to determine if higher uncertainty affected behavioural perfor-
mance in a manner consistent with greater computational requirements (or cognitive control;
i.e., slower RT and reduced accuracy). For both experiments, increasing entropy was associated
with longer RT (Experiment 1: Fig 2A, r2 = .934, p = .002; Experiment 2: Fig 2B, r2 = .924,
p = .002) and lower accuracy (Experiment 1: Fig 3A; r2 = .886, p = .005; Experiment 2: Fig 3B,
r2 = .701, p = .038). The pattern of outcomes was very similar across experiments, but the

Table 3. Mental operation algorithms and equivalent entropy values (bits) for the standard and distractor task switching paradigms.

Block Condition Sensorimotor Control Cognitive Control Bits (log2)

Sensorimotor Contextual Episodic

Single SBR 2 1 0 1

SBR-D 4 1 0 2

Mixed MR 2 1 1 2

MR-D 4 1 1 3

ST 2 1 2 2.58

ST-D 4 1 2 3.58

SA 2 2 2 3

SA-D 4 2 2 4

NR 2 2 1 2.58

NR-D 4 2 1 3.58

NS 2 2 2 3

NS-D 4 2 2 4

Note: SBR; Single Block Repeat, MR; Mix Repeat, ST; Switch To, SA; Switch Away, NR; Non-informative Repeat, NS; Non-informative Switch. Trials from

Experiment 2 are denoted by-D (i.e., distractor).

doi:10.1371/journal.pone.0131556.t003

Fig 2. Reaction time as a function of information entropy for each trial type in A) the standard, and B) the distractor cued-trials task switching
paradigms. Information processing requirements (in bits) were assumed to differ based on an increased entropy for mixed blocks in contrast to single
blocks, with the addition of an extra degree of uncertainty for switching within a mixed-task block. The above algorithm strongly predicted mixing and switch
costs for RT in both Experiment 1 (A: r2 = .934, p = .002) and Experiment 2 (B: r2 = .924, p = .002). SBR; single block repeat, MR; mixed repeat, ST; switch-to,
SA; switch-away, NR; non-informative repeat, NS; non-informative switch. –D denotes distractor paradigm trials.

doi:10.1371/journal.pone.0131556.g002
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relationship between entropy and accuracy was weaker in Experiment 2. Given the large differ-
ences in sample sizes between experiments (i.e., Experiment 1, n = 94; Experiment 2, n = 19),
we also performed these analyses with a smaller subset of participants from Experiment 1,
matched for age with Experiment 2 (n = 19; mean age 19.68 ± 1.8; 10 female, 9 male). Using
this smaller subset, we found comparable results with the larger sample, with a significant rela-
tionship between entropy and RT (r2 = .964, p< .001) and entropy and accuracy (r2 = .885,
p = .005).

Notably, in both experiments, switch-to trials had higher RT, lower accuracy and higher
information entropy than mixed-repeat trials. Likewise, mixed-repeat trials had longer RTs,
lower accuracy and higher information entropy than single-block-repeat trials. Therefore, both
switch cost (switch-to vs. mixed-repeat trials) and mixing cost (mixed-repeat vs. single-block-
repeat trials) were associated with differences in information entropy between conditions.

Does this algorithm fit task-switching performance in other studies?
As shown in Figs 2 and 3, information entropy very consistently predicted behavioural perfor-
mance in Experiments 1 and 2. Next, we examined whether the above algorithm can fit the
results of other studies using variants of the cued-trials task-switching paradigm. As regression
analyses indicated that the most robust association between behavioural performance and
entropy was for RT, we restricted analyses to RT only. Table 4 lists RT from 20 experiments
reported in 12 studies using a cued-trials task-switching paradigm, with a brief description of
the study characteristics.

Entropy value was determined using the algorithm developed in this study and the final col-
umn shows the adjusted R2 values for each experiment. Information entropy was a good pre-
dictor of RT in all experiments. The average adjusted R2 value was .733 (+/-.19 SD); 50% of
studies had an R2 value above 0.75 and only three experiments had a value below 0.5 (but still
greater than 0.4). Therefore, just as information entropy was able to predict behavioural perfor-
mance across our two task-switching experiments the results from many other task-switching
studies can also be interpreted within the information entropy framework employed here.

Fig 3. Accuracy as a function of information entropy for each trial type in A) the standard, and B) the distractor cued-trials task switching
paradigms. As with RT, information entropy (bits) strongly predicted behavioural performance for both Experiment 1 (A: r2 = .886, p = .005) and Experiment 2
(B: r2 = .701, p = .038). SBR; single block repeat, MR; mixed repeat, ST; switch-to, SA; switch-away, NR; non-informative repeat, NS; non-informative switch.
–D denotes distractor paradigm.

doi:10.1371/journal.pone.0131556.g003
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Table 4. Modelling of task switching mental algorithm to cued-task switching paradigms.

Experiment Switch Classification
Types

Subgroup N Mean Age (±
SD)

Condition
(CTI)

RT
(ms)

Entropy
(bits)

R2

adj
SE

Braver et al. (2003) [26] Judgement: (artificial/natural) 13 21 (range: 19–
26)

SBR (2500) 969 1 .971 13.68

Magnitude: (large/small) MR 1053 2

S 1129 2.58

Braverman & Merian
(2010) [27]

Spatial location: (up/down vs.
left/right)

Experiment 1 16 - .64 51.42

Low conflict MR (1000) 538 2

S 550 2.58

NR (100) 655 2.58

NS 706 3

High conflict MR (1000) 587 2.58

S 608 3

NR (100) 721 3

NS 774 3.32

Experiment 2 .524 75.9

Low conflict MR (1000) 435 2

S 452 2.58

NR (100) 577 2.58

NS 642 3

High conflict MR (1000) 524 2.58

S 485 3

NR (100) 696 3

NS 719 3.32

Experiment 3 .441 66.04

Low conflict MR (1000) 424 2

S 426 2.58

NR (100) 552 2.58

NS 562 3

Goffaux et al. (2006)
[28]

Judgement: (non/living) 20 24.5 (3.4) SBR (1180) 550 1 .991 14.03

Size: (large/small) MR 748 2

Breadth: (wide/narrow) S 837 2.58

Grange & Houghton
(2010) [18]

Iconic: (shape) 32 - MR (900) 529 2 .525 51.41

Word: (word) S 544 2.58

NR (100) 640 2.58

NS 683 3

Jost et al. (2008) [29] Colour: (blue, red, green or
yellow)

16 22 SBR (1000) 703 1 .666 76.4

Shape: (circle, triangle,
square or cross)

MR 779 2

S 813 2.58

NR (200) 906 2.58

NS 1047 3

Kray (2006) [19] Category: (animal/not) Young adults 16 21 (2.4) .884 26.75

Syllable: (one/two) CTI 400 SBR (400) 563 1

MR 707 2

S 803 2.58

(Continued)
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Table 4. (Continued)

Experiment Switch Classification
Types

Subgroup N Mean Age (±
SD)

Condition
(CTI)

RT
(ms)

Entropy
(bits)

R2

adj
SE

CTI 750 SBR (750) 599 1

MR 699 2

S 740 2.58

CTI 2300 SBR (2300) 632 1

MR 727 2

S 757 2.58

Meriran et al. (2000)
[20]

Spatial location: (up/down vs.
left/right)

Congruent 10 - MR (232) 571 2 .743 28.52

S 653 2.58

MR (432) 570 2

S 608 2.58

MR (1032) 533 2

S 592 2.58

MR (3032) 570 2

S 617 2.58

NR (132) 619 2.58

NS (132) 735 3

Incongruent 10 - MR (232) 613 2 .663 33.07

S 736 2.58

MR (432) 626 2

S 684 2.58

MR (1032) 606 2

S 651 2.58

MR (3032) 627 2

S 637 2.58

NR (132) 668 2.58

NS (132) 782 3

Merian & Daichman
(2005) [21]

Spatial location: (up/down vs.
left/right)

Unspeeded 12 - MR (600) 523 2 .41 46.59

S 517 2.58

MR (2500) 500 2

NR (100) 577 2.58

NS 656 3

Speeded MR (600) 471 2 .443 42.91

S 470 2.58

MR (2500) 471 2

NR (100) 474 2.58

NS 609 3

Nessle et al. (2012)
[22]

Digit magnitude: (greater/less
than 5)

Infrequent
switch

16 25.4 (range:
18–30)

SBR (1300) 496 1 .797 62.81

Digit parity: (odd/even) MR 602 2

S 663 2.58

NR 715 2.58

NS 872 3

Frequent
switch

SBR (1300) 496 1 .861 48.24

MR 611 2

(Continued)
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Discussion
The current study aimed to determine if information entropy could account for behavioural
costs during task-switching under conditions that emphasise proactive control or both proac-
tive and reactive control. Increasing uncertainty (quantified as information entropy in bits)
was associated with longer RT and reduced accuracy, consistent with increased computational
demands on the control system. Furthermore, switch cost andmixing cost, the specific indices
of cognitive control implementation in task-switching paradigms, varied as a function of sys-
tematic differences in information entropy between trial types. This increased entropy for
switch trials was evident in both the task-switching paradigms used here, as well as in other
studies using cued-trials task switching. In conclusion, our results show that information prior-
itisation to resolve task uncertainty can account for task-switching performance and thereby
support the notion of cognitive control as a process of information prioritisation (see [7,30]).

Information theory predicts that increased entropy or uncertainty results in greater need for
information processing which results in longer computation times (e.g., longer RT [31]) and/
or greater energy requirements (e.g., greater brain activation, [32]). In this study, higher levels
of entropy resulted in an increase in computation times (i.e., longer RT), consistent with the
notion of an active information processor being increasingly engaged with higher uncertainty.
The current findings are consistent with recent studies suggesting a relationship between infor-
mation entropy and need for cognitive control ([7,12,33,34]). To our knowledge, this is the
first study to show that information entropy can explain behaviour under both proactive and
reactive modes of cognitive control.

Table 4. (Continued)

Experiment Switch Classification
Types

Subgroup N Mean Age (±
SD)

Condition
(CTI)

RT
(ms)

Entropy
(bits)

R2

adj
SE

S 665 2.58

NR 745 2.58

NS 836 3

Ruge et al. (2005) [23] Spatial location: (up/down vs.
left/right)

18 25.5 (range:
21–35)

MR (2000) 554 2 .653 38.32

S 573 2.58

NR (100) 616 2.58

NS 700 3

Terry & Sliwinski
(2012) [24]

Digit magnitude: (greater/less
than 5)

Young 26 18.4 (1.1) SBR (100) 599 1 .969 54.18

Digit parity: (odd/even) NR 1010 2.58

NS 1206 3

Old 25 80.3 (5.4) SBR (100) 790 1 .994 38.66

NR 1523 2.58

NS 1778 3

Whitson et al. (2012)
[25]

Letter: (vowel/consonant) Young 45 29 (range 18–
40)

SBR (1000) 631 1 .821 73.6

Digit: (odd/even) MR 748 2

S 848 2.58

NR (150) 929 2.58

NS 1089 3

doi:10.1371/journal.pone.0131556.t004
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Episodic control influences on task-switching
A comparison between information content of subcomponents of cognitive control and task-
switching performance is possible using Koechlin and Summerfield’s (2007) [3] control algo-
rithm. While regression analyses showed a linear increase in RT (and decrease in accuracy)
with increasing information entropy across both experiments, the amount of information con-
tent in subcomponents of control also varied between trial types. For instance, contextual con-
trol differences (i.e., opportunity to prepare for a task using the cue) were apparent between
conditions with different RTs (e.g., mixed-repeat (informative) trials had less contextual
entropy and were faster than non-informative repeat trials; Fig 2A), suggesting that informa-
tion content during the preparation interval can influence performance. Likewise, in agreement
with Hick-Hyman Law [35], performance in Experiment 1 was generally faster than in Experi-
ment 2, in which additional sensorimotor processing was required at target onset to overcome
distractors.

Interestingly, behavioural switch costs (i.e., switch—repeat) had corresponding differences
in information entropy associated with the need for episodic control. By definition, task repeti-
tion requires control processes associated with maintaining the previous task set, and these
cannot be captured by contextual or sensorimotor control. Switching between tasks requires
additional processes that are dependent on episodic control (e.g., disengagement of previous
task set). Thus, entropy differences between repeat and switch trials can be driven by episodic
control and may play a key role in the behavioural switch cost. Likewise, mixing costs may
arise from episodic control differences between repeating in single task and mixed blocks. Epi-
sodic control demands are lower when repeating in a homogenous block, as the high level of
predictability should lower the need to continuously maintain or manipulate previous task set
characteristics on the current trial. Therefore, differences in the need for episodic control
between repeat trials in mixed-task and single-task blocks, as well as between switch and repeat
trials in mixed-task blocks, may underscore a common process to both the mixing and switch
cost.

Previous work has shown thatmixing and switch costs are not independent processes (e.g.,
see [36, 37]). For example, inter-trial interference in mixed-task blocks may account for the
magnitude of both switch cost and mixing cost (e.g., [14]). Likewise, working memory pro-
cesses, such as maintenance of multiple task sets or trial-by-trial retrieval of task rules [38,39],
differ between single-task and mixed-task blocks. Episodic control information entropy is com-
patible with these previous accounts of switch and mixing costs. For instance, task-set carry-
over effects, like passive task-set decay (e.g., [20,40]) can result in differential demand for an
episodic control process in single-task and mixed-task blocks. This difference can be captured
through information entropy of episodic control, so that repeating in a mixed-task block has
higher entropy than in a single-task block. Similarly, within mixed-task blocks, repeat trials
require only maintenance of the task-set whereas switch trials require the previous task-set to
be disengaged and the current one uploaded. These differences in trial-by-trial processes can
also be captured by episodic control entropy. Thus entropy differences in episodic control pro-
cesses may fit well within previous cognitive accounts of task-switching dynamics and offer a
novel insights into cognitive control.

Information entropy captures situational factors influencing control
The current study provides further evidence that need for cognitive control may relate to situa-
tional differences in information entropy. Increasing entropy has previously been shown to
arise in situations that models of cognitive control often refer to as conflict [1], i.e., situations
that require a choice in the presence of multiple alternatives. Typically, these instances of
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conflict are conceptualised as competition between two or more possible goals, wherein the
control system is employed to resolve this conflict. Information theory models of cognitive
control can account for these instances of conflict (e.g., the bivalency of the targets in the cur-
rent study or stimulus features in [7,12]) by arguing that conflict results in increased entropy,
which can be overcome by prioritisation of resources. In the present study, we show that
entropy differences also exist in contexts that are not typically associated with conflict, such as
using contextual cues to prepare for a task. This novel insight extends the relevance of entropy
models of control beyond conflict-based contexts [1].

Increased entropy arising from both contextual cueing and conflict fits well with models of
cognitive control that invoke dual modes of control (DMC; [2]), i.e., proactive and reactive pro-
cesses, in the flexible adjustment of behaviour. Braver [2] suggests that situational factors can
change the balance and prioritise the use of one control mode over the other. In the current
context, differences in performance between trial types result from differential use of proactive
vs. reactive control processes. For instance, the performance difference between informative
repeat trials (i.e.,mixed-repeat) and non-informative repeat trials can be explained by a differ-
ence in the opportunity to use preparatory control processes and was captured well by a differ-
ence in information entropy during contextual control. By quantifying the levels of entropy
during proactive (e.g., contextual) and reactive (e.g., sensorimotor) control, information theory
mechanisms of control are well aligned within DMC frameworks.

However, the fact that partially informative (switch-away) and non-informative switch trials
had the same entropy and resulted in similar level of performance, is seemingly at odds with
DMC: the opportunity for partial preparation for switch-away trials should have resulted in
less entropy and better performance. In previous work using formal models of decision-mak-
ing, we have shown that, in line with DMC, switch-away and non-informative switch trials do
in fact differ in decision parameters that contribute to RT. Specifically, switch-away trials had a
higher response threshold and lower non-decision time [17] than non-informative switch tri-
als, consistent with proactive control increasing cautiousness but reducing non-decision pro-
cesses. Yet, these trial types did not differ in the rate of evidence accumulation.

Taken together, proactive and reactive situational factors that contribute to the use of cogni-
tive control may make different contributions to overall information entropy and resulting per-
formance. While research into information entropy accounts of cognitive control have focused
on the end point of information prioritisation (i.e., RT or accuracy, [7,12]), it is possible that
different decision and non-decision processes that contribute to overall task performance (i.e.,
RT and accuracy) are differentially indexed by entropy. Future work needs to examine these
interrelationships.

Conclusion
Cognitive control is important in a vast range of situations where habitual responding is insuf-
ficient to meet goals. Recently, it has been proposed that cognitive control may be conceptual-
ised as a process of prioritisation of information in order to resolve uncertainty (e.g., [7,30]).
Here, we show that uncertainty can account for differences in behavioural performance during
task-switching and may provide insight into factors that influence mixing and switch costs.
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