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1  | INTRODUC TION

Breast cancer is one of the most common cancers among women 
worldwide (World Health Organization, 2019). Approximately, 2.1 
million new cases of breast cancer were diagnosed in 2018, and 
nearly 627,000 deaths were attributed to the disease (WHO, 2019). 
Approximately, 75% of breast cancers are oestrogen receptor- 
positive (ER+) (Moon et al., 2017). Most ER + people with breast can-
cer are prescribed adjuvant hormonal therapy (AHT), which blocks 
the effects of oestrogen to inhibit breast cancer cell growth (Moon 
et al., 2017). AHT choices of tamoxifen or aromatase inhibitors 

(AIs) depend on the menopausal status of the patient (Pourcelot 
et al., 2018). AHT for a period of 5– 10 years is a standard therapy 
for obtaining the maximum benefits in breast cancer treatment 
(Davies et al., 2013; Pourcelot et al., 2018; Robinson et al., 2018). It 
has been proven that AHT is effective in reducing the risk of recur-
rence and the mortality rate of women with breast cancer (Davies 
et al., 2013; Makubate et al., 2013; Moon et al., 2017; Pourcelot 
et al., 2018). Despite the proven clinical benefits (Cahir et al., 2015; 
Moon et al., 2017), patient non- adherence and non- persistence with 
AHT through the full course of treatment are common (Robinson 
et al., 2018).
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Abstract
Aims: Medication- taking behaviours of breast cancer survivors undergoing adjuvant 
hormone therapy have received considerable attention. This study aimed to deter-
mine factors affecting medication- taking behaviours in people with breast cancer 
using data mining.
Design: A longitudinal observational retrospective cohort study with a hospital- 
based survey.
Methods: A total of 385 subjects were surveyed, analysing existing data from January 
2010 to December 2017 in Taiwan. Three data mining approaches— multiple logistic 
regression, decision tree and artificial neural network— were used to build the predic-
tion models and rank the importance of influencing factors. Accuracy, specificity and 
sensitivity were used as assessment indicators for the prediction models.
Results: Multiple logistic regression was the most effective approach, achieving an 
accuracy of 96.37%, specificity of 96.75% and sensitivity of 96.12%. The duration of 
adjuvant hormone therapy discontinuation, duration of adjuvant hormone therapy 
use and age at diagnosis by data mining were the three most critical factors influenc-
ing the medication- taking behaviours of people with breast cancer.
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2  | BACKGROUND

In the last two decades, increasing importance has been placed on 
research on medication- taking behaviour (MTB). WHO (2003) for-
malized the concept of a person taking medication, that is, medica-
tion adherence. This concept has been classified into three common 
terms: compliance, adherence and persistence (American Society on 
Aging [ASA] and the American Society of Consultant Pharmacists 
[ASCP] Foundation, 2006). Compliance is defined as the patient 
passively following a doctor's orders; adherence is defined as the 
patient agreeing with receiving treatment and actively following a 
doctor's orders; and persistence is defined as the patient's ability to 
continue taking medication for the intended course of therapy (ASA 
and ASCP Foundation, 2006; Brown & Bussell, 2011).

Adherence is a multidimensional phenomenon (ASA and ASCP 
Foundation, 2006). In most quantitative studies, common multifac-
torial reasons for non- adherence were influenced by key factors, 
including (a) patient factors: a lack of health literacy, comorbidities 
and treatment side effects; (b) provider factors: patient– provider re-
lationships, office visits and follow- up care with the oncologist; (c) 
environmental factors: characteristics of society and social isolation; 
(d) socioeconomic factors: race and medication costs of long- term 
treatment; (e) healthcare system factors: out- of- pocket expenditure 
and access to care; (f) condition- type factors: acute or chronic; (g) 
factors of daily dose number: single or multiple; and (h) ease of use 
factors: fewer drug interactions and drug- food interactions (Cahir 
et al., 2015; Jacobs et al., 2018; Mohan et al., 2019). A systematic 
review published in 2017 reported that most studies concentrating 
on clinical and demographic factors yielded inconsistent results. It 
reported that a good patient– physician relationship and self- efficacy 
for taking medication increased persistence (Moon et al., 2017); 
however, a younger age and frequent hospitalizations were associ-
ated with non- adherence (Moon et al., 2017).

In clinical practice, adherence is defined according to the pre-
scribed time, dosage and frequency of AHT (Cramer et al., 2008; 
Osterberg & Blaschke, 2005). Persistence is defined as con-
tinuing the AHT for a prescribed duration of time (Osterberg & 
Blaschke, 2005). However, according to WHO, the measurement 
of medication adherence involves two main methods: subjective 
and objective measures (WHO, 2003). Subjective measures include 
healthcare professional assessments and self- report questionnaires, 
which are the most common tools, such as the Morisky Medication 
Adherence Scale and modified Siegal scale (Brown & Bussell, 2011; 
Mohan et al., 2019; Pourcelot et al., 2018). Objective measures, in-
cluding pill counts, electronic medication monitors, biochemical mea-
surements obtained by detecting serum drug levels in the patient's 
blood or urine (Brown & Bussell, 2011), and rate of prescription refill 
(Makubate et al., 2013; Osterberg & Blaschke, 2005). Measuring the 
adherence to AHT in women with breast cancer by estimating the 
rate of prescription refills is relatively objective and the data can be 
easily obtained from medical records (Murphy et al., 2012). Common 
methods of measuring adherence to AHT are most often defined as a 
medication possession ratio (MPR) > 80% (Hsieh et al., 2014; Mohan 

et al., 2019; Murphy et al., 2012); while an MPR of <80% is de-
fined as non- adherence (treatment interruption) (Hsieh et al., 2014; 
Partridge et al., 2008). Persistence is defined as the discontinuation 
of the AHT drug after exceeding a permissible gap, which ranged 
from 60– 180 days, depending on various factors (Hsieh et al., 2014; 
Murphy et al., 2012; Nekhlyudov et al., 2011). Each measurement 
method has both advantages and disadvantages and no method is 
regarded as the gold standard (Lam & Fresco, 2015; Osterberg & 
Blaschke, 2005). Therefore, researchers should use a multi- measure 
approach to overcome the limitations in clinical practice to improve 
patients’ medication adherence.

About clinical effectiveness, previous studies’ evidence has 
proven that 5 years of AHT significantly reduces breast cancer re-
currence and mortality (Moon et al., 2017). Many women with ER + 
breast cancer do not regularly take AHT as prescribed, resulting in 
early discontinuation, low adherence and significantly poorer sur-
vival (Davies et al., 2013; Makubate et al., 2013; Moon et al., 2017). 
A systematic review of 61 articles concluded that adherence to 
tamoxifen or AIs ranged from 47%– 97% and fell from an average of 
79% in 1 year of AHT use to 56% by the fourth or fifth year (Moon 
et al., 2017). Discontinuation ranged from 9%– 63% and rose from 
an average of 21% in the year of AHT use to 48% by the fourth or 
fifth year (Moon et al., 2017). Additionally, a previous cohort study 
with a large sample showed that women with breast cancer are ini-
tially highly adherent to AHT and that as time progresses, patients 
decrease their adherence. The annual adherence by women with ER 
+ breast cancer changed from 90% in year 1 to 82% in year 2, 77% in 
year 3, 59% in year 4 and 51% in year 5 (Makubate et al., 2013). That 
cohort study showed a high discontinuation rate ranging from 30%– 
51% (Makubate et al., 2013). Therefore, AHT medication adherence 
and persistence play critical roles in recurrence and mortality.

Previous quantitative studies, systematic reviews and meta- 
analyses have focussed on objective and subjective factors that in-
fluence medical adherence and persistence in AHT for breast cancer. 
These studies have highlighted the complexity of factors that influ-
ence MTB in AHT, leading to different conclusions. This makes fac-
tors that affect adherence and persistence to AHT in breast cancer, 
difficult to understand. Since receiving AHT is long- term and expen-
sive, AHT compliance prediction is important for women with breast 
cancer. Previous studies used logistic regression or Cox proportional 
hazard models to determine the explicit factors associated with 
AHT compliance in women with breast cancer (Bhatta et al., 2013; 
Makubate et al., 2013). However, it was not clear if these included 
factors that influenced both AHT adherence and persistence in pa-
tients. Therefore, we attempted to solve this problem using other 
analytical techniques, such as data mining.

With the rapid development of information technology, data min-
ing has been widely applied to health condition assessment, disease 
detection and diagnoses, treatment effect analysis, survival predic-
tion, and quality improvement in healthcare (Yu et al., 2015). Data 
mining is an innovative method that is more flexible and powerful 
than traditional methods (e.g. log- normal, logistic regression, Cox re-
gression and Kaplan– Meier) (Çığşar & Ünal, 2019; Delen et al., 2005; 
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Jajroudi et al., 2014). The data mining process includes data cleaning, 
data amalgamation, data selection, data modification, data mining, 
pattern study and knowledge perception (Sondhi, 2017). Data min-
ing, together with computational technology, can reduce the binding 
and limitations of data analysis methods (Yu et al., 2015). Data min-
ing can be used to analyse large- size data sets and complex variables, 
find hidden relationships between different attributes and extract 
information that is understandable and valuable for data users 
(Oskouei et al., 2017; Pourhoseingholi et al., 2017). In other words, 
the use of data mining techniques for various clinical data sets can be 
helpful in recognizing and obtaining valuable information or knowl-
edge and can aid in accurate prediction (Ghorbani & Ghousi, 2019; 
Srinivas et al., 2010).

The use of prediction methods to understand the outcome of a 
disease is one of the most interesting and challenging tasks in clini-
cal practice (Delen et al., 2005). Kourou et al. (2014) demonstrated 
the use of data mining in the prediction and prognosis of cancer. 
Similarly, Oskouei et al. (2017) used data mining techniques for a 
comprehensive survey of breast cancer diagnosis, treatment and 
prognosis. They reviewed 125 articles and compared various algo-
rithms and techniques to measure the accuracy rate of prediction 
using data mining. Additionally, Pourhoseingholi et al. (2017) com-
pared different data mining methods for predicting 5- year survival 
in colorectal cancer cases. The results showed that an ensemble 
performed better than the basic classifier methods with an AUC of 
0.96 (Pourhoseingholi et al., 2017). Ghorbani and Ghousi (2019) se-
lected 23 studies conducted between 1997– 2018 on breast cancer 
by data mining and compared various classification and evaluation 
methods used in breast cancer diagnosis. They found that decision 
trees (DTs) and artificial neural networks (ANNs) were the best clas-
sification methods and prediction accuracy was the best evaluation 
method. However, Delen et al. (2005) compared three data mining 
methods for predicting survivability in breast cancer cases. These 
authors claimed that the use of a large SEER data set and 72 vari-
ables provided insight into the prediction model based on different 
data mining methods. They used three classification models: logis-
tic regression (LR), DT (C5.0), and ANN. A limitation of most of the 
previous studies is that neither the experience of physicians nor the 
use of current techniques was adequate in determining the influenc-
ing factors. Until now, minimal research has been published on data 
mining in nursing. Therefore, the aim of this study was to use a data 
mining approach to predict the impact factors of long- term AHT ad-
herence and persistence in females with breast cancer in Taiwan.

3  | METHODS

3.1 | Study design and data source

We conducted a longitudinal observational retrospective cohort 
study and a single- hospital survey based on the breast cancer popu-
lation using secondary data. Study cohorts were defined from the 
Taiwan Cancer Registry (TCR) database for breast cancer from 

January 2010 to December 2017, and their medical records covered 
5 years of AHT or until death. Data sources were extracted from 
TCR and the patients' medical records. Data were retrieved for all 
women newly diagnosed with ER + breast cancer on the TCR. We 
used longitudinal electronic health records (i.e. drug prescriptions, 
medication possession ratio, medication profile and physician order 
entry system), and TCR database to estimate adherence and persis-
tence to initial AHT among women with ER + breast cancer before 
December 31, 2018. Patients were assigned to two groups based on 
the actual situation of taking medication (treatment adherence and 
persistence) rather than according to the secondary data based on 
the sampling at the initial study. In addition, we applied an innovative 
method of data mining to identify complex and multivariable factors 
influencing adherence and persistence of MTB in people with breast 
cancer. Three data mining approaches using multiple logistic regres-
sion (MLR), decision tree and artificial neural network were used to 
build the prediction models. Each model produced a sorted result of 
the affecting factors. Then, by applying the Borda count, the results 
were sorted to generate a final ranking of all the factors affecting 
MTB in AHT (Tseng et al., 2017).

3.2 | Participants

The electronic records of all participants with International 
Statistical Classification of Disease and Related Health Problems, 
Tenth Revision, Clinical Modification (ICD- 10- CM) principal diagno-
sis of breast cancer (C50. 011- C50. 922) were extracted from the 
TCR database. The inclusion criteria were as follows: (a) newly di-
agnosed with ER + breast cancer, as documented in medical charts 
from January 2010 to December 2017, and (b) individuals 18 years 
old or above, with breast cancer who had received initial AHT (in-
cluding tamoxifen, anastrozole, letrozole and exemestane). A sam-
ple of 421 female patients was potentially eligible for the study; 35 
(8.3%) were excluded due to the following reasons: death in one year 
(N = 1), contraindication owing to patient risk factors (e.g. comorbid 
conditions, advanced age and tumour progression prior to adminis-
tration, (N = 14)), transfer to another hospital (N = 12) and patient or 
family refusal of AHT (N = 8). Finally, 385 patients were retained for 
analysis in the integrated TCR and HER databases.

3.3 | Data collection

Data were collected from May to December 2018 at a regional 
hospital in Taiwan. Based on factors related to medication adher-
ence behaviour and on a review of related literature, the variables 
for analysis were selected; these included socio- demographic vari-
ables (Mohan et al., 2019; Moon et al., 2017; Pourcelot et al., 2018; 
Sella & Chodick, 2020), clinical variables (Cahir et al., 2015; Guedes 
et al., 2017; Moon et al., 2017; Sella & Chodick, 2020), diagnostic 
variables (Cahir et al., 2015; Murphy et al., 2012), treatment variables 
(Cahir et al., 2015; Guedes et al., 2017; Mohan et al., 2019; Moon 
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et al., 2017; Pourcelot et al., 2018), healthcare variables (Mohan 
et al., 2019; Moon et al., 2017; Pourcelot et al., 2018) and health sys-
tem variables (Cahir et al., 2015; Mohan et al., 2019) and measures 
involving secondary database analysis (Lam & Fresco, 2015). Sixty- 
five independent variables were extracted using medical records and 
TCR data as research data sources (Table 1). In our study, persistence 
and adherence to MTB were selected as outcome variables. Each ER 
+ breast cancer patient's AHT prescription duration was followed 
from the first AHT prescription date through the last date of AHT 
prescription coverage. Persistence was defined as the continuous 
use of AHT without gaps in prescription refills or treatment. (Cahir 
et al., 2015; Osterberg & Blaschke, 2005). Persistency was defined 
as the percentage of patients who continued to fill AHT prescrip-
tions over time (Partridge et al., 2008). Persistence was measured 
as the AHT- covered period between two consecutive AHT prescrip-
tions for less than 90 days (Hsieh et al., 2014; Murphy et al., 2012; 
Nekhlyudov et al., 2011). Adherence was defined as the degree of 
compliance with the prescribed dosage and daily frequency of AHT 
(Cahir et al., 2015; Osterberg & Blaschke, 2005). In other words, ad-
herence was defined as the proportion of days that patients had oral 
AHT available over the observation period (i.e. medication posses-
sion ratio [MPR]) (Partridge et al., 2008). A conventional MPR cut- 
off point of more than 80% was used to define adherence (Hsieh 
et al., 2014; Mohan et al., 2019; Murphy et al., 2012).

3.4 | Analysis

SPSS version 19.0 was used for statistical data analysis to calculate 
the descriptive statistics. Participants were characterized using 
descriptive statistics, including means and standard deviations for 
continuous variables, such as age, follow- up time and AHT utiliza-
tion time, and percentages for categorical variables, such as sex, age 
ranks, Charlson comorbidity index (CCI) score and AHT utilization 
pattern. Data were analysed using data mining techniques and al-
gorithms. A data analysis algorithm based on the MATLAB R2013a 
software was used for data integration, algorithm development and 
modelling (Kumar & Lenina, 2016). The software is widely used in 
engineering, statistics, finance, signal and image processing, test-
ing, measuring and various other research applications (Kumar & 
Lenina, 2016). Sixty- five variables were defined as input data. The 
output variables were identified as “1” for AHT adherence and per-
sistence and “0” for non- adherence or non- persistence. To build 
a model for predicting AHT adherence trends using the MATLAB 
R2013a software, three predictive data mining methods were em-
ployed: MLR by SPSS Clementine, DT (C5.0) by SPSS Clementine 
12.0, and ANN by a multilayer perception. These methods were used 
to construct an ensemble- learning scheme. The ANN structure had 
65 input variables with one node accounting for bias, 34 hidden neu-
rons with one node accounting for bias, and two output variables of 

Category Variables

Demographics Date of birth, education, marital status, occupation, caregiver, income

Cancer diagnosis Age at diagnosis, sequence number, class of case, class of diagnosis status, 
class of treatment status, date of first contact, date of initial diagnosis, 
primary site, laterality, histology, behaviour code, grade/differentiation, 
tumour size, regional lymph nodes examined, regional lymph nodes 
positive

Cancer staging Clinical stage group, pathologic stage group

Type of 
treatment 
methods

Type of first course of treatment, date of most definite surgical resection 
of the primary site, surgical procedure of primary site at this facility, 
surgical margins of the primary site, scope of regional lymph node 
surgery at this facility, reason for no surgery of primary site, receipt of 
radiotherapy, sequence of radiotherapy (RT) and surgery, sequence of 
locoregional therapy and systemic therapy, reason for no RT, dose to high 
risk clinical target volume (CTV_H ) (cGy), number of fractions to CTV_H, 
chemotherapy at this facility, hormone/steroid therapy at this facility, 
target therapy at this facility, palliative care at this facility

Treatment 
results

Date of first recurrence, type of first recurrence, vital status, cancer 
status, cause of death

Site- specific 
factors

Height, weight, body mass index (BMI), smoking behaviour, betel nut 
chewing behaviour, drinking behaviour

Site- risk factors Oestrogen receptor assay, progesterone receptor assay, response to 
neoadjuvant therapy, number of sentinel lymph nodes examined, number 
of sentinel lymph nodes positive, Nottingham or Bloom– Richardson 
score/grade, HER2 IHC test lab value, Paget disease, lymph vessels or 
vascular invasion

Medical records Charlson comorbidity index (CCI), Eastern Cooperative Oncology Group 
(ECOG) performance status, type of hormone therapy drugs, duration 
of AHT discontinuation, duration of AHT use, duration between the first 
course of treatment date and the initial diagnosis date

TA B L E  1   Classification of the variables
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the output layer. A flowchart of the proposed scheme, which com-
prises five stages, is presented in Figure 1.

3.5 | Validity, reliability, and rigour

The Surveillance, Epidemiology and End Results (SEER) programme 
of the National Cancer Institute (NCI) is regarded as the gold 
standard for data quality in the US and global cancer registries 
(Duggan et al., 2016). The TCR is similar to that of the SEER (Huang 
et al., 2019). Thus, TCR provides reliable cancer statistics for the 
Taiwanese population. The three predictive performance variables 
noted in the above paragraph were evaluated and compared in terms 
of accuracy, specificity, sensitivity and area under the curve (AUC) 
(Chuang et al., 2016; Jajroudi et al., 2014; Sakr et al., 2017; Tseng 
et al., 2017; Wang et al., 2017; Zou et al.,2007). Accuracy was defined 
as the percentage of correctly classified samples from all samples. 
AUC represented the area under the receiver operating characteris-
tic curve (ROC curve; Chuang et al., 2016; Jajroudi et al., 2014; Sakr 
et al., 2017; Tseng et al., 2017; Wang et al., 2017; Zou et al., 2007). 
The AUC classification performance was defined as very poor 
(AUC < 0.6), poor (0.7 > AUC ≥ 0.6), fair (0.8 > AUC ≥ 0.7), good 
(0.9 > AUC ≥ 0.8) and excellent (AUC ≥ 0.9; Hosmer et al., 2013). The 
AUC ranged from 0 (incorrect) to 1 (100% correct; Zou et al., 2007). 
The following metrics were calculated in each iteration of the meas-
urement process: Accuracy = (TP + TN)/(TP + TN + FP + FN), sen-
sitivity = TP/(TP + FN) and specificity = TN/(TN + FP), where TP, 
TN, FP and FN denote true positive, true negative, false positive and 
false negative, respectively (Jajroudi et al., 2014; Sakr et al., 2017).

3.6 | ETHICAL CONSIDERATIONS

Research Ethics Committee approval was granted by the Institutional 
Review Board (IRB) of St. Martin De Porres Hospital, Chiayi City, 
Taiwan (IRB No: 17B- 029). This study did not require patients’ in-
formed consent due to the retrospective analysis of routinely col-
lected clinical data. Safe data management was conducted according 
to the National Health and Medical Research Council Guidelines for 
Human Research (National Health & Medical Research Council, 2007).

4  | RESULTS

We analysed a total of 385 patients' medical records. The overall 
mean age at diagnosis was 55.1 years (range: 29– 90 years), and 100% 
of the subjects were female. Half of the women were between 50– 
69 years of age. Fifty- three per cent of the subjects had a senior 
high school education, 79.7% were married, and 63.1% were un-
employed. The AHT follow- up time was 3.6 ± 2.3 years. The AHT 
course was 3.1 ± 1.9 years. The CCI score of 0 was 67.5%. The socio- 
demographic characteristics of the participants are summarized in 
Table 2.

Adherence information was available for 272 (70.6%) while per-
sistence information was available for 292 (75.8%) of the 385 sub-
jects (Table 2). Moreover, complete information on both medication 
adherence and persistence was available for only 227 subjects. The 
tamoxifen- only adherence and persistence rate was 31.6% and 
30.8%, respectively, and AIs only were 53.7% and 51.7%, respec-
tively. Most medical records did not include adverse effects of AHT 
experienced by the patient and their impact on medication adher-
ence and persistence. The findings indicated that the mean adher-
ence decreased each year from 85.5% in year 1 to 75.5% in year 
2, 75.1% in year 3, 71.1% in year 4 and 63.9% in year 5. Moreover, 
medication adherence and persistence were lower in the younger 
group (age < 50 years; 37.9% vs. 38.7%) and older group (>70 years 
old; 14.0% vs. 11.6%) than that among the subjects ranging from 50– 
69 years old (48.2% vs. 49.7%).

Evaluation results of the three classification techniques for med-
ication adherence and persistence are shown in Table 3. The met-
rics, namely, overall accuracy, specificity, sensitivity and AUC, were 
used to compare the evaluation performance in predicting the MTB 
of patients on AHT. Comparing the three classification models in 
Table 3, it is observed that the classification accuracies of the MLR, 
DT and ANN models were 96.37%, 93.52% and 92.29%, respec-
tively. Furthermore, the three classification models showed greater 
accuracy in predicting the MTB of patients with AHT. Among all the 
models, the MLR model was the most accurate, followed by the DT 
model, and the ANN model had the worst performance. The AUC 
value ranges from 0.90 (ANN) to 1.00 (MLR). It was clear that the 
MLR model was the optimum approach for MTB prediction in female 
patients with breast cancer receiving AHT. The importance levels 
of the predictor variables using the three algorithms are presented 
in Table 4. For each algorithm, a ranking result was given for all the 
predictors. From Table 4, the top five influencing factors determined 
on the basis of the Borda count can also be observed: (a) duration of 
AHT discontinuation, (b) duration of AHT use, (c) age at diagnosis, (d) 
body mass index (BMI) and (e) receipt of radiotherapy.

5  | DISCUSSION

Three main findings were obtained in this study. First, it is evident 
that medication adherence and persistence with MTB are influenced 
by demographic factors. In particular, low adherence and persis-
tence increase cancer recurrence and mortality (Cramer et al., 2008; 
Makubate et al., 2013). Second, data mining methods can be used 
to develop a model with a high degree of predictive accuracy. Such 
a model can help in understanding the factors that influence MTB. 
Third, the top five influencing factors were identified in the study by 
employing data mining.

For breast cancer, AHT is recommended for 5– 10 years (National 
Comprehensive Cancer Network, 2020). The Early Breast Cancer 
Trialists’ Collaborative Group (2005) reported that tamoxifen could 
reduce the risk of recurrence and death rate by 31% in women 
with breast cancer. A large population- based study reported that 
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the early discontinuation rate for breast cancer was 23% (Sella & 
Chodick, 2020). These results are in agreement with our findings. 
Furthermore, a 79% AHT (mean) adherence rate in the first year and 
a 56% AHT adherence rate in the fourth or fifth year were reported 
previously (Moon et al., 2017). Similar findings were obtained in 
a population- based study in Taiwan (N = 30,573), which reported 
that 77.3% and 85.1% of AHT adherence and persistence rates were 
higher than those in our study (Hsieh et al., 2014). Compared to a 
previous study in Taiwan about the age at diagnosis, we found that 
the percentage of patients younger than 50 years was 47.0%, which 
is higher than that in our study (Hsieh et al., 2014). Of the non- 
persistent patients in our study, more than half of the patients were 
younger than 50 years old (35.5%) and older than 70 years (21.5%) 
at the age of diagnosis.

With respect to the age at diagnosis, the younger group 
(age < 50 years) and older group (age > 70 years) were associated 
with lower AHT persistence and adherence, which is consistent with 
previous studies on women with breast cancer (Hsieh et al., 2014/
Hsieh et al., 2015; Makubate et al., 2013; Moon et al., 2017; Pourcelot 
et al., 2018; Robinson et al., 2018). Moreover, the percentage of pa-
tients older than 70 years (14%) in our study was higher than that in a 
previous study in Taiwan (9%), which led to poorer medication intake 
for adherence and persistence (Hsieh et al., 2014). Therefore, AHT 
medication adherence and persistence in breast cancer among spe-
cial groups (younger and older groups) are important management 
issues for the healthcare system and its professionals.

In our study, three popular classifiers, namely MLR, DT and 
ANN, were used to construct the MTB prediction model (Kumar & 
Lenina, 2016). The differences in predictive performance between 
the models were measured by comparing the AUCs using MATLAB 

R2013a software. Hosmer et al., (2013) reported that an AUC ≥ 0.8, 
which is indicative of a good model. The AUC of all models in our 
study exceeded 0.9 and the classification accuracy rates reached 
92.29% and higher (MLR 96.37%). The results showed that all three 
models achieved high classification performance. A similar study 
used breast cancer databases and applied various data- mining tech-
niques (Kharya, 2012). The best classification accuracy obtained in 
previous study was 93.62%, which was less than that of our study 
(Kharya, 2012).

Among the three models, the MLR model was the most accu-
rate in predicting MTB in people with breast cancer receiving AHT. 
This is in complete agreement with the results of Wang et al. (2013) 
and Chang and Liou (2008). Although the TCR database used in our 
study was formalized and standardized, the medical records con-
tained some heterogeneous data and were incomplete, imprecise 
and lacked certain values, all of which could have impacted the re-
sults of the data- mining tools. Therefore, some data- related tasks 
remain to be addressed in future research, including data collection, 
data mining, and the development of predictive models. Based on 
the data mining technique and measures by the three different clas-
sifiers and the Borda count methods, we observed that the duration 
of AHT discontinuation and the duration of AHT use were the two 
most critical predictor variables for the three models. The critical 
predictor variables were consistent with those reported by Cramer 
et al. (2008). The extent and duration of the patient's medication 
strongly affects the effectiveness of the treatment and the survival 
rate (Cramer et al., 2008). Therefore, adherence and persistence 
with AHT, at least for the full 5- year course, should be encouraged 
among patients.

In all three models based on the Borda count method, the Borda 
count was ranked the most important risk factor twice and was 
among the first five important risk factors. The top five influencing 
factors were as follows: duration of the AHT discontinuation period, 
duration of AHT use, age at diagnosis, BMI and receipt of radiother-
apy. First, the duration of AHT discontinuation can be defined as 
the non- persistence time (total number of days that exceeded the 
90- day prescription refill period) for the 5- year treatment period. 
Longer durations of AHT discontinuation have been associated with 
a higher risk of mortality (Murphy et al., 2012; Paranjpe et al., 2019). 
In contrast, the duration of AHT use can be defined as adherence and 
persistence time, including AHT adherence (MPR > 80%) and per-
sistence (90- day prescription refill period) from initiation to discon-
tinuation. Longer durations of AHT use have been linked to reduced 
mortality (Clancy et al., 2020; Wassermann & Rosenberg, 2017).

Although the use of tamoxifen for AHT is highly effective, med-
ication adherence and persistence in the case of tamoxifen were 
lower than that in the case of AIs in a younger group of patients (Hsieh 
et al., 2014/Hsieh et al., 2015; Makubate et al., 2013; Moon et al., 2017; 
Sella & Chodick, 2020). Similar to a previous large population- based 
study (N = 4,178), we found that young age (<45 years) and low 
BMI increased the risk of non- adherence and early discontinuation 
(Sella & Chodick, 2020). Additionally, previous studies showed that 
increasing BMI is a statistically significant predictor (OR: 1.35, 95% 

F I G U R E  1   Flowchart of the proposed predictive modeling 
scheme (Tseng et al., 2017)

Identify predictor variables
(65 variables are defined as input data )

Rank the importance of 65 variables
by the three algorithms

LR DT ANNs

Use the three algorithms to develop
predictor models

Compare the performance of the three
models and obtain the predictor results
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CI: 1.08- 0.1.80 p = .042; Kann et al., 2014) and is positively asso-
ciated with adherence and persistence to AHT (Nyrop et al.,2016). 
However, patients at the extremes of age— with a risk of cancer re-
currence, side effects from drugs, and a lower CCI score— have the 
highest risk of treatment interruptions and non- adherence (Clancy 
et al., 2020; Hsieh et al., 2014; Sella & Chodick, 2020). Xu et al. (2020) 
pointed out that when younger women suffered severe side effects 
and did not have enough family support or information, they opted 
to discontinue AHT or seriously considered stopping it. Our results 
are consistent with other studies showing that medication adherence 
and persistence in the younger group were initially high, and patients 
became less adherent or stopped medication as time progressed and 
severe adverse effects occurred (Cahir et al., 2015; Moon et al., 2017; 

Robinson et al., 2018; Sella & Chodick, 2020). Thus, switching the use 
of tamoxifen and AI is safer than the refusal or premature discontinu-
ation of AHT (Pan et al., 2017).

Vergbrugghe et al. (2015) reported that experience with previ-
ous treatment (such as surgery, chemotherapy, targeted therapy and 
radiotherapy) impacted AHT adherence and persistence in women 
with breast cancer. Generally, most participants felt satisfied when 
physicians discussed their experience of symptoms at length, pro-
vided social support and helped them about the impact of the AHT 
(Verbrugghe et al., 2015). These results of clinical and demographic 
variables using data mining are consistent with those of Moon 
et al. (2017), who reported clinical variables (e.g. receipt of radio-
therapy, AHT withdrawal period, actual AHT use) and demographic 
variables (e.g. younger than 50 years, BMI). For these clinical vari-
ables with the AHT use method, the side effects showed a negative 
relationship with adherence and persistence. The demographic vari-
ables with age (younger group under the age of 40 or 45/50 years 
and older group aged more than 65/75 years) had low odds of adher-
ence and persistence. Therefore, data mining provides a logical and 
actionable method for extracting useful knowledge from medical da-
tabases. However, these new factors must be verified and certified 
in future research.

TA B L E  2   Subjects' characteristics

Characteristics Total (%) Adherence (%)
Non- adherence 
(%) Persistence (%)

Non- 
persistence 
(%)

Number of patients (%) 385 100.0% 272 70.6% 113 29.4% 292 75.8% 93 24.2%

Sex

Female 385 100.0% 272 100.0% 113 29.4% 292 100.0% 93 24.2%

Follow- up time (year)

Total (patient- year) 1,374.8 875.6 1,128.5

Mean (SD) 3.6 (2.3) 3.2 (2.0) 3.9 (2.4)

Age of diagnosis

Mean (SD) 55.1 (12.1) 55.1 (12.0) 54.5 (11.7)

Age ranks (%)

<50 years old 146 37.9% 103 37.9% 43 38.1% 113 38.7% 33 35.5%

50– 69 years old 185 48.1% 131 48.2% 54 47.8% 145 49.7% 40 43.0%

≧70 years old 54 14.0% 38 14.0% 16 14.2% 34 11.6% 20 21.5%

CCI score (%)

0 260 67.5% 186 68.4% 199 68.2%

1 73 19.0% 49 18.0% 55 18.8%

2 52 13.5% 37 13.6% 38 13.0%

HT utilization pattern

Tamoxifen only 131 34.0% 86 31.6% 90 30.8%

Tamoxifen to AIs 3 0.8% 2 0.7% 2 0.7%

AIs only 190 49.4% 146 53.7% 151 51.7%

AIs to tamoxifen 56 14.5% 33 12.1% 46 15.8%

Multiple switches 5 1.3% 5 1.8% 3 1.0%

Mean (SD) 3.1 (1.9) 3.1 (0.1) 3.4 (0.3)

TA B L E  3   Adherence and persistence results of the three models 
on the prediction set

Model
Accuracy 
(%)

Specificity 
(%)

Sensitivity 
(%) AUC

MLR 96.37 96.75 96.12 1.00

DT 93.52 95.24 92.47 0.93

ANN 92.29 91.33 93.01 0.90
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5.1 | Study limitations

Despite the number of participants (385) involved in our study and 
the accuracy of the three adopted predictive models, it had some 
limitations. First, we found that information on adverse effects or 
severe side effects were not collected or were incomplete in the 
medical records. Second, owing to the relatively small size of the 
database employed in our study, ANN did not obtain better pre-
dictions than the traditional statistical method (MLR). ANN is more 
appropriate for using a larger database to identify data attributes, 
and it has a better ability to manipulate data with a time sequence 
than DT (Delen et al., 2005; Liu et al., 2018; Sakr et al., 2017). Third, 
prescription refilling was the most common objective measure-
ment of AHT adherence and persistence. However, the use of this 
measure remains limited because it cannot be known with certainty 
that the patient actually took the AHT medication. Therefore, it is 
strongly suggested to use a smart pillbox to remind patients about 
taking medicines and monitoring medicine intake in further research 
(Minaam & Abd- ELfattah, 2018). Finally, as we used secondary data 
analysis and a retrospective study design with monitoring of patients 
through five years of AHT, we could not collect complete informa-
tion about the patients. In particular, the unavailability of psychoso-
cial variables (such as motivation, knowledge and patient- healthcare 
provider communication) prevented a more advanced analysis.

5.2 | Clinical implications

The present study revealed that the implications of the five identified 
influencing factors can be drawn from data mining. In addition, MTB 
is a complex and dynamic process in clinical practice. The four main 
types of MTBs include acceptance/persistence, bearing/suffering, 
hesitation/adjustment and refusing/abandoning. In the switch from 
one type to another with a change in the patient's situation, health-
care providers should be conscious of individual preferences, the 
patient's level of motivation and knowledge and the implemented in-
terventions to help the patient accomplish AHT (Vlasnik et al., 2005; 
Xu et al., 2020). Therefore, health professionals should develop a set 
of effective strategies to improve MTB among younger and older 
patients. To build effective MTB strategies, we suggest applying the 
case management adherence guidelines and combining information 
technology products (e.g. reminder app or LINE, phone calls and 
smart pill boxes) to provide accurate and objective measurements of 
AHT adherence and persistence in women with breast cancer for the 
full 5- year treatment period (Robinson et al., 2018).

6  | CONCLUSION

In our study, the MLR was shown to be the best among the three 
classifier models used in the small database. By applying a data 
mining technique to extract relevant knowledge, the study identi-
fied new factors, such as duration of AHT discontinuation, AHT use 

duration, age at diagnosis, BMI and receipt of radiotherapy as fac-
tors affecting MTB. Effective management of AHT use duration and 
discontinuation issues can help patients receive AHT for the full 5- 
year period. In terms of age at diagnosis, greater attention should be 
given to younger (<50 years old) and older (>70 years old) people 
with breast cancer because of their low rates of AHT adherence and 
persistence, respectively. Moreover, we should consider implement-
ing therapeutic education programmes for people with breast cancer 
to strengthen their AHT MTB and possibly improve their adherence 
and persistence for the full 5- year treatment period.
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