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Abstract

Phylogenetic inference is widely used to investigate the relationships between homologous sequences. RNA molecules have played a

key role in these studiesbecause theyarepresent throughout lifeand tend toevolve slowly.Phylogenetic inferencehasbeenshownto

bedependentonthesubstitutionmodelused.AwiderangeofmodelshavebeendevelopedtodescribeRNAevolution,eitherwith16

states describing all possible canonical base pairs or with 7 states where the 10 mismatched nucleotides are reduced to a single state.

Formal model selection has become a standard practice for choosing an inferential model and works well for comparing models of a

specific type, such as comparisons within nucleotide models or within amino acid models. Model selection cannot function across

different sized state spaces because the likelihoods are conditioned on different data. Here, we introduce statistical state-space

projectionmethods thatallowthedirectcomparisonof likelihoodsbetweennucleotidemodelsand7-stateand16-stateRNAmodels.

To demonstrate the general applicability of our new methods, we extract 287 RNA families from genomic alignments and perform

model selection. We find that in 281/287 families, RNA models are selected in preference to nucleotide models, with simple 7-state

RNA models selected for more conserved families with shorter stems and more complex 16-state RNA models selected for more

divergent families with longer stems. Other factors, such as the function of the RNA molecule or the GC-content, have limited impact

on model selection. Our models and model selection methods are freely available in the open-source PHASE 3.0 software.
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Introduction

Understanding the evolutionary relationships between spe-

cies, genes, and populations is important in many areas of

biology. This insight is usually obtained through the inference

of a phylogenetic tree from a set of aligned sequences. The

landmark article by Woese and Fox (1977) demonstrated that

the presence of ribosomal RNA (rRNA) in all living organisms

and its high degree of conservation make it an excellent gene

for studying species relationships. Since then, rRNA has been a

popular choice for phylogenetic inference, ranging from the

algae that live on sloth fur (Suutari et al. 2010) to 200 meta-

zoan species (Mallatt et al. 2010). The biological importance of

rRNA (and tRNA) is well established, but recently the signifi-

cance of other types of noncoding RNA (ncRNA) has been

recognized (reviewed in Griffiths-Jones 2007; Mattick 2009).

For these genes, phylogenetic tree estimates can be used to

investigate relationships within and between families of

ncRNA, in order to better understand their evolution and func-

tion. For example, a microRNA precursor might be subject to

several, potentially antagonistic, evolutionary constraints,

whereby the functional site(s) of the microRNA could be de-

rived from one or both sides of the base-paired stem region

(Berezikov 2011).

Inferring trees from alignments of sequences necessitates a

reliable method of inference, such as maximum likelihood

(ML) or Bayesian inference (reviewed in Yang and Rannala

2012). These methods require an explicit description of how

sequences change over time, in the form of a parameterized

probabilistic substitution model. Substitution models describ-

ing nucleotide evolution typically assume that sites in an align-

ment evolve independently from one another, but this

assumption is difficult to justify for RNA genes where there

are strong functional constraints induced by complementary

base pairing in stem regions. To account for these depen-

dencies, evolution of RNA stems is frequently described

by dinucleotide substitution models, summarized by Savill

et al. (2001). The earliest RNA models describe changes

between 16 states, representing all 16 possible dinucleotides
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(Schöniger and von Haeseler 1994; Muse 1995). Later simpli-

fications merge the ten dinucleotides representing unstable

base pairs into a single “mismatch” state, resulting in

models with seven states (Tillier and Collins 1998; Higgs

2000). Since their inception, there have been a wide variety

of 16- and 7-state RNA substitution models, each reflecting

different biologically informed descriptions of RNA evolution.

In order to investigate the improvement of RNA models

over their nucleotide-based counterparts and the relative im-

portance of their biological parameters, statistical methodol-

ogy for comparing models is required. It is routine in

phylogenetics for researchers to use formal model selection

to decide which substitution model to use when inferring

phylogenetic trees from nucleotide or amino acid sequence

data (Posada and Buckley 2004; Posada 2008; Darriba et al.

2012). Common model selection methods include likelihood

ratio tests for nested models and, more generally, information

theoretic measures, such as Akaike’s information criterion

(AIC) and Bayesian information criterion (BIC) (Burnham and

Anderson 2002; Sullivan and Joyce 2005). Such approaches

are not appropriate for comparing models with different state

spaces, such as comparisons between 4-state nucleotide

models and 7-state RNA models or between 7-state RNA

models and 16-state RNA models. When the models to be

compared have different state spaces, it changes the data on

which the likelihood calculations are conditioned (Burnham

and Anderson 2002). To overcome this problem, previous

studies developing RNA models have used model selection

methods based on complex and time-consuming simulations

(Schöniger and von Haeseler 1999; Gibson et al. 2005; Telford

et al. 2005) or have avoided direct model comparisons by

evaluating the recovery of a “true” tree by each model

(Letsch and Kjer 2011). The majority of these studies conclude

that RNA models better describe the evolution of RNA stems

than nucleotide models, albeit the evidence come from a

single alignment of rRNA (Schöniger and von Haeseler

1994; Rzhetsky 1995; Tillier and Collins 1998; Savill et al.

2001; Telford et al. 2005).

Here, we seek to build on previous studies investigating

RNA evolution in three key ways. First, we investigate the fit

of RNA models on large numbers of mammalian RNA genes

derived from genomic alignments, including many different

types of ncRNA. This approach provides a generalized view of

the relative fit of RNA models and their applicability to large-

scale genomic comparisons. Second, we develop a new

method for comparing RNA models with different state

spaces, based on methods created for comparing amino

acid and codon models (Seo and Kishino 2008, 2009). This

approach enables rapid comparisons between all RNA and

nucleotide models, allowing large-scale comparison without

time-consuming simulation. Third, we examine whether the

choice of best-fit model affects the phylogenetic tree estimate,

under the expectation that better-fitting models should pro-

vide more accurate estimates. This study finds that RNA

models very frequently provide a better fit than nucleotide

models across all RNA gene families, with similar patterns of

model fit observed for all types of RNA. Of the different types

of RNA model, we find that models describing general base

pair stability, rather than the precise identity of base pairs, tend

to provide a better fit than other RNA models. We also dem-

onstrate that the choice of model can have a substantial effect

on the tree estimate, with the greatest differences being be-

tween nucleotide and RNA models, but there is also substan-

tial variation within the different types of RNA model.

Materials and Methods

Substitution Models

Definitions

In all of the models that we use, changes between states are

described by a time-reversible Markov process, with rate

matrix Q ¼ fQi, jg, where Qi, j is the substitution rate between

states i and j (Yang 2006). The equilibrium frequency of states

is denoted by p ¼ �if g, where �i is the frequency of state i.

The constraint of reversibility enforces �iQi, j ¼ �jQj, i and

allows Q to be represented as Qi, j ¼ Si, j�j8i 6¼ j, where

S ¼ fSi, jg is a symmetric matrix of exchangeability parameters

(Si, j ¼ Sj, i), which describes the relative rate of change be-

tween i and j. To calculate the likelihood of a model with

parameters � for data D, Lð�; DÞ, requires the creation of a

transition matrix from the instantaneous rate matrix by

P tð Þ ¼ fPi, jðtÞg ¼ eQt , which describes the probability of

change between states i and j over a branch of length of t,

where t is in units of the expected number of substitutions per

site. We use numerical superscripts to denote the dimension

of a matrix and any values derived from that matrix; for ex-

ample, Q4
¼ fQ4

i, jg denotes a 4-state instantaneous rate

matrix (Yang 2006).

Nucleotide and Dinucleotide Models

This study examines 18 different parameterizations of Q to

define “foundation models” of nucleotide and dinucleotide

evolution, which are later combined to provide a range of

substitution models describing RNA evolution (discussed

later). To describe the evolution of independent nucleotides,

we use two common (4-state) foundation models: 1) the HKY

model (Hasegawa et al. 1985) and 2) the general time-revers-

ible (GTR) model (Lanave et al. 1984; Tavaré 1986). Both nu-

cleotide foundation models are always used in conjunction

with D-distributed rates-across-sites, indicated by a “+D”

suffix (Yang 1994). To describe evolution in base pairs, we

examine a range of foundation models over two different

state spaces: 1) 16-state foundation models describing substi-

tutions between all possible base pairs and 2) 7-state founda-

tion models describing substitutions between the six stable

canonical base pairs (the Watson–Crick base pairs A:U and

C:G and the “wobble” pairing G:U) and a mismatch state,
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which contains the ten other base pairs (A:C, A:G, C:U, A:A,

C:C, G:G, and U:U). Following the naming convention of Savill

et al. (2001), we investigate nine 16-state dinucleotide foun-

dation models (16A, 16B, 16C, 16D, 16E, 16F, 16I, 16J, and

16K) and seven 7-state dinucleotide foundation models (7A,

7B, 7C, 7D, 7E, 7F, and 7G). The parameterizations and orig-

inal authorship of these models is given in the PHASE 3.0

manual. All models have previously been described except

7G, which we propose here as a natural simplification of 7E

and 7F. Under 7G, the instantaneous rate matrix is defined as:

AU GU GC AU GU GC MM
AU � �G:U 0 0 0 0 �MM�
GU �A:U � �G:C 0 0 0 �MM�
GC 0 �G:U � 0 0 0 �MM�
AU 0 0 0 � �G:U 0 �MM�
GU 0 0 0 �A:U � �G:C �MM�
GC 0 0 0 0 �G:U � �MM�

MM �A:U� �G:U� �G:C� �A:U� �G:U� �G:C� �

ð1Þ

where �A:U ¼
�AU+�UA

2 , �G:U ¼
�GU+�UG

2 , �G:C ¼
�GC+�GC

2 , and

�MM is the total frequency of the mismatch states. We do

not examine the early 6-state models, such as those proposed

by Tillier and Collins (1995), because with modern computing

power it is unreasonable to recode unstable base pairs as

missing data, rather than explicitly incorporate them into the

model.

Figure 1 shows a summary of the parameterization of the

18 foundation models described above, the relationships be-

tween them, and how they can be grouped into four classes

depending on how they deal with paired bases. The first class

(red), consisting of HKY + D and GTR + D ignores base pairing

and allows nucleotides to evolve independently. The remain-

ing three classes are determined by how they describe the

selective pressures acting on dinucleotides, primarily defined

by the parameterization of p. The foundation models con-

tained in the “All Pairs” class (purple) consider changes

between the 16 possible dinucleotides, allowing each dinucle-

otide, XY, to have its own equilibrium frequency, �XY. The

“Stable Pairs” class (green) has models with separate frequen-

cies for each of the stable base pairs (�AU, �UA, �CG, �GC, �GU,

�UG) and groups the ten mismatch base pairs together into a

single frequency parameter (�MM). This restriction is simple in

7-state dinucleotide models where each state has its own fre-

quency, whereas dinucleotide frequencies for the ten mis-

match states in 16C are defined as �MM=10. Note that

models 7B, 7F, and 7G place the further restriction of strand

symmetry, resulting in three frequencies for the stable base

pairs (�AU ¼ �UA, �CG ¼ �GC, and �GU ¼ �UG) and a single

frequency describing mismatches (�MM). Finally, the “Stable

Set” foundation models (blue) define their equilibrium fre-

quencies based on the product of the individual nucleotide

frequencies and two parameters describing the tendency for

stable base pairs to occur (l) and for wobble pairings to

occur (’). In these foundation models, the equilibrium fre-

quency of the dinucleotide XY is given by 1) c�X�Y�
2 for

Watson–Crick base pairs; 2) c�X�Y’ for wobble base pairs;

and 3) c�X�Y for mismatch base pairs, where c is a scaling

constant. Note that the instantaneous rate of change between

dinucleotides for the Stable Set is different to the other two

classes because its parameters adjust both the substitution

rates between dinucleotides and the equilibrium frequency

of those nucleotides (for full details of all dinucleotide

models, see the PHASE 3.0 manual and Savill et al. 2001).

Modelling RNA Evolution

The foundation models described above are combined by a

fixed-effect mixture model to create RNA substitution models,

where partitions are specified a priori. The loop regions of the

RNA are specified in the alignment and may be modeled by

either of the two single nucleotide foundation models

(HKY + D or GTR + D). The base-paired stems may be modeled

by either of the 2 single nucleotide foundation models or by

any of the 16 dinucleotide foundation models with or without

D-distributed rates-across-sites, yielding ð2+ 2� 16ð Þ ¼Þ 34

possible stem models. The different combinations of stem

and loop foundation models produces ð2� 34 ¼Þ 68 mixture

models. A further two, non-mixture, models are also used, in

which a single nucleotide model (HKY + D or GTR + D) is used,

ignoring the loop and stem partitions. For models where the

loops and stems are partitioned, we also incorporate a scaling

FIG. 1.—Summary of the parameterization of RNA and DNA models

and the relationships between them. The values below each model name

are the number of frequency and exchangeability parameters, respectively.

Double borders around models indicate that double substitutions are per-

mitted. Arrows between models indicate nesting. The general 16-state

model (dotted box) has too many parameters to be tractable and is not

included in this analysis. The 4-state and 16-state models are directly com-

parable. The 7-state models require a likelihood adjustment value to ac-

count for the mapping from 1 mismatch state to 10, which can use either

equal frequencies (0 degrees of freedom) or empirical frequencies (9 df).
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factor, �, describing the evolutionary rate of stems relative

to that of loops. This scaling factor can then be used to

calculate meaningful evolutionary rate for the RNA gene,

rRNA, in terms of �, the unconstrained rate of nucleotide

evolution, rnt, and the probabilities of a nucleotide belonging

to a stem or loop, PðloopÞ and PðstemÞ, such that

rRNA ¼ rntPðloopÞð Þ+2� rntPðstemÞð Þ. Note that the “2” is re-

quired because RNA dinucleotide models are usually scaled to

change at one substitution per dinucleotide per unit time. This

relationship allows simple comparison between tree lengths

obtained under different models.

Model Comparison

To compare the different RNA substitution models, we use the

corrected version of AIC (Akaike 1974; Burnham and

Anderson 2002): AICc ¼ 2k � ln Lð Þ+ 2kðk+1Þ
n�k�1 , where k is the

number of parameters, L is the likelihood, and n is the

sample size. An approximation to the sample size is computed

by counting the characters in an alignment, treating each base

pair as a single character in the case of RNA models, following

the approach of Posada and Buckley (2004). Standard likeli-

hood theory demonstrates that it is not valid to compare like-

lihoods computed in different state spaces, preventing the

simple comparison of AICC values of models with different

state spaces (Burnham and Anderson 2002). In other words,

it is not possible to compare between the groups of 4-state

DNA models, 7-state RNA models, and 16-state RNA models.

Previous research has used sophisticated simulation schemes

to compare models (Savill et al. 2001; Telford et al. 2005).

Instead, we use an approach that projects 4-state and 7-state

models to a 16-state space, which provides valid likelihood

comparisons. This technique has been previously described

for transforming DNA, amino acid, and codon models into

64-state models (Whelan and Goldman 2004; Seo and

Kishino 2008, 2009). We extend these authors’ work for

the comparison of DNA and RNA models, highlighting the

required modifications of their mathematical proofs.

Comparing 4-State and 16-State Models

Previous research has shown that 4-state nucleotide models

and 64-state codon models are directly comparable (Whelan

and Goldman 2004). In order to show that 4-state nucleotide

and 16-state dinucleotide models are directly comparable, we

follow closely the proof of Seo and Kishino (2008, 2009). We

observe that a dinucleotide model in which one nucleotide is

fixed is equivalent to a 4-state model for the unfixed

nucleotide:

Q16
i, j ¼

Q4
i1, j1

i1 6¼ j1; i2 ¼ j2

Q4
i2, j2

i1 ¼ j1; i2 6¼ j2
0 i1 6¼ j1; i2 6¼ j2

8<
: ð2Þ

where i, j are dinucleotides and i1 and i2 are the nucleotides at

the first and second position of the dinucleotide, respectively.

(Note the diagonal entries of all Q matrices are defined by the

constraint that the row sum is 0.) The matrix Q16 derived from

equation (2) can be decomposed into two matrices, Q16, 1 and

Q16, 2, which describe the transition rates of the first and

second nucleotide, respectively. These two matrices are com-

mutative, so P16 tð Þ ¼ etQ16

¼ et Q16, 1+Q16, 2ð Þ ¼ etQ16, 1

etQ16, 2

¼

P16, 1 tð ÞP16, 2 tð Þ.

The rows (or columns) of any Q matrix can be interchanged

without affecting the validity of the matrix, allowing the rear-

rangement of the rows and columns of Q16, x x 2 1, 2f gð Þ to

obtain “diagonal block” matrices which have Q4 on the di-

agonal and zeroes elsewhere. The calculation of eQ16, x

is then

equivalent to a diagonal block matrix with P4
ðtÞ on the diag-

onals, and the rows and columns of P16, x
ðtÞ can subsequently

be rearranged to restore their original order. Finally, the prod-

uct P16, 1
ðtÞP16, 2

ðtÞ gives the original matrix P16
ðtÞ leading to

P16
i, j tð Þ ¼ P4

i1, j1
ðtÞP4

i2, j2
ðtÞ ð3Þ

Following the proof of equation (11) provided in the ap-

pendix of Seo and Kishino (2009), it is possible to derive

L4 �; Dð Þ ¼ L16 �; Dð Þ using our equation (3) and demonstrate

that the likelihoods of 4-state and 16-state models are directly

comparable.

Comparing 7-State and 16-State Models

The likelihoods of 7-state and 16-state models cannot be di-

rectly compared, but one can devise a likelihood correction

value that corresponds to projecting the 7-state model to

16-state space. We note that it is also possible to transform

a 16-state model to 7-state space, but as this is of limited

practical use we do not describe such a mapping; it is a simpler

version of the conversion from a codon to an amino acid

model given in Yang et al. (1998). The transformation from

7-state to 16-state follows that in Seo and Kishino (2008), in

which a mapping was defined from a 20-state amino acid

model to a 61-state codon model. We define the off-diagonal

values of a 16-state matrix in terms of parameters from a 7-

state matrix:

Q16
i, j ¼

S7
i, j�j i 2 C; j 2 C

S7
i, m�j i 2 C; j =2 C

S7
m, j�j i =2 C; j 2 C
��j i =2 C; j =2 C

8>><
>>:

ð4Þ

where i, j are dinucleotides, C is the set of canonical dinucle-

otides, and m is the compound mismatch state in the 7-state

model. The substitution rate between mismatches is unde-

fined in the 7-state model, so in the 16-state model we

define it in terms of the dinucleotide frequency, �j, and a

new exchangeability parameter, �, which describes the rate

that mismatch dinucleotides substitute one another.

Following the work of Seo and Kishino (2008), it is possible

to optimize �, which would create a new class of RNA models

that lie somewhere between 7-state and 16-state models. We
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do not investigate this possibility here, however, because the

rate of change between mismatches is of limited interest and

including it would introduce a large number of additional

models to our analysis. We also note that the 16C model is

extremely similar to such a model, because it was created as

an extension of model 7D. Instead, we concentrate on making

existing 7-state models comparable with 16-state models.

First, we assume that � in equation (4) is infinite. This param-

eterization, discussed in detail by Seo and Kishino (2008),

makes all mismatch states in the 16-state model equivalent

because all 10 states instantaneously reach the same equilib-

rium distribution. The parameterization also means that all

directly comparable substitution rates are the same for the

7-state and the transformed 16-state model, including the

overall rate of substitution back and forth between matches

and mismatches. Therefore, the original and transformed

models are equivalent and differ only by the state space that

they are conditioned upon. Next, we need a likelihood “cor-

rection” to account for the different state spaces, which is

obtained following the proof of equation (6) in Seo and

Kishino (2008) to obtain:

L16 �; Dð Þ ¼ L7 �; Dð Þ
Ytaxa

p

Ysites

q

�16
i ðp, qÞ

�7
mðp, qÞ

ð5Þ

where �16
i ðp, qÞ is the frequency of the 16-state dinucleotide

at position q in taxa p, and �7
mðp, qÞ is the frequency of the

7-state dinucleotide at position q in taxa p. For match states

this ratio is 1, whereas for mismatch states it is the frequency

of the specific mismatch dinucleotide in the 16-state model

divided by the sum of the frequencies of mismatch states.

Projecting the single mismatch state of the 7-state models

into ten distinct states means that each of the frequencies

needs to be defined. We apply this projection to AICC calcu-

lations in two different ways: 1) assuming that all noncanon-

ical dinucleotides are equally likely, so that �i ¼ �m=10; and 2)

using empirical frequencies. The former approach is equivalent

to an unparameterized model with no prior knowledge of

(di)nucleotide frequencies, whereas the latter is the equivalent

of taking ML estimates of the nine additional parameters in-

troduced in equation (5). For each 7-state model, we compute

likelihoods for both projections and choose the one that pro-

vides the lowest AICC for full model comparison.

Implementation and Tree Search

All phylogenetic analyses are performed with a modified ver-

sion of the PHASE 2.0 software package (Hudelot et al. 2003;

Telford et al. 2005; Gowri-Shankar and Rattray 2006), which

we call PHASE 3.0. Open-source software, full instructions on

program usage, and an updated manual are available at

https://code.google.com/p/rna-phase-3/ (last accessed

January 3, 2014). Further to the addition of the 7G dinucleo-

tide model and state-space projection, PHASE 3.0 also in-

cludes several bug fixes and updates, leading to improved

program stability and accuracy. All model comparisons are

performed under ML on a fixed tree topology, which is esti-

mated with the bionj algorithm (Gascuel 1997) imple-

mented in phyml (Guindon et al. 2010) that uses a model

of the variance and covariance of evolutionary distances.

Phylogenetic tree search is performed using Bayesian

MCMC analysis to obtain samples from the posterior distribu-

tion across all parameters, including trees, branch lengths, and

model parameters. The results from the ML inference are used

as the starting point for the MCMC, followed by 150,000

burn-in iterations. In total 300,000 sampling iterations are

performed, with a sampling period of 100, yielding 3,000

posterior samples. Under ML and Bayesian inference, the

(di)nucleotide frequency estimates are obtained from empiri-

cal counts from the sequence data, with no subsequent

optimization.

Genomic Alignments of RNA Genes

We extract all human RNA sequences from the alignments in

the Rfam “seed” data set (version 10.1), a total of 1,255 dis-

tinct sequences, associated with 550 Rfam families (Gardner

et al. 2011). We also extract structures from Rfam and discard

the 194 sequences which have a gap at a position that cor-

responds to a paired base in the structure, as gaps are subse-

quently removed from the sequences and the structures

would then become invalid. The remaining 1,061 sequences

are mapped to the human genome (GRCh37/hg19) using a

BLAT search (Kent 2002) to identify perfect matches. We

reject sequences that return no hits or that map to discontig-

uous genome sequence. The BLAT result for each sequence

provides a genomic location; if there are several locations with

the same BLAT score, we discard all of those locations.

Locations on the mitochondrial genome are also ignored;

and if two locations overlap, both are discarded. These filter-

ing steps result in 858 distinct genomic locations correspond-

ing to members of 480 Rfam families.

Rfam provides alignments of the RNA sequences in a family,

but these are built with reference to their secondary structure,

rather than the evolutionary history of any particular locus. As

we are interested in the latter, we retrieve the EPO-12 and

EPO-35 mammalian genomic alignments from Ensembl

(Paten et al. 2008; Paten et al. 2009; Flicek et al. 2012),

which are estimated using the EPO genomic alignment pipe-

line for 12 and 35 mammalian species, respectively. To ensure

the genomic alignment procedure does not bias our results,

we also compare results obtained using the Multiz alignment

tool for the 11 species shared with EPO-12 (pig is not present in

Multiz). A wide range of quality control checks were per-

formed on these alignments, including removing those with

1) multiple genomic blocks or inadequate flanking sequence;

2) ambiguous bases; 3) long insertions or deletions in the

human sequence; 4) fewer than five sequences; 5) evidence

for gene gain/loss; 6) overlap with an annotated mRNA; and 7)
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poor fitting RNA structure, assessed by a Structure

Conservation Index (SCI) <0.8 (Gruber et al. 2008). After

these filters, the final data sets consist of 287 alignments cov-

ering 203 RNA families for EPO-35, 124 alignments covering

107 RNA families for EPO-12, and 182 alignments covering

149 families for Multiz. Many of these alignments were also

manually examined, but not edited, to ensure consistent qual-

ity throughout. All the alignments are available as a zipped file

on the PHASE 3.0 website: https://code.google.com/p/rna-

phase-3/ (last accessed January 4, 2014).

Results

The results for the three different sets of genomic alignment

(EPO-12; EPO-35; Multiz) show very similar patterns, so for

brevity we present only those obtained from the EPO-35 align-

ments as these provide the largest and most comprehensive

data set. Results from the other alignments are available from

the authors upon request.

Dinucleotide Substitution Models Better Describe RNA
Evolution

Table 1 shows the best-fitting model for the 287 RNA gene

alignments in the EPO-35 data set. The substitution process in

nearly all of the alignments (281/287¼98%) is best described

by an RNA model that describes dinucleotide evolution in the

stem region explicitly. Two models best describe evolution in

over half of the alignments, our new 7G model, the simplest of

the Stable Pairs set, and the most complex Stable Sets model,

16D. The 7G model is, indeed, the simplest of all RNA models

(fig. 1) with only four free parameters (eq. 1) and tends to be

selected in the most conserved alignments. The rarely selected

HKY model has the same number of parameters as 7G, sug-

gesting that even when there are relatively few changes in an

alignment, then an RNA model provides a better description of

those changes and the relative nucleotide frequencies than a

DNA model. When a 7-state model is selected, it is almost

always (78/80¼ 98%) the variant that uses equal, rather

than empirical, mismatch frequencies for the correction that

projects the likelihood onto a 16-character state-space.

In the few cases where a DNA model is selected, it is always

a single model covering loop and stem, rather than a model

partitioned for stems and loops. In the 281 alignments where

an RNA model is chosen, the loop regions are best described

by the simpler HKY + �, rather than GTR + �, in 234 (83%)

alignments. In addition to the information shown in table 1,

we find the best-fit RNA models rarely include rates-across-

sites heterogeneity, with only 14% of alignments using a +D

dinucleotide model, suggesting that all base pairs in a stem

tend to evolve at a similar rate. This observation notably con-

trasts with the tendency for nucleotide (Arbiza et al. 2011) and

amino acid (Goldman and Whelan 2002) alignments to pro-

vide significant support for spatial rate heterogeneity.

Simply examining the best-fit model may be misleading,

because when there are several similarly fitting models small

differences in the likelihood may lead to different models

being chosen. Figure 2 shows the distribution of AICC values

for each class relative to the best model. In cases where the

Stable Sets models are not selected as the best models, their

AICC values tend to be very close to those of the best-fitting

model, suggesting that they consistently provide a good fit to

the data even if they are not the absolute best model. The

Stable Pairs class is much more inconsistent; in some cases it

fits well, but in others it fits very poorly. Although 7G is often

Table 1

Number of Best-Fit Substitution Models for EPO-35 RNA Genes

Model Class Loop Model

Stem Model HKY +! GTR +! Total

DNA

One DNA model 6 0 6

Two DNA models 0 0 0

Stable Pairs

16C 18 5 23

7C 4 0 4

7E 7 1 8

7F 1 0 1

7G 58 9 67

Stable Sets

16D 93 27 120

16E 33 8 41

16F 12 2 14

All Pairs 2 1 3

Total 234 53 287

FIG. 2.—Distribution of �AICc values relative to the best-fit model

(�AICc), calculated across all models. Models with �AICc ¼ 0 are not

included. Note that the x axis is truncated at 150 for clarity.
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chosen as the best fit model, in the remaining cases it does not

fit as well as the Stable Sets models, especially 16D, which is

the first or second choice model for 242 (85%) RNA gene

alignments.

The parameter estimates obtained from the dinucleotide

foundation models provide some insight into RNA function

and evolution. The empirical frequency of Watson–Crick

base pairs is 80%, with the remaining base pairs consisting

primarily of wobble base pairs (13%) and a smaller proportion

of mismatches (7%). These frequency estimates are used di-

rectly by the Stable Sets models through the influence of the �

and ’ parameters, which control the relative frequency of,

and the substitution rates between, the Watson–Crick,

wobble, and mismatch dinucleotide pairs. In contrast, the

Stable Pairs models do not differentiate wobble mismatches

from other mismatches and lump both together into a single

mismatch (MM) category. Therefore, the relatively strong pref-

erence for 16D over other models suggests that different

selective pressures act on wobble and other mismatches,

and for some types of RNA it is important to differentiate

between them when parameterizing a dinucleotide model.

The frequency estimates and the best-fit models both dem-

onstrate, as expected, that there is consistent and strong ev-

idence for stable stems, and that wobble pair pairing is a viable

intermediate during RNA evolution. Although mismatches do

occur, albeit relatively infrequently, the very low frequency

(1%) with which All Pairs models are chosen suggests that

the exact identity of mismatches when they occur is unimpor-

tant. Examining the relative rate of per nucleotide substitution

in loops and stems,�, just under half of the RNA genes (49%)

have a faster rate in stems than in loops. In many cases, the

difference is small, but 21% of the RNA genes have a stem

rate over twice that of the loop rate.

Factors Determining Model Choice

It is of interest to understand the factors affecting model

choice as these may aid identification of novel RNA genes or

the classification of existing genes. The type of RNA gene has

some effect on model choice (table 2), but in cases where

there is more than one example of an RNA type, no single

class of models is exclusively chosen. Rather than having a

direct relationship with the type of RNA gene, model choice

appears more closely related to the amount of structural and

evolutionary information available. In the few cases where

they are selected, the DNA models mostly describe evolution

in snoRNA that have relatively few base pairs.

Figure 3 shows various factors that previous studies have

suggested are important to RNA evolution. Tree length mea-

sures the total number of evolutionary events in an alignment.

When few events occur, the Stable Pairs models tend to be

selected most often. As greater numbers of substitutions are

inferred, on larger numbers of paired bases, the Stable Sets

models tend to dominate. Factors such as GC content and the

number of gaps in an alignment (not shown) do not lead to a

preference for one category of model over another.

The Effect of Model Choice on Tree Inference

We use a Bayesian inference approach for studying the effect

of model choice on tree inference. For each RNA gene align-

ment, we use PHASE 3.0 to take a set of 3,000 samples from

the posterior distribution of tree topologies under each of the

models described in figure 4. We investigate two similarity

measures to compare sets of posterior trees estimated under

each of the models. The first measure, shown in the lower off-

diagonal of figure 4, is the proportion of trees that overlap

between the two posterior sets of trees, providing a general

insight into the similarity of the cloud of trees present in both

sets. The second measure, shown in the upper off-diagonal of

figure 4, is the mean Robinson–Foulds (RF) distance between

the posterior distribution set of trees, normalized for each

pairwise comparison so that a distance of 0.0 represents iden-

tical trees and 1.0 represents no shared branches. This mea-

sure provides insight into the similarity of the trees and the

variance in their estimates. Similarity because sets of trees with

similar branching patterns will tend to have low average RF

distances; and variance because higher variance estimates

may have higher average RF distances, since the majority of

random trees from large data sets tend towards having a

(normalized) RF distance of 1.0 (Steel and Penny 1993).

We qualitatively summarize these results as a broad agree-

ment between the sets of trees inferred under many of the

models, with the caveat that the specific choice of model can

affect the finer detail of the topology; an expected outcome as

all models are trying to capture the same evolutionary tree

structure. The exceptions to this broad pattern are models 7A,

7B, and 7C (and to a lesser extent models 16A and 16I) whose

posterior sets of tree estimates exhibit markedly less similarity

to the other models and to one another. These three (five)

models tend to be the most parameter rich (see fig. 1),

Table 2

Best-Fit Models for EPO-35 Alignments, Classified by RNA Type

RNA Type Model Class

DNA Stable Pairs Stable Sets All Pairs

Long ncRNA 0 9 15 0

microRNA 0 33 71 2

Ribosomal 0 0 1 0

RNase P 0 1 0 0

scaRNA 0 2 9 0

snoRNA 4 52 62 1

Spiceosomal 0 1 0 0

tRNA 0 1 0 0

Vault 0 0 1 0

Othera 2 4 16 0

aA heterogeneous mixture of molecules such as cis-regulatory elements and
selenocysteine insertion sequences that do not naturally fit into other groups.
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particularly 7A, 7B, and 7C, that have a number of parameters

describing rates of substitution into and out of the mismatch

state. There is, however, no clear relationship between the

number of parameters and the decrease in similarity measures

indicative of the increase in variance associated with high

numbers of parameters. Model 7A, for example, has the high-

est number of parameters (28) but has more similar sets of

trees to other models compared with model 7C, which has 17

parameters.

Finally, figure 4 also shows an unexpectedly large normal-

ized RF distance between the sets of posterior tree estimates

from all models and the EPO-35 “species tree” provided by

Ensembl. To evaluate whether these differences are signifi-

cant, we conducted an AU-test between the majority rules

consensus tree from the Bayesian analysis under the best-fit

model and the Ensembl species tree. We find significant dif-

ferences between these trees in 124 (43%) of the alignments,

suggesting that the lack of similarity is not due to sampling

variance. The broad agreement between the trees estimated

under the majority of the models and their similarity to trees

estimated from other software, such as bionj, lead us to

conclude these differences are a property of the RNA genes

rather than an artifact of the software or modeling process.

Discussion

In this study, we introduce a new and powerful set of methods

for RNA model selection, allowing for the first time simple

comparison between 4-state DNA models and their 7-state

and 16-state RNA model counterparts. Based on related

theory linking together nucleotide, amino acid, and codon

models (Whelan and Goldman 2004; Seo and Kishino 2008,

2009), we project all sets of models to a 16-state space, which

allows direct comparison of their likelihoods through informa-

tion theoretic measures, such as AIC and BIC (Burnham and

Anderson 2002). This model selection methodology

complements those already available for comparing nucleo-

tide (Posada 2008) and amino acid models (Darriba et al.

2011).

Our projection method does, however, have some limita-

tions linked to the relationship between 7-state RNA models

and their 16-state projections. Our method is based on that of

Seo and Kishino (2008), who apply the same strategy to com-

pare amino acid and codon models, and our projected model

represents one of the many possible 16-state models compat-

ible with the original 7-state model. Different values of � in

equation (4), for example, could be used to project a series of

16-state models all compatible with the instantaneous rate

matrix of the original 7-state model. In order to allow valid

model comparison, we would like the process of change de-

scribed by the original 7-state model to be unaffected by the

projection process, which allows direct simple and direct com-

parison to other 16-state models. Our approach of assigning

� ¼ 1 results in a projected 16-state model where the prob-

ability of change from a mismatch state to a match state is

independent of the original (unobserved) mismatch. An intu-

itive explanation of this independence is that the mismatches

substitute one another instantaneously and are therefore in-

distinguishable from one moment to the next. Further re-

search is required to demonstrate that our projection

method is the optimal strategy for RNA model comparison,

but until then we suggest it provides a useful tool when se-

lecting or comparing RNA models.

To demonstrate the utility of RNA dinucleotide models and

the selection process we propose, we examine a large set of

vertebrate RNA genes derived from human genes identified in

Rfam (Gardner et al. 2011). Of the 287 RNA genes that pass

our stringent filtering criteria, we find 281 genes support the

selection of an RNA-specific model in preference to a DNA

model. This finding supports those of other smaller scale stud-

ies that have shown the value of RNA dinucleotide models,

albeit through more complex model selection criteria

(Schöniger and von Haeseler 1994; Rzhetsky 1995; Tillier
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and Collins 1998; Savill et al. 2001; Telford et al. 2005). Our

analyses demonstrate that 9 of the possible 16 dinucleotide

models are supported by at least one or more genes, demon-

strating the necessity of rigorous model selection. Despite the

range of models available and the opportunity for fast model

selection, it is of interest to know which of the RNA substitu-

tion models tends to perform best on average. By examining

differences in AICC between models, we show that Stable Sets

models tend to produce either the best-fit model or close to

the best-fit model for the majority of RNA genes examined. If

one wishes to conduct exploratory data analysis under a single

RNA model, then our results suggest 16D would be a reason-

able choice. Given the breadth of selected models and their

effect on downstream inference, we recommend a full model

selection procedure for more detailed evolutionary studies.

Our study suggests that two factors primarily affect model

selection in RNA genes: the evolutionary divergence between

the sequences and the number of paired bases in the RNA

structure (fig. 3). These observations can be rationalized by

considering what the dinucleotide component of RNA models

attempts to describe. First, the relative frequency of dinucleo-

tides in stems is biased away from the product of the constit-

uent (single) nucleotide frequencies, which helps RNA models

better describe sequences even when there is little sequence

divergence. A greater number of nucleotides in stems tends to

result in a concomitant improvement in fit of RNA models.
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Second, as sequences diverge, there is a greater opportunity

for the parameters in the dinucleotide model to improve

model fit by describing those changes. Improvement in

model fit is therefore also related to the product of evolution-

ary divergence (tree length) and the number of paired bases,

which describes the total number of changes observed in the

RNA structure. The choice of parameters affected by increas-

ing numbers of changes is, however, heterogeneous, evi-

denced by the wide range of models chosen. Other factors,

such as the function of the RNA gene or the GC-content, have

substantially less effect.

The choice of RNA or DNA model can also have a substan-

tial effect on phylogenetic tree inference. The broad agree-

ment between all models is indicative of the evolutionary

history of the sequences, whereas the specific differences ob-

served reflect variation in tree estimates induced by models

and the variance of those estimates. Some models, most no-

tably 7A, 7B, and 7C, tend to produce substantially different

sets of trees compared with the other models, possibly due to

their high number of parameters or variation in the structure

of the substitution matrix. Surprisingly, no form of model pro-

duces trees that agree with the species tree provided by

Ensembl. This observation holds despite trying a wide-range

of filtering procedures and software, beyond the scope of the

results presented here. These tests lead us to the tentative

conclusion that the differences in tree topology are a property

of the genomic alignments of RNA genes rather than the

models, perhaps resulting from the inclusion of paralogous

genes or complexities in the evolution of RNA genes that

are not captured by any of the models examined, such as

arm switching in microRNAs (Griffiths-Jones et al. 2011) or

changes in RNA secondary structure of, for example, ribo-

somal or tRNAs (Caetano-Anollés 2002).

All of the models and model comparison methods de-

scribed here are implemented in the open-source PHASE soft-

ware, which will allow other users to apply our methods to

their analyses of RNA genes. The results of model selection can

then be carried through to phylogenetic tree inference using

either PHASE or other software that implements RNA substi-

tution models, such as RAxML. Fast and rigorous model selec-

tion and model averaging (Posada 2008) may provide more

robust classifications of RNA molecules and new insights into

their function.

Acknowledgments

The authors thank Sam Griffiths-Jones and Richard Goldstein

for their useful comments on this and related work. They also

like to thank Magnus Rattray, Howsun Jow, and Vivek Gowri-

Shankar for their development of the PHASE software pack-

age. They thank David Bryant and two reviewers for helpful

comments that have improved the manuscript. J.E.A. was

funded by a Natural Environmental Research Council-CASE

(UK) studentship in conjunction with the European

Molecular Biology Laboratory, European Bioinformatics

Institute.

Literature Cited
Akaike H. 1974. A new look at the statistical model identification. IEEE

Trans Automat Contr 19:716–723.

Arbiza L, Patricio M, Dopazo Hn, Posada D. 2011. Genome-wide

heterogeneity of nucleotide substitution model fit. Genome Biol

Evol. 3:896.

Berezikov E. 2011. Evolution of microRNA diversity and regulation in an-

imals. Nat Rev Genet. 12:846–860.

Burnham KP, Anderson DR. 2002. Model selection and multi-model infer-

ence: a practical information-theoretic approach. New York: Springer

Verlag.

Caetano-Anollés G. 2002. Tracing the evolution of RNA structure in ribo-

somes. Nucleic Acids Res. 30:2575–2587.

Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selec-

tion of best-fit models of protein evolution. Bioinformatics 27:

1164–1165.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more

models, new heuristics and parallel computing. Nat Methods. 9:772.

Flicek P, et al. 2012. Ensembl 2012. Nucleic Acids Res. 40:D84–D90.

Gardner PP, et al. 2011. Rfam: Wikipedia, clans and the “decimal” release.

Nucleic Acids Res. 39: D141–D145.

Gascuel O. 1997. BIONJ: an improved version of the NJ algorithm based on

a simple model of sequence data. Mol Biol Evol. 14:685–695.

Gibson A, Gowri-Shankar V, Higgs PG, Rattray M. 2005. A compre-

hensive analysis of mammalian mitochondrial genome base

composition and improved phylogenetic methods. Mol Biol Evol. 22:

251–264.

Goldman N, Whelan S. 2002. A novel use of equilibrium frequencies in

models of sequence evolution. Mol Biol Evol. 19:1821–1831.

Gowri-Shankar V, Rattray M. 2006. On the correlation between compo-

sition and site-specific evolutionary rate: implications for phylogenetic

inference. Mol Biol Evol. 23:352–364.

Griffiths-Jones S. 2007. Annotating noncoding RNA genes. Annu Rev

Genomics Hum Genet. 8:279–298.

Griffiths-Jones S, Hui JH, Marco A, Ronshaugen M. 2011. MicroRNA evo-

lution by arm switching. EMBO Rep. 12:172–177.

Gruber AR, Bernhart SH, Hofacker IL, Washietl S. 2008. Strategies for

measuring evolutionary conservation of RNA secondary structures.

BMC Bioinformatics 9:122.

Guindon S, et al. 2010. New algorithms and methods to estimate maxi-

mum-likelihood phylogenies: assessing the performance of PhyML

3.0. Syst Biol. 59:307–321.

Hasegawa M, Kishino H, Yano T-a. 1985. Dating of the human-ape split-

ting by a molecular clock of mitochondrial DNA. J Mol Evol. 22:

160–174.

Higgs PG. 2000. RNA secondary structure: physical and computational

aspects. Q Rev Biophys. 33:199–253.

Hudelot C, Gowri-Shankar V, Jow H, Rattray M, Higgs P. 2003. RNA-based

phylogenetic methods: application to mammalian mitochondrial RNA

sequences. Mol Phylogenet Evol. 28:241–252.

Kent WJ. 2002. BLAT—the BLAST-like alignment tool. Genome Res. 12:

656–664.

Kosiol C, Goldman N. 2011. Markovian and non-Markovian protein se-

quence evolution: aggregated Markov process models. J Mol Biol.

411:910–923.

Lanave C, Preparata G, Sacone C, Serio G. 1984. A new method for

calculating evolutionary substitution rates. J Mol Evol. 20:86–93.

Letsch HO, Kjer KM. 2011. Potential pitfalls of modelling ribosomal RNA

data in phylogenetic tree reconstruction: evidence from case studies in

the Metazoa. BMC Evol Biol. 11:146.

Allen and Whelan GBE

74 Genome Biol. Evol. 6(1):65–75. doi:10.1093/gbe/evt206 Advance Access publication January 3, 2014

to
`
'
,


Mallatt J, Craig CW, Yoder MJ. 2010. Nearly complete rRNA genes as-

sembled from across the metazoan animals: effects of more taxa, a

structure-based alignment, and paired-sites evolutionary models on

phylogeny reconstruction. Mol Phylogenet Evol. 55:1–17.

Mattick JS. 2009. The genetic signatures of noncoding RNAs. PLoS Genet.

5:e1000459.

Muse SV. 1995. Evolutionary analyses of DNA sequences subject to con-

straints of secondary structure. Genetics 139:1429–1439.

Paten B, Herrero J, Beal K, Birney E. 2009. Sequence progressive align-

ment, a framework for practical large-scale probabilistic consistency

alignment. Bioinformatics 25:295–301.

Paten B, et al. 2008. Genome-wide nucleotide-level mammalian ancestor

reconstruction. Genome Res. 18:1829–1843.

Posada D. 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol.

25:1253–1256.

Posada D, Buckley TR. 2004. Model selection and model averaging in

phylogenetics: advantages of Akaike information criterion and

Bayesian approaches over likelihood ratio tests. Syst Biol. 53:793–808.

Rzhetsky A. 1995. Estimating substitution rates in ribosomal RNA genes.

Genetics 141:771.

Savill NJ, Hoyle DC, Higgs PG. 2001. RNA sequence evolution with sec-

ondary structure constraints: comparison of substitution rate models

using maximum-likelihood methods. Genetics 157:399–411.

Schöniger M, von Haeseler A. 1994. A stochastic model for the evolu-

tion of autocorrelated DNA sequences. Mol Phylogenet Evol. 3:

240–247.

Schöniger M, von Haeseler A. 1999. Toward assigning helical regions in

alignments of ribosomal RNA and testing the appropriateness of evo-

lutionary models. J Mol Evol. 49:691–698.

Seo T-K, Kishino H. 2008. Synonymous substitutions substantially improve

evolutionary inference from highly diverged proteins. Syst Biol. 57:

367–377.

Seo T-K, Kishino H. 2009. Statistical comparison of nucleotide, amino acid,

and codon substitution models for evolutionary analysis of protein-

coding sequences. Syst Biol. 58:199–210.

Steel MA, Penny D. 1993. Distributions of tree comparison metrics—some

new results. Syst Biol. 42:126–141.

Sullivan J, Joyce P. 2005. Model selection in phylogenetics. Annu Rev Ecol

Evol Syst. 36:445–466.

Suutari M, et al. 2010. Molecular evidence for a diverse green algal

community growing in the hair of sloths and a specific association

with Trichophilus welckeri (Chlorophyta, Ulvophyceae). BMC Evol

Biol. 10:86.
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