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Abstract: Pickering emulsions with the use of particles as emulsifiers have been extensively used in
scientific research and industrial production due to their edge in biocompatibility and stability
compared with traditional emulsions. The control over Pickering emulsion stability and type
plays a significant role in these applications. Among the present methods to build controllable
Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted
enormous attention. In this review, we highlight some recent advances in tuning the amphiphilicity
of particles for controlling the stability and type of Pickering emulsions. The amphiphilicity of three
types of particles including rigid particles, soft particles, and Janus particles are tailored by means of
different mechanisms and discussed here in detail. The stabilization-destabilization interconversion
and phase inversion of Pickering emulsions have been successfully achieved by changing the surface
properties of these particles. This article provides a comprehensive review of controllable Pickering
emulsions, which is expected to stimulate inspiration for designing and preparing novel Pickering
emulsions, and ultimately directing the preparation of functional materials.

Keywords: Pickering emulsion; particle-stabilized emulsion; particle amphiphilicity; emulsion
stability; emulsion phase inversion

1. Introduction

Emulsions have been extensively used in many areas such as cosmetics, the food industry,
and material science [1–7]. As a multiphasic mixture system, emulsions typically consist of three main
components: oil phase, water phase, and emulsifier [8]. Various emulsifiers, including surfactants [9–12],
polymers [13–17], proteins [18–23], and particles [24–27], have been utilized to prepare different
kinds of emulsions. Compared with emulsions stabilized by surfactants, polymers, and proteins,
particles stabilized emulsions, which are commonly named Pickering emulsions, enjoy characteristic
superiority [2]. They make use of micro- or nano-size particles as the interfacial stabilizers, which
provide a robust physical barrier against droplet coalescence and retain the long-term stability of
emulsions. In addition, Pickering emulsions have low cytotoxicity and good biocompatibility as
a result of reducing the use of surfactants [28]. Pickering emulsions as potential candidates are
expected to replace traditional emulsions to some extent, and are receiving much attention from
industry, bioscience, and materials.

The control of Pickering emulsions plays a pivotal part in many significant processes,
for example, oil extraction and recovery [29,30], emulsion polymerization [31–34], and heterogeneous
catalysis [35–37]. In this regard, many endeavors have been made in developing controllable Pickering
emulsions. Generally, the control of Pickering emulsions involves control over their stability and
type which determine the property and performance of the emulsions [8,38]. There are two ways
to realize this: changing the compositions of the emulsion phases or tailoring the amphiphilicity of
the interfacial emulsifiers. Based on the Ostwald packing theory, it is well known that changing the
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water-to-oil ratio of emulsion systems can give rise to interconversion between different types of
emulsions which is commonly named emulsion phase inversion [8], for example, from water-in-oil
(W/O) emulsion to oil-in-water (O/W) emulsion. Together with the water-to-oil ratio, the change
of many other parameters such as the concentration of Pickering particles or the components of
the two liquid phase, can also induce emulsion phase inversion [39]. These strategies of changing
the compositions of emulsion systems can effectively control the type and morphology of Pickering
emulsions. However, complicated operation processes and repeated experimental procedures are
required to establish the optimum condition for the formation of the desired Pickering emulsions,
which cause vast time expenditure and material waste. On the other hand, the addition of excess
components including oil phase, water phase, and Pickering particles may damage the original stability
of emulsions and lead the emulsions to undergo irreversible changes.

The amphiphilicity of emulsifiers is another crucial factor that notably affects the emulsion stability
and type [40–43]. In surfactant stabilized emulsion systems, the amphiphilicity of surfactants is defined
as the relative balance between hydrophilic and hydrophobic properties of amphiphiles, which can be
well described by the hydrophilic-lipophilic balance (HLB) value [2,8,44]. However, the amphiphilicity
in Pickering emulsion systems has different definitions depending on the types of particle. For isotropic
particles such as rigid and soft spherical particles, the surface wettability is widely used to describe the
amphiphilicity of particles. It can be measured by the three-phase contact angle of particles adsorbed
at an oil-water interface [2,44,45]. For anisotropic Janus particles, the concept of Janus balance has
been proposed to represent the amphiphilicity of particles in some studies [46,47]. The change of
surface wettability or Janus balance can lead to the change of amphiphilicity, which is routinely used
to manipulate the stability and type of Pickering emulsions. In contrast to changing the compositions
of emulsion systems, tuning amphiphilicity of Pickering particles can direct not only phase inversion
between different types of Pickering emulsions, but also reversible emulsification and demulsification
via an easier regulating process. This pathway for building controllable Pickering emulsions, as well
as their functional materials, is becoming a front-burner issue in the field.

In this review, we highlight some recent advances in tuning the amphiphilicity of particles for
preparing controllable Pickering emulsions. Based on the difference of particle species, Pickering
emulsifiers are classified into three categories: rigid particles, soft particles, and Janus particles. In the
section of rigid particles, we discuss in detail the isotropic rigid particles that are used to control the
stability and type of Pickering emulsions. Different mechanisms of tailoring the amphiphilicity of
particles are summarized, including molecular adsorption and chemical grafting of small molecules
and polymers. For soft particles, examples of isotropic self-assembled objects and microgels are
summarized. The next section presents some anisotropic Janus particles that have been successfully
used in controlling Pickering emulsions. The amphiphilicity of Janus particles is tuned by changing
their surface chemistry and shape. This review is expected to stimulate interest in controlling Pickering
emulsion by tuning the amphiphilicity of particles, and to make a contribution in extending the
research scope of controllable Pickering emulsions and their future applications in many fields.

2. Rigid Particles

Various unmodified rigid particles have been attempted as emulsifiers to prepare Pickering
emulsions in recent years, for example, silica spheres and rods [48–50], metal oxide particles [51,52],
clay particles [53], graphene nanosheets [54–56], carbon nanotubes [57,58], carbon black [59], cellulose
nanocrystals [60,61], polymeric particles [62,63], lignin particles [64], and chitin particles [65,66].
Stable Pickering emulsions can be successfully formed by using some of these particles. Additionally,
the obtained Pickering emulsions have different types depending on the inherent surface wettability
of particles. The more hydrophilic particles favor the formation of oil-in-water (O/W) emulsions
and the more hydrophobic particles always conduct water-in-oil (W/O) emulsions [2]. However,
the particles with specific surface wettability can only form one type of emulsion by keeping the
emulsion compositions unchanged. In the absence of stimuli-responsive groups on the surface of
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particles, it is almost impossible to actualize phase inversion by only using those unmodified particles.
For other particles with extremely hydrophilic or hydrophobic surfaces, they generally tend to be
dispersed in water or oil phase instead of adsorbing at the oil-water interface, which always causes the
emulsification failure or instability of Pickering emulsions. These existing limitations restrict control
over Pickering emulsions. In order to easily control the stability and type of Pickering emulsions,
tuning the amphiphilicity referring to the controllable change of surface wettability is required for
the rigid particles. Among the present strategies for tuning the particle amphiphilicity [28], surface
modification is an effective method and has been extensively made use of. According to the interaction
mode between particle surface and particular small molecules or polymers, this is generally classified
into two categories, including surface adsorption and surface grafting. In this section, we review recent
progress related to the two strategies for tuning the amphiphilicity of rigid particles for controllable
Pickering emulsions.

2.1. Surface Modification by Non-Covalent Adsorption

2.1.1. Small Molecules

A variety of ingredients have been developed to modify the surface of rigid particles by molecular
adsorption of small molecules and polymers based on non-covalent interactions. Among them,
surface modification by small molecule adsorption is simple and has attracted great attention from
many researchers [53,67,68]. Numerous examples have been presented in which small molecule
adsorption was used to tune the amphiphilicity of particles for controlling the stability of Pickering
emulsions. For example, Li and coworkers [69] used the adsorption of short-chain aliphatic
amines to change the amphiphilicity of Laponite particles, leading to a stable Pickering emulsion.
The unmodified Laponite particles are extremely hydrophilic, unable to stabilize the oil-water interface.
Therefore, complete phase separation of paraffin oil and water was observed when the raw Laponite
particles were used as emulsifiers to prepare Pickering emulsions. Short-chain aliphatic amines
including diethylamine (DEA) and trimethylamine (TEA) can adsorb onto the surface of Laponite
particles instead of self-assembling into aggregates in solution. Their absorption can effectively
increase the hydrophobicity of Laponite particles, facilitating the enrichment of particles at the O/W
interface within the emulsion system. The stability of Pickering emulsions could be regulated by
controlling the amine concentration. Similar studies have also been demonstrated, for example,
methyl orange-modified Laponite particles [70], palmitic acid-modified silica nanoparticles [71],
oleic acid-modified silica nanoparticles [72], and magnetite nanoparticles [73], octyl gallate-modified
aluminum oxide particles [74] etc. In addition to steady molecules, stimuli-responsive small molecules
can transform their molecular structures or conformations under specific external stimuli [9], which
enables the smart control of Pickering emulsions. Jiang et al. demonstrated stabilization and
destabilization of O/W emulsions by using N1-dodecyl-N,N-dimethylacetamidine modified silica
particles [75]. N1-dodecyl-N,N-dimethylacetamidine is a switchable surfactant with a long-chain alkyl
group. At high CO2 concentration, it can be protonated to become positively charged, which can adsorb
onto the negatively charged silica particles based on electrostatic interaction. As shown in Figure 1,
the molecular adsorption was indicated by the zeta potential of the particles and the adsorption
isotherm. The modification of the hydrophobic alkyl group resulted in the wettability change of silica
particles from excessive hydrophilicity to partial hydrophobicity, allowing the formation of stable O/W
emulsions. Upon purging N2 or air, the protonated surfactants returned to neutral form and desorbed
from the silica particles surface. As a result, the Pickering emulsion was destabilized and phase
separation occurred (Figure 1c). Recently, another switchable Pickering emulsion was reported by Zhu
and coworkers [76]. As shown in Figure 2, they used a cationic surfactant of cetyltrimethylammonium
bromide (CTAB) to change the surface wettability of negatively charged silica particles by electrostatic
adsorption. The adsorption of CTAB endowed hydrophilic silica particles with a certain amphiphilicity,
which gave a generation of stable O/W emulsions. Subsequently, the obtained Pickering emulsions
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were destabilized with the addition of an anionic surfactant of sodium dodecyl sulfate (SDS) due to
the formation of ion pairs and desorption of CTAB from the particle surface. The stable O/W emulsion
could be formed again by adding an equimolar amount of CTAB. The alternate addition of CTAB and
SDS in aqueous solution reversibly tuned the amphiphilicity of the silica particles, thus ensuring the
control of the destabilization-stabilization behavior of the emulsions.
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Figure 1. (A-top) Schematic illustration of the interconversion between neutral amidine form and
cationic amidinium form of N1-dodecyl-N,N-dimethylacetamidine; (A-bottom) Zeta potentials of silica
nanoparticles that were dispersed in aqueous solutions containing switchable surfactant with cationic
amidinium form (N), and neutral amidine form ( ), as a function of initial concentration. The adsorption
isotherm of the amidinium form (˝) at the silica–water interface is also given as a function of the
equilibrium concentration; (B) Digital photographs of n-octane-in-water Pickering emulsions that were
stabilized by silica nanoparticles and either a switchable surfactant (a–h) undergoing switching or
cetyltrimethylammonium bromide (CTAB) (i,j). (a) Emulsion with amidinium; (b) transfer to a bubbling
device; (c) bubbling of N2 through the emulsion; (d) transfer to a vial; (e) re-homogenization, 24 h
later; (f) one week later; (g) bubbling CO2 through the emulsion, re-homogenization, one week later;
(h) emulsion with amidinium after 24 h without bubbling of N2; (i) emulsion with CTAB, 24 h later;
(j) emulsion with CTAB after bubbling N2 through the emulsion, 24 h later. Adapted with permission
from [75]. Copyright 2013, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
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Figure 2. The switch between stable and unstable oil-in-water (O/W) emulsions induced by the
alternate addition of a cationic surfactant and an anionic surfactant in the aqueous phase. Reprinted
with permission from [76]. Copyright 2015, American Chemical Society.

The phase inversion of Pickering emulsions could be also realized by surface modification of small
molecules. Cui and coworkers [77] demonstrated a successful phase inversion from O/W emulsion
to W/O emulsion by using a kind of double-chain cationic surfactant-modified silica particle. It was
noted that the unmodified silica particles were unable to stabilize the O/W emulsions due to their
excessive hydrophilicity. The single-chain cationic surfactants such as dodecyltrimethylammonium
bromide (DTAB) and CTAB can adsorb onto the silica particles’ surface, therefore increasing the surface
hydrophobicity. The adsorption of DTAB or CTAB could improve the stability of O/W emulsions,
but the change of particle amphiphilicity was not enough to curve the interface of emulsion into W/O
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form because of insufficient hydrophobicity of the particles’ surface. Compared with single-chain
cationic surfactant, a double-chain cationic surfactant of didodecyldimethylammonium bromide
(di-C12DMAB) increases the adsorption density of hydrophobic alkyl chains on the particle surface and
endows the particle with enhanced hydrophobicity. Their adsorption ultimately induced the emulsion
phase inversion from O/W emulsion to W/O emulsion. After that, a similar behavior [78] was observed
again by the same group while using CaCO3 nanoparticles and a series of sodium carboxylates
with different chain lengths to stabilize Pickering emulsions (Figure 3). The sodium carboxylates
have hydrophilic head groups with negative charges and hydrophobic alkyl tails. They can adsorb
onto the positively charged CaCO3 nanoparticles’ surface based on the combination of electrostatic
interaction and hydrophobic effect. With the increase of alkyl chain length, they show enhanced
adsorption ability on the particle surface. The adsorbed sodium carboxylates form a monolayer
on the CaCO3 nanoparticles with head groups to the particles’ surface and hydrophobic tails to
water. The arrangement of amphiphiles resulted in the increase of the hydrophobicity of the particles’
surface and the change of amphiphilicity. When a low concentration of sodium carboxylate was
used, the particle surface reached a certain degree of amphiphilicity, which favored the formation of
stable O/W emulsion. As the hydrophobicity was increased to a particular value by increasing the
concentration or alkyl chain length of the sodium carboxylates, phase inversion from O/W emulsion
to W/O emulsion occurred. Furthermore, for C12Na with a long alkyl chain, bilayer or hemimicelle
was formed at higher concentration of sodium carboxylates due to the strong chain-chain interactions,
which turned the particles hydrophilic again and caused desorption of particles from the oil-water
interface. A second phase inversion from W/O emulsion to O/W emulsion was achieved (Figure 3d).
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Figure 3. (A) Schematic illustration of phase inversion induced by surface adsorption of a series of
sodium carboxylates of different chain lengths on CaCO3 nanoparticles; (B) Digital photographs of
vessels containing toluene-water emulsions stabilized by CaCO3 nanoparticles and sodium carboxylate:
(a) C6Na; (b) C8Nal; (c) C10Na; and (d) C12Na at different concentrations, taken 1 week after preparation.
Concentration from left to right: (a–c) 1, 3, 6, 10, 30, 60 mM; (d) 1, 3, 10, 30, 100, 300 mM. Adapted with
permission from [78]. Copyright 2012, American Chemical Society.

2.1.2. Polymers

As stated in the above section, surfactants or surfactant-like molecules were usually used for
tuning the amphiphilicity of particles. However, those molecules may give rise to toxicity issues in
consideration of biological applications and have a potential possibility of uncontrolled fast desorption
from particle surfaces [2,40,79]. Compared with small molecules, polymers have more advantages in
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biocompatibility and adsorption stability. Polymers also possess more varied chain conformations
and chain behavior, which can facilitate the formation of complex Pickering emulsions such as
double Pickering emulsion [80] and high-internal-phase emulsion (HIPE) [81], and fulfil high-level
controllability of Pickering emulsions. Various polymers have been applied to change the particle
wettability intending to control the Pickering emulsions. For instance, Wang and coworkers [82]
improved the stability of paraffin-water emulsions by using poly(oxypropylene)diamine-modified
Laponite particles. Either the Laponite particle or poly(oxypropylene)diamine is a poor emulsifier due
to the unfavorable amphiphilicity. When one of them was used alone to prepare the paraffin-water
emulsion, complete phase separation into oil and water phase took place. The stable O/W emulsion
could be only formed by their combination. It was interpreted that poly(oxypropylene)diamine
could adsorb on the particle surface with the two end groups anchored on the surface and the
hydrophobic poly(oxypropylene) chain exposed to water, thus changing the amphiphilicity of the
particles. Williams et al. [80] used silica particles modified with poly(ethylene imine) (PEI) to prepare
a double Pickering emulsion. In the absence of PEI, the hydrophilic silica particles were unable to
stabilize any type of Pickering emulsion. Upon absorption of PEI on silica particles with a PEI/silica
mass ratio of 0.075, the particles turned partially hydrophobic which enabled the formation of stable
O/W emulsions. When the PEI/silica mass ratio was further increased to 0.5, the enhanced surface
hydrophobicity led to the phase inversion of emulsion from the O/W form to the W/O form. In short,
the interface with different curvature could be formed by using the PEI/silica hybrid particles with
a different adsorbed amount of PEI. Based on this mechanism, the double Pickering emulsion of the
W/O/W form was also prepared by two-step homogenization (Figure 4). A W/O Pickering emulsion
was fabricated at high PEI/silica mass ratio through a first homogenization. This obtained W/O
emulsion was subsequently applied to generate the final W/O/W double emulsion at low PEI/silica
mass ratio through a second homogenization.
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Figure 4. Schematic representation of preparing water-oil-water (W/O/W) double emulsions using
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American Chemical Society.

Block copolymer is another kind of polymer used to tune the amphiphilicity of particles. Binks
and coworkers [83] prepared a polymer-particle complex with tunable amphiphilicity by using the
poly[2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate] (PDMA-b-PMMA) to adsorb
onto latex particles based on hydrophobic effect. The amphiphilicity of the polymer-particle complexes
can be tuned by changing the environmental temperature which has a great influence on the degree of
hydration of PDMA chains. At low temperature, the polymer-particle complexes were hydrophilic,
which can stabilize an O/W emulsion. With the increase of temperature, the degree of hydration
of PDMA chains was reduced. The polymer-particle complexes became more hydrophobic and
preferentially wetted by oil. The change in surface wettability induced by increasing temperature
brought about phase inversions from O/W emulsions to W/O/W emulsions, finally to W/O emulsions
which were formed at the higher temperature. Yoon et al. [84] investigated the effect of poly(acrylic
acid) (PAA)-based polymers that were adsorbed onto iron oxide nanoparticles on the morphologies of
Pickering emulsions. PAA-based polymers can adsorb onto the iron oxide nanoparticles to change
their surface amphiphilicty based on coordination interaction between the carboxylate groups of
PAA and the iron. Four PAA-based polymers were attempted to tune the amphiphilicity of iron
oxide nanoparticles. The adsorption of the homopolymer PAA could not change the hydrophilicity of
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iron oxide nanoparticles. Only macroscopic phase separation occurred when these particles acted as
emulsifiers during the preparation of Pickering emulsions (Figure 5A). The other three PAA-based
polymers are block copolymers poly(acrylic acid-b-butyl acrylate) (PAA-b-PBA) with different PBA
block lengths. With the decrease of PBA block length, the interfacial tension of particles at the
dodecane/water interface was also decreased. This interfacial change indicated that the modified
particles exhibited enhanced interfacial activity. Due to the shortest PBA block length, the particles
coated with PAA114-b-PBA26 were expected to have the most appropriate amphiphilicity. As shown in
Figure 5E, stable emulsions with small droplet size were successfully generated by using these particles.
With the increase of PBA block length, the interfacial activity of the particles was lowered, and more
nanoparticles were observed to be dispersed in excess aqueous phase. The change of particles in
amphiphilicity and decrease of particles’ concentration cooperatively led to the increase of emulsion
droplet size (Figure 5F,G).
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Figure 5. Photographs and microscopy images of oil-in-water emulsions formed between dodecane and
aqueous dispersions containing (A) poly(acrylic acid) (PAA)-coated NPs; (B,E) PAA114-b-PBA26-coated
NPs; (C,F) PAA114-b-PBA38-coated NPs; and (D,G) PAA114-b-PBA67-coated NPs. Images were captured
after 1 day at pH = 8 with equal volumes of oil and water phases. Adapted with permission from [84].
Copyright 2012, American Chemical Society.

2.2. Surface Modification by Chemical Grafting

Although molecular adsorption is a simple and effective method to tailor the amphiphilicity of
particles, there are still many limitations existing in this method [28]. Molecular adsorption generally
has adsorption and desorption equilibrium. This equilibrium crucially relies on the conditions of the
system. When the equilibrium conditions are changed, the adsorbed molecules may desorb from the
particle surface, which will possibly cause uncontrollable emulsification failure and destabilization
of Pickering emulsions. In addition, excessive small molecules or polymers are needed to maintain
the equilibrium. The residual molecules, particularly small molecule surfactants or amphiphilic
block copolymers, can stabilize the oil-water interface alone. It is difficult to distinguish the exact
contributions of the modified particles and the residual molecules to the emulsion stability and phase
inversion. The advantages of Pickering emulsion are somehow weakened due to the addition of
other amphiphilic molecules. Compared with molecular adsorption, chemical grafting of particular
groups on the particle surface is receiving more attention. Chemical grafting requires small molecules
or polymers to be fixed on the particle surface by covalent bonds, which ensures less influence
against the change of system conditions. Importantly, this strategy can endow particles with various
stimuli-responsive groups, for example, temperature, light, pH, CO2, and ion strength, which reclaims
a new vista to control the emulsion type and stability of Pickering emulsions. Similarly, molecules
chemically grafted on the particle surface can be small molecules or polymers. In this next section,
some recent studies on tuning the amphiphilicity of particles via chemical grafting are reviewed
as below.
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2.2.1. Small Molecules

Various small molecules have been grafted onto the particle surface to enable the particles
to be stimuli-responsive. The capability of responding to external stimuli allows these modified
particles to behave as smart emulsifiers for controlling Pickering emulsions. Depending on the
properties of small molecules, different external stimuli can be used to actuate the change of particle
amphiphilicity. Among them, the amphiphilicity regulation by pH and ion strength has been
extensively reported [85–88]. Many reviews have highlighted these excellent works [2,28,45]. It is worth
mentioning that tuning the amphiphilicity by CO2 is becoming a new method. CO2 is an attractive
stimulus owing to its particular advantages of low cost and good biocompatibility [89]. Importantly, it is
completely erasable for the emulsion system without any chemical residue contamination. The stability
and phase inversion of the emulsion can be readily controlled by only bubbling and releasing CO2.
Liang and coworkers [90] manipulated the stability of Pickering emulsion by using CO2-responsive
particles which were prepared by grafting a CO2-responsive small molecule of N,N-dimethylacetamide
dimethyl acetal (DMA-DMA) on silica particles. The freshly obtained CO2-responsive particles are
able to stabilize an O/W emulsion due to their surface amphiphilicity meeting the basic requirement of
forming a stable emulsion. Upon bubbling CO2 into the emulsion, DMA-DMA was protonated
to generate surface charges, and thus the particles became more hydrophilic. This wettability
change induced destabilization and phase separation of the emulsion. In contrast, DMA-DMA and
phenyl were co-grafted onto silica particles to obtain more hydrophobic particles with completely
different initial wettability. Correspondingly, stable W/O emulsions were prepared by these modified
particles. When the Pickering emulsion was bubbled with CO2, a similar phenomenon of emulsion
destabilization was observed. In both systems, the stable O/W or W/O emulsions could be recovered
by the removal of CO2 via purging with air (Figure 6).
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Light is another neat and contactless external stimulus [91]. Using light to tune the surface
chemistry of particles is considered to be an ideal non-invasive way to control Pickering emulsions,
which has been given tremendous attention recently. Chen and coworkers [92] used photochromic
spiropyran-grafted up-conversion nanophosphors (Sp-UCNPs) as emulsifiers to establish reversible
phase inversion within a Pickering emulsion via light irradiation. In their study, spiropyran was
typically grafted on the surface of up-conversion nanophosphors by EDC/NHS chemistry. In terms
of conversion of NIR light to UV light by UCNPs, spiropyrans which are responsive to UV light can
be triggered from the close-state to the open-state by NIR light. Once photoisomerization occurred,
the hydrophobic particles became hydrophilic, leading to the formation of O/W emulsions. Upon the
visible light irradiation, spiropyran returned to the close-state so that the particle became hydrophobic
again and W/O emulsions were formed. The conversion of emulsion types could be repeated many
times by alternating NIR light and visible light irradiation. This novel system was further extended to
control biphasic catalysis. Zhang et al. [93] reported a photo-switchable Pickering emulsion system
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with the use of modified TiO2 nanoparticles as emulsifiers. Due to the responsive ability of TiO2 to UV
light, reversible regulation of particle amphiphilicity could be accomplished by alternative UV/dark
treatment. The raw TiO2 nanoparticles were grafted with long alkyl chain silanes to change their
inherent surface wettability. However, with the amphiphobic property of the particle surface after
grafting, the modified TiO2 nanoparticles were unable to be wetted by oil or water phase and no
emulsion was formed. Upon UV irradiation, the excited TiO2 nanoparticles could induce degradation
of the alkyl chain into shorter species. This slight change of surface wettability was enough to retain
the stability of the W/O emulsions. With further UV irradiation, alkyl groups were further removed
and the particles were covered with hydroxyl groups. The dramatic increase of surface hydrophilicity
caused phase inversion and yielded O/W emulsions. Keeping in the dark for a period, the particle
surface changed to be hydrophobic and the W/O emulsions were formed again. The different types of
emulsions were manipulated by using UV light irradiation and dark-storage alternately (Figure 7).
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core with a shell of long alkyl chain silanes (A1) and degraded to short-chain silanes (A2) via UV
irradiation in hexane; (B) Schematic of the switchable Pickering emulsions using TiO2 nanoparticle
emulsifiers under UV/dark treatments: (B1) the dormant emulsifiers; (B2) the emulsifiers awakened
via UV irradiation; (B3) the stabilized W/O type emulsions; (B4) coalescence and phase separation
of the W/O emulsions in response to UV-activation; (B5) the stabilized O/W type emulsions and
(B2) coalescence and phase separation of the W/O emulsions induced by dark storage. The oil is
hexane. Adapted with permission from [93]. Copyright 2015, American Chemical Society.

2.2.2. Polymers

Polymers can be also grafted on particles to tailor particle amphiphilicity for controllable
Pickering emulsions. Qian and coworkers [94] used a CO2-responsive poly[2-(diethylamino)ethyl
methacrylate] (PDEAEMA) to modify lignin particles through atom transfer radical polymerization
(ATRP). The obtained lignin-g-PDEAEMA particles could be dispersed in water in the presence of
CO2 while being flocculated or even precipitated by purging with N2 quickly (Figure 8). For untreated
lignin-g-PDEAEMA particles, decane-in-water emulsions could be stabilized for more than one month.
With the addition of CO2, the O/W emulsion was destabilized into two separated phases. Another two
cycles of stabilization and destabilization were also provided by the repeated addition and removal of
CO2 in this study. In addition to CO2, PDEAEMA is also responsive to temperature. This intriguing
property also affords great convenience to switch stabilization and destabilization of Pickering
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emulsions. In this regard, Tang and coworkers [95] grafted PDMAEMA chains onto the surface
of cellulose nanocrystals (CNC) via free radical polymerization. The obtained PDMAEMA-g-CNC
particles could adsorb at the oil-water interface and remarkably reduce the interfacial tension, which
was beneficial for the formation of stable O/W emulsions. Due to the thermo-responsive character,
PDMAEMA chains underwent amphiphilicity change from hydrophilicity to hydrophobicity with the
increase of temperature. The O/W emulsions formed at a given pH were destroyed and separated
into two phases when they were kept at 50 ˝C for 5 min (Figure 9). A similar behavior was also
observed by the same group using poly(oligoethylene glycol) methacrylate (POEGMA) to modify
cellulose nanocrystals [96]. Many other stimuli-responsive polymers have also been reported to tailor
the amphiphilicity of particles. However, to our knowledge, only a few light-responsive polymers for
controllable Pickering emulsions have been investigated up till now. Enormous opportunities still
exist for using non-invasive methods to tune the amphiphilicity of particles by polymer grafting.
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3. Soft Particles

3.1. Self-Assembled Objects

In addition to the rigid particles as stated above, soft particles have also been applied to prepare
Pickering emulsions. Among them, self-assembled objects have shown great promise to stabilize the
oil-water interface [97–100] and control the stability of Pickering emulsions [101,102]. Fujii et al. [103]
synthesized poly[(ethylene oxide)-block-glycerol monomethacrylate-block-2-(diethylamino)ethyl
methacrylate] (PEO-PGMA-PDEA) triblock copolymers, which could be dissolved in aqueous solution to
form micelles. After further cross-linking the PGMA blocks using succinic anhydride (SA), the spherical
shell cross-linked (SCL) micelles were used as emulsifiers. At high pH value, the micelles possessed
particular amphiphilicity as a balance of hydrophobic PDEA core and hydrophilic PEO corona. They
were able to stabilize W/O emulsions. At low pH, the hydrophobic PDEA core also became hydrophilic,
which significantly influenced the amphiphilicity of micelles. Consequently, micelles detached from
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the oil-water interface and phase separation of the emulsion happened spontaneously (Figure 10).
Ma and coworkers [104] used polyurethane (PU)-based nanoparticles as emulsifiers to control the
Pickering emulsions. The nanoparticles were formed by self-assembly of an amphiphilic PU-based
grafted copolymer which was synthesized by grafting poly(2-(dimethylamino)ethyl methacrylate)
(PDEM) side chains on PU main chain. PDEM is a pH-responsive polymer that is hydrophilic at low
pH value and hydrophobic at high pH. As shown in Figure 11, a stable O/W emulsion was formed at
a pH range from 3 to 5. Upon changing the pH by the addition of base into the emulsion, PDEM was
deprotonated and the particles tended to be wetted by the oil phase. The emulsion was inverted into
a W/O type at pH 8–9. With further increase of pH value to 11–12, the particles exhibited hydrophilicity
again because of the adsorption of the hydroxyl ions on the particle surfaces. Phase inversion
occurred once again and O/W emulsions were formed. Cunningham et al. [105] prepared a kind
of nano-object consisting of poly(stearylmethacrylate)–poly(N-2-(methacryloyloxy)ethylpyrrolidone)
(PSMA–PNMEP) block copolymer by RAFT dispersion polymerization. Spherical nanoparticles
were exclusively obtained with increasing degree of polymerization of PNMEP and keeping the
PSMA block length unchanged. Dynamic light scattering (DLS) study indicated nanoparticles from
one of these block copolymers PSMA14–PNMEP49 with an intensity-average diameter of 25 nm.
As shown in Figure 12, a hand-shaking W/O emulsion was formed by using these nanoparticles as
emulsifiers. However, the emulsion was finally inverted to O/W type after high-speed homogenization.
In principle, when the oil and water phases were homogenized under high shear, the nanoparticles
were assumed to break up into individual polymer chains which practically stabilized the oil-water
interface as polymeric emulsifiers. Combining examinations of DLS, laser diffraction, and transmission
electron microscopy, the authors claimed that the PSMA14–PNMEP49 nanoparticles underwent an
inversion from initial hydrophobic spheres to hydrophilic spheres during high-speed homogenization.

Materials 2016, 9, 903  11 of 25 

 

nanoparticles as emulsifiers to control the Pickering emulsions. The nanoparticles were formed by 
self-assembly of an amphiphilic PU-based grafted copolymer which was synthesized by grafting 
poly(2-(dimethylamino)ethyl methacrylate) (PDEM) side chains on PU main chain. PDEM is a 
pH-responsive polymer that is hydrophilic at low pH value and hydrophobic at high pH. As shown 
in Figure 11, a stable O/W emulsion was formed at a pH range from 3 to 5. Upon changing the pH by 
the addition of base into the emulsion, PDEM was deprotonated and the particles tended to be 
wetted by the oil phase. The emulsion was inverted into a W/O type at pH 8–9. With further increase 
of pH value to 11–12, the particles exhibited hydrophilicity again because of the adsorption of the 
hydroxyl ions on the particle surfaces. Phase inversion occurred once again and O/W emulsions 
were formed. Cunningham et al. [105] prepared a kind of nano-object consisting of 
poly(stearylmethacrylate)–poly(N-2-(methacryloyloxy)ethylpyrrolidone) (PSMA–PNMEP) block 
copolymer by RAFT dispersion polymerization. Spherical nanoparticles were exclusively obtained 
with increasing degree of polymerization of PNMEP and keeping the PSMA block length 
unchanged. Dynamic light scattering (DLS) study indicated nanoparticles from one of these block 
copolymers PSMA14–PNMEP49 with an intensity-average diameter of 25 nm. As shown in Figure 12, 
a hand-shaking W/O emulsion was formed by using these nanoparticles as emulsifiers. However, 
the emulsion was finally inverted to O/W type after high-speed homogenization. In principle, when 
the oil and water phases were homogenized under high shear, the nanoparticles were assumed to 
break up into individual polymer chains which practically stabilized the oil-water interface as 
polymeric emulsifiers. Combining examinations of DLS, laser diffraction, and transmission electron 
microscopy, the authors claimed that the PSMA14–PNMEP49 nanoparticles underwent an inversion 
from initial hydrophobic spheres to hydrophilic spheres during high-speed homogenization.  

 
Figure 10. Schematic representation of pH-induced emulsification and demulsification using shell 
cross-linked micelles as particulate emulsifiers. Dewetting from the oil droplet surface occurs at low 
pH. Reprinted with permission from [103]. Copyright 2005, American Chemical Society. 

 
(A) 

Figure 10. Schematic representation of pH-induced emulsification and demulsification using shell
cross-linked micelles as particulate emulsifiers. Dewetting from the oil droplet surface occurs at low
pH. Reprinted with permission from [103]. Copyright 2005, American Chemical Society.

Materials 2016, 9, 903  11 of 25 

 

nanoparticles as emulsifiers to control the Pickering emulsions. The nanoparticles were formed by 
self-assembly of an amphiphilic PU-based grafted copolymer which was synthesized by grafting 
poly(2-(dimethylamino)ethyl methacrylate) (PDEM) side chains on PU main chain. PDEM is a 
pH-responsive polymer that is hydrophilic at low pH value and hydrophobic at high pH. As shown 
in Figure 11, a stable O/W emulsion was formed at a pH range from 3 to 5. Upon changing the pH by 
the addition of base into the emulsion, PDEM was deprotonated and the particles tended to be 
wetted by the oil phase. The emulsion was inverted into a W/O type at pH 8–9. With further increase 
of pH value to 11–12, the particles exhibited hydrophilicity again because of the adsorption of the 
hydroxyl ions on the particle surfaces. Phase inversion occurred once again and O/W emulsions 
were formed. Cunningham et al. [105] prepared a kind of nano-object consisting of 
poly(stearylmethacrylate)–poly(N-2-(methacryloyloxy)ethylpyrrolidone) (PSMA–PNMEP) block 
copolymer by RAFT dispersion polymerization. Spherical nanoparticles were exclusively obtained 
with increasing degree of polymerization of PNMEP and keeping the PSMA block length 
unchanged. Dynamic light scattering (DLS) study indicated nanoparticles from one of these block 
copolymers PSMA14–PNMEP49 with an intensity-average diameter of 25 nm. As shown in Figure 12, 
a hand-shaking W/O emulsion was formed by using these nanoparticles as emulsifiers. However, 
the emulsion was finally inverted to O/W type after high-speed homogenization. In principle, when 
the oil and water phases were homogenized under high shear, the nanoparticles were assumed to 
break up into individual polymer chains which practically stabilized the oil-water interface as 
polymeric emulsifiers. Combining examinations of DLS, laser diffraction, and transmission electron 
microscopy, the authors claimed that the PSMA14–PNMEP49 nanoparticles underwent an inversion 
from initial hydrophobic spheres to hydrophilic spheres during high-speed homogenization.  

 
Figure 10. Schematic representation of pH-induced emulsification and demulsification using shell 
cross-linked micelles as particulate emulsifiers. Dewetting from the oil droplet surface occurs at low 
pH. Reprinted with permission from [103]. Copyright 2005, American Chemical Society. 

 
(A) 

Figure 11. Cont.



Materials 2016, 9, 903 12 of 25
Materials 2016, 9, 903  12 of 25 

 

 
(B) 

Figure 11. (A) Schematic illustration of the synthesis of PU-g-PDEM graft copolymers and their 
self-assembly in water; (B) The effect of solution pH on the appearance of the emulsion (1:1 
water/styrene) after standing for 24 h at 25 °C. Adapted with permission from [104]. Copyright 2013, 
Royal Society of Chemistry. 

(A) (B) 

Figure 12. (A) Schematic representation of the four possible types of emulsions which could form as 
a result of homogenizing the poly(stearylmethacrylate)–poly(N-2-(methacryloyloxy)ethylpyrrolidone) 
(PSMA14–PNMEP49) nanoparticles prepared in n-dodecane with water; (B) (a) Digital photographs of 
Pickering emulsions prepared using PSMA14–PNMEP49 nanoparticles at various shear rates. 
Oil-in-water emulsions are formed in all cases, except when hand-shaking is used; this latter 
approach results in a water-in-oil emulsion instead; (b) Optical microscopy images recorded for the 
droplets prepared via hand-shaking, or via homogenization at 3500 rpm, 7000 rpm or 11,000 rpm 
(scale bar = 200 µm); (c) shear rate dependence for the mean droplet diameter (as determined by laser 
diffraction) for emulsions prepared using PSMA14–PNMEP49 spherical nanoparticles as the sole 
emulsifier. The error bars represent the standard deviation of each mean volume-average droplet 
diameter, rather than the experimental error. Adapted from [105]. Published by The Royal Society of 
Chemistry. 

3.2. Microgels 

Microgels are another kind of soft particles used as emulsifiers to stabilize Pickering emulsions. 
Many examples involving microgels in emulsion systems have been reported in the past few years 
[106–112]. Fujii and coworkers [113] synthesized poly(4-vinylpyridine)/silica (P4VP/SiO2) microgels 
for Pickering emulsion. The P4VP/SiO2 microgel particles were prepared by polymerizing 
4-vinylpyridine monomers in the presence of ultrafine aqueous silica sols. The surface of microgel 
particles consisted of both hydrophilic silica and hydrophobic P4VP chains, which endowed the 

Figure 11. (A) Schematic illustration of the synthesis of PU-g-PDEM graft copolymers and
their self-assembly in water; (B) The effect of solution pH on the appearance of the emulsion
(1:1 water/styrene) after standing for 24 h at 25 ˝C. Adapted with permission from [104]. Copyright
2013, Royal Society of Chemistry.

Materials 2016, 9, 903  12 of 25 

 

 
(B) 

Figure 11. (A) Schematic illustration of the synthesis of PU-g-PDEM graft copolymers and their 
self-assembly in water; (B) The effect of solution pH on the appearance of the emulsion (1:1 
water/styrene) after standing for 24 h at 25 °C. Adapted with permission from [104]. Copyright 2013, 
Royal Society of Chemistry. 

(A) (B) 

Figure 12. (A) Schematic representation of the four possible types of emulsions which could form as 
a result of homogenizing the poly(stearylmethacrylate)–poly(N-2-(methacryloyloxy)ethylpyrrolidone) 
(PSMA14–PNMEP49) nanoparticles prepared in n-dodecane with water; (B) (a) Digital photographs of 
Pickering emulsions prepared using PSMA14–PNMEP49 nanoparticles at various shear rates. 
Oil-in-water emulsions are formed in all cases, except when hand-shaking is used; this latter 
approach results in a water-in-oil emulsion instead; (b) Optical microscopy images recorded for the 
droplets prepared via hand-shaking, or via homogenization at 3500 rpm, 7000 rpm or 11,000 rpm 
(scale bar = 200 µm); (c) shear rate dependence for the mean droplet diameter (as determined by laser 
diffraction) for emulsions prepared using PSMA14–PNMEP49 spherical nanoparticles as the sole 
emulsifier. The error bars represent the standard deviation of each mean volume-average droplet 
diameter, rather than the experimental error. Adapted from [105]. Published by The Royal Society of 
Chemistry. 

3.2. Microgels 

Microgels are another kind of soft particles used as emulsifiers to stabilize Pickering emulsions. 
Many examples involving microgels in emulsion systems have been reported in the past few years 
[106–112]. Fujii and coworkers [113] synthesized poly(4-vinylpyridine)/silica (P4VP/SiO2) microgels 
for Pickering emulsion. The P4VP/SiO2 microgel particles were prepared by polymerizing 
4-vinylpyridine monomers in the presence of ultrafine aqueous silica sols. The surface of microgel 
particles consisted of both hydrophilic silica and hydrophobic P4VP chains, which endowed the 

Figure 12. (A) Schematic representation of the four possible types of emulsions which could form as
a result of homogenizing the poly(stearylmethacrylate)–poly(N-2-(methacryloyloxy)ethylpyrrolidone)
(PSMA14–PNMEP49) nanoparticles prepared in n-dodecane with water; (B) (a) Digital photographs
of Pickering emulsions prepared using PSMA14–PNMEP49 nanoparticles at various shear rates.
Oil-in-water emulsions are formed in all cases, except when hand-shaking is used; this latter approach
results in a water-in-oil emulsion instead; (b) Optical microscopy images recorded for the droplets
prepared via hand-shaking, or via homogenization at 3500 rpm, 7000 rpm or 11,000 rpm (scale
bar = 200 µm); (c) shear rate dependence for the mean droplet diameter (as determined by laser
diffraction) for emulsions prepared using PSMA14–PNMEP49 spherical nanoparticles as the sole
emulsifier. The error bars represent the standard deviation of each mean volume-average droplet
diameter, rather than the experimental error. Adapted from [105]. Published by The Royal Society
of Chemistry.

3.2. Microgels

Microgels are another kind of soft particles used as emulsifiers to stabilize Pickering emulsions.
Many examples involving microgels in emulsion systems have been reported in the past few
years [106–112]. Fujii and coworkers [113] synthesized poly(4-vinylpyridine)/silica (P4VP/SiO2)
microgels for Pickering emulsion. The P4VP/SiO2 microgel particles were prepared by polymerizing
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4-vinylpyridine monomers in the presence of ultrafine aqueous silica sols. The surface of microgel
particles consisted of both hydrophilic silica and hydrophobic P4VP chains, which endowed the
particle with certain amphiphilicity. When the microgels were involved in the emulsion system,
a highly stable emulsion was obtained at high pH value. The particle amphiphilicity was changed if
4-vinylpyridine residues were protonated at low pH. With stepwise decrease of pH value, the degree
of protonation was gradually enhanced and the hydrophobic P4VP became hydrophilic. The microgels
no longer stabilized the oil-water interface and desorbed from the interface of emulsion, leading
to the destabilization and demulsification of the emulsion (Figure 13). After that, this system was
further studied by Binks and coworkers [114]. More details about pH-dependent emulsions with
the use of P4VP/SiO2 microgels were included. Moreover, the salt effect on the stabilization of
Pickering emulsion was also considered in their work. They conclusively demonstrated that the pH
value and degree of ionization had significant influences on the stabilization of Pickering emulsions
with the use of P4VP/SiO2 microgels as emulsifiers. Ngai et al. [115] investigated another smart
emulsion system that is responsive to pH and temperature based on PNIPAM microgels. The PNIPAM
microgels were prepared by surfactant-free precipitation copolymerization of N-isopropylacrylamide
(NIPAM) and methacrylic acid (MAA). Due to the existence of carboxyl groups, the microgel particles
were responsive to pH in addition to temperature due to PNIPAM. Hence, the amphiphilicity of
microgel particles could be readily tailored by pH or temperature. As shown in Figure 14, when the
microgel particles were used as emulsifiers to prepare the Pickering emulsion, stable emulsions were
formed at neutral condition at room temperature. With the decrease of pH or increase of temperature,
the hydrophobic component of microgel particles was enhanced, which caused destabilization and
phase separation of the emulsions. A similar stimuli-responsive behavior was also observed by
Brugger and coworkers using PNIPAM–PMAA microgel particles as emulsifiers and interfacial
stabilizers [116,117].
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In addition to the self-assembled objects and microgels, proteins particles have also been exploited
to stabilize the Pickering emulsions [118–126]. The emulsion size and stability can be well controlled
by changing the pH value or salinity of the systems [127–130].

4. Janus Particles

Janus particles are biphasic colloids consisting of two parts with different properties [25].
Different compositions and shapes of the two parts can endow Janus particles with anisotropy in
wetting, optical, electrical, magnetic, and catalytic properties. Compared with homogeneous particles,
the anisotropic surface wettability of Janus particles can remarkably lower the interfacial tension
and afford stronger interfacial adsorption [131]. With this consideration, a few Pickering emulsion
systems were investigated by using various amphiphilic Janus particles as solid emulsifiers in recent
years [132–134]. Analogous to the amphiphilicity of molecular amphiphiles such as surfactants
and amphiphilic polymers, the amphiphilicity of Janus particles is also important to determine the
stability and type of emulsions in these systems. Surface chemistry and shape of the two parts
of Janus particles are two important parameters which have been identified as affecting particle
amphiphilicity [46,135]. In this section, we highlight some recent examples of controlling Pickering
emulsions by tuning the amphiphilicity of Janus particles from these two aspects: changing surface
chemistry and particle shape.

4.1. Surface Chemistry

Great efforts have been devoted to tailoring the amphiphilicity of Janus particles by regulating
the surface chemistry. The change in amphiphilicity can facilitate the formation of stable emulsions.
Xu and coworkers [136] synthesized tadpole-like single chain polymer nanoparticles (TSCPNs) by
intramolecularly cross-linking P4VP block of diblock copolymer PMMA2250-b-P4VP286. As shown
in Figure 15A, this Janus particle contains a cross-linked hydrophilic head and a linear hydrophobic
tail, which was able to stabilize the W/O emulsion even at a low concentration of 0.0075 wt%.
The obtained Pickering emulsion was used as a medium for heterogeneous reaction. In addition,
as shown in Figure 15B, this novel Janus particle was also able to stabilize W/O HIPEs as solid
emulsifiers at the appropriate conditions [137]. By solidifying the external oil phase and removing
the internal water phase of W/O HIPEs, macrocellular polyHIPE materials with interconnected
open-cell structures were obtained which were further extended as supporting matrix for loading Pd
catalyst. Chen et al. [138] fabricated Janus nanosheets by crushing the polymer-inorganic hybrid hollow
spheres which were synthesized by a self-organized sol-gel process forming silica hollow spheres and
subsequent polymer grafting onto the interior side. The Janus nanosheets possess a hydrophilic silica
layer and a lipophilic polymer layer, ensuring amphiphilicity as well as interfacial activity for emulsion
application. The amphiphilic nanosheets were tolerant against solvents and were successfully used as
emulsifiers to stabilize W/O emulsion droplets. Fujii et al. [139] partially modified a gold layer on
the silica particles by vacuum deposition to prepare Au-SiO2 Janus particles. Due to the hydrophobic
property of the Au layer, the surface chemistry of SiO2 particles was partly changed. These Janus
particles with amphiphilic performance could stabilize O/W Pickering emulsions for a long time.

The change of surface chemistry can also facilitate the inversion of different emulsion types. Kim
and coworkers [135] synthesized a kind of monodisperse bi-compartmentalized Janus microparticle
with high throughput by seed monomer swelling and consecutive polymerization. The hydrophilic
silica nanoparticles were patched on one of the compartmented bulbs to endow the Janus particles
with amphiphilicity. The amphiphilicity of Janus particles was precisely tailored by controlling the
relative dimension ratio of the hydrophobic bulb against the whole particle, which was called “degree
of Janusity” as the authors stated. When the degree of Janusity was near 0.25, W/O emulsions
were formed. As shown in Figure 16D, with the increase of the degree of Janusity, the change in
amphiphilicity enabled the phase inversion from W/O emulsion to O/W emulsion and the stability
of the generated emulsion was also enhanced. Zhao et al. [140] grafted the temperature responsive
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PNIPAM and pH responsive PDEAEMA on two sides of a silica nanosheet to prepare a dually
responsive Janus particle. The amphiphilicity of Janus particles could be tailored by changing the pH
or environmental temperature. Different types of emulsions were formed and transformed each other
by using these Janus particles with tunable amphiphilicity. At high pH and high temperature, Janus
particles were completely hydrophobic, which were only dispersed in the toluene phase. At low pH
and low temperature, the Janus particles on the contrary were hydrophilic and dispersed in the water
phase. With proper change of pH and temperature, the Janus particles showed amphiphilicity and
could stabilize the oil-water interface. At low pH and high temperature, O/W emulsions were formed.
At high pH and low temperature, W/O emulsions were preferred. The control of phase inversion of
emulsions was achieved by a combination of pH and temperature (Figure 17).
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Figure 16. Bright-field microscopy images of the Pickering emulsions stabilized by silica-NP-patched
Janus particles with the different degrees of Janusity: (A) D/D0 = 0.25; and (B) D/D0 = 0.5. The inset
images show adhesion of amphiphilic Janus particles at the hexadecane–water interface; (C) Contact
angles of silica NP-patched Janus particles at the hexadecane–water interface; (D) Viability of Pickering
emulsion drops at 50 ˝C: D/D0 = 0.25 (�) and D/D0 = 0.5 ( ). Reprinted with permission from [135].
Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
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Figure 17. (A) Schematic illustration of pH and temperature dually responsive Janus composite
nanosheets; (B) Emulsification of the immiscible mixture of toluene/water with the PNIPAM/silica/
PDEAEMA Janus composite nanosheets. (a) Optical microscopy image of the mixture (inset) at
pH = 10 and T = 50 ˝C, no emulsification occurs, the hydrophobic nanosheets dispersible in toluene;
(b) at pH = 2 and T = 25 ˝C, no emulsification occurs, the hydrophilic nanosheets dispersible in water;
(c) a toluene-in-water emulsion forms at pH = 2 and T = 50 ˝C; (d) a water-in-toluene emulsion
forms at pH = 10 and T = 25 ˝C. Adapted with permission from [140]. Copyright 2015, American
Chemical Society.

4.2. Shape

The shape of the Janus particles is another factor that has a significant influence on their interfacial
behavior. Ruhland and coworkers [141] investigated in detail the interfacial behavior of Janus particles
with different shapes including Janus spheres, Janus cylinders, and Janus discs by a combination
of dynamic interfacial tension measurements and computer simulations. The different adsorption
kinetics and equilibrium values of the interfacial tension with the use of different Janus particles
were compared (Figure 18). The particle shape is considered to affect the surface activity of Janus
particles. The stability and type of Pickering emulsion stabilized by these Janus particles show
close dependence on the shape of the Janus particles. Multiple shaped Janus particles have been
practically exploited as solid emulsifiers for the formation of stable emulsions and controllable
inversion of different emulsion types. A snowman-like Janus particle consisting of a hydrophilic
bulb and a hydrophobic bulb was synthesized based on the seeded polymerization technique by Kim
and coworkers [142]. Stable emulsions of spheres, ellipsoids, and cylinders could be formed due to
the substantial absorption of these amphiphilic Janus particles at the O/W interface. The inversion
of different emulsion types was also achieved by changing the relative ratio of hydrophilic and
hydrophobic bulbs in the snowman-like particles by Liu and coworkers [46]. Different from the
seed polymerization technique, the snowman-like Janus particles in their study were prepared by
extruding a lobe based on swelling the polymeric core from a spherical core-shell structure. By tuning
the monomer/particle weight ratio, the relative size ratio of the hydrophilic inorganic part and the
hydrophobic polymeric lobe could be tailored. When the Janus particles with a large hydrophobic
polymeric lobe were used to stabilize the Pickering emulsion, a W/O emulsion was formed. With the
decrease of hydrophobic lobe size, the emulsion was inverted into an O/W type (Figure 19).
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solutions of Janus particles in toluene at a water/toluene interface. Adapted with permission from [141].
Copyright 2013, American Chemical Society.
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Figure 19. Morphological evolution of the anisotropic composite particles at varied monomer/particle
weight ratio: (A) 2:1; (B) 16:1; (C) Janus characteristics of the anisotropic particles. (a) Left:
a decane-in-water emulsion stabilized with the Janus particle as shown in Figure (A); right:
a water-in-decane emulsion stabilized with the Janus particle as shown in Figure (B); water/decane
volume ratio is 2:1, and the particle/water weight ratio is 1:100; (b) Optical microscopy images of
the decane-in-water emulsion; and (c) water-in-decane emulsion; (d) Left: immiscible toluene/water
mixture; right: a water-in-toluene emulsion stabilized with the Janus particle as shown in Figure 5d.
Water/toluene volume ratio is 2:1, and the particle/water weight ratio is 2:1000. Adapted with
permission from [46]. Copyright 2012, American Chemical Society.

Another novel “mushroom-like” Janus particle [143] was reported to control the stability of
Pickering emulsions by Yamagami and coworkers (Figure 20). The poly(methyl methacrylate)/
poly(styrene-2-(2-bromoisobutyryloxy)ethyl methacrylate)-graft-poly(2-(dimethyl amino)ethyl methacrylate)
PMMA/P(S-BIEM)-g-PDM Janus particles were synthesized by using a surface-initiated activator generated
by electron transfer (AGET) ATRP to graft PDM on the P(S-BIEM) side of the composite particles based
on phase separation under solvent evaporation. The shape anisotropy of the Janus particles could be
precisely tailored by changing the size of the P(S-BIEM) side, which was conducted by controlling the
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P(S-BIEM) content in the composite particles. The introduction of PDM enables the Janus particles
to be dually responsive to pH and temperature. Janus particles with controllable shapes were used
as solid emulsifiers to stabilize 1-octanol-in-water emulsion. The stability of the emulsion could be
controlled by altering the temperature and pH. Tu et al. [144] fabricated a shape switchable Janus
particle to control the phase inversion of Pickering emulsions. The Janus particles were synthesized by
seeded emulsion polymerization and subsequent acid hydrolysis. Due to a pH-responsive ability, the
particle part with acrylic acid blocks were swollen at high pH and deswollen at low pH, thus making
the particle shape controllable by pH. As shown in Figure 21, the Janus particles remained oblate-like
or almost spherical shape at pH 2.2 or in a deionized water medium, which favored the formation
of W/O emulsions. With increasing pH to 11.0, the shape of Janus particles was transformed into
a dumbbell. The interfacial activity of the Janus particles also changed with the shape change, inducing
the emulsions with different types. W/O and O/W emulsions could be reversibly switched by adding
a small amount of acid or base in the emulsion system. This study was claimed as the first example
of transitional phase inversion of Pickering emulsions by dynamically tuning the shape to reversibly
change the amphiphilicity of the Janus particles.
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Figure 20. (A) Preparation of mushroom-like Janus polymer particles by site-selective surface-initiated
activator generated by electron transfer (AGET) ATRP in aqueous dispersed systems; (B) The scheme of
whole behaviors of Pickering emulsion formed by stimuli-responsive “mushroom-like” Janus polymer
particles. Adapted with permission from [143]. Copyright 2014, American Chemical Society.
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Figure 21. Janus particles change their aggregation/dispersion behavior and also transform into
different shapes in response to pH changes. Janus particles with tunable amphiphilicity can stabilize
different types of emulsions (oil-in-water and water-in-oil). Reprinted with permission from [144].
Copyright 2014, American Chemical Society.

5. Conclusions

In this article, we comprehensively reviewed recent progress in tuning the amphiphilicity of
particles for controllable Pickering emulsions. The whole map of amphiphilicity regulation was
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presented on the basis of particle species. Rigid particles can be used to control the stability and
type of Pickering emulsion by molecular adsorption or chemical grafting of functional substances.
Soft particles including self-assembled objects and microgels were also highlighted for the control
of stabilization and destabilization of emulsions. Anisotropic Janus particles most likely bridging
two immiscible phases together were highly emphasized. Their amphiphilicity, referring to the
interfacial activity, was tuned by changing the particle surface chemistry or shape. From the aspect of
amphiphilicity, this review gives new bearing on the preparation of controllable emulsions, though
most examples did not correlate the controllable Pickering emulsions with the amphiphilicity of the
particles. It is believed that this concept will open a new avenue to guide the preparation of functional
materials based on emulsion technique. However, there are still existing opportunities and challenges
in this area. Novel particles are expected to be synthesized for the preparation of complex Pickering
emulsions including double emulsions and HIPEs, which requires the particles to stabilize at least two
oil-water interfaces at the same time. More advanced emulsions such as W/W or O/O emulsions are
hoped to be exploited by nanoparticles with ideal amphiphilicity. In addition, Pickering emulsion
systems as a result of tuning amphiphilicity may be manipulated by biological actuators, which will
meliorate the toxicity issue in enzymatic and clinical applications.
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