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Adipocytes differentiate and function in environments rich in
extracellular matrix (ECM) proteins. The phenotypes of
genetically modified mice have aided in recognizing the
importance of ECM proteins and their modifiers, e.g.,
proteinases, in the regulation of obesity and metabolism.
Most of the molecular mechanisms through which ECM
proteins and modifiers regulate adipogenesis or adipocyte
function have not been fully defined. Adipose tissue fibrosis
may be a factor that links obesity to diabetes or cardiovascular
disease risk in conjunction with tissue inflammation. Defining
the molecular mechanisms through which the ECM environ-
ment regulates adipogenesis and adipocyte function should
provide us with a better understanding of the disease link
between obesity and diabetes or cardiovascular diseases.

Adipose Tissue Fibrosis and Inflammation

Obesity increases the risk of diabetes, cardiovascular diseases and
cancer. The molecular mechanisms underlying the link between
obesity and the risk of developing metabolic and cardiovascular
diseases, however, are still enigmatic. In addition to obesity, the
loss of fat tissue (lipodystrophy) increases the risk of diabetes and
cardiovascular diseases. The U- or J-curve relationship between
body mass index (BMI) and the risk of diabetes and cardiovascular
diseases1,2 suggests the important role played by “balanced
adiposity” in maintaining metabolic health. Why do the two
opposite extremes of adiposity similarly increase the risk of
diabetes and cardiovascular diseases? Some hints may be found in
the biological processes common to both obesity and lipodystro-
phy. Among an array of biological processes, inflammation and
fibrosis are two candidate biological processes that may explain the
metabolic consequences of obesity and lipodystrophy.

In adipose tissues, mature adipocytes and their progenitor cells
(preadipocytes) exist within a three-dimensional (3D) network of
ECM proteins. Adipose tissue function is regulated by the
physiological interaction between cells and a variety of ECM
proteins. The collagen family is the largest group of ECM
proteins.3 The density and structure of collagens in organs are
tightly regulated. The excess deposition of collagens in individuals
with pathological conditions is defined as fibrosis, a hallmark of

chronic tissue damage. Unlike the existence of fibrosis in the skin,
lungs, liver or kidneys, the existence of fibrosis in adipose tissue
has not been fully recognized. Recent reports, however, suggest
that obese individuals display excess collagen deposition in
adipose tissues.4-6 Notably, the excess collagen deposition in
adipose tissues was observed along with inflammatory tissue
damage, which is characterized by the infiltration of neutrophils,
lymphocytes and macrophages. Thus, fibrotic tissue damage is
perceived by many as a process secondary to tissue inflammation,
whose pathological impact on obesity and metabolism has been
extensively studied in recent years.7-9 Adding a layer of complexity
to the comprehensive understanding of adipose tissue biology,
inflammatory tissue damage characterized by macrophage infiltra-
tion can also be found in lipodystrophy.10 Likewise, adipose tissue
fibrosis has been observed in individuals with congenital
lipodystrophy and in the dystrophic interscapular fat pads of
partially lipodystrophic patients.11,12 Of note, LMNA mutations
reported in the latter group lead to the paradoxical expansion of
interscapular fat pads, which display fibrotic changes but not
evidence of ongoing inflammatory processes, suggesting the
possibility that fibrosis and inflammation are not always coupled.12

The causal and temporo-spatial relationships between adipose tissue
fibrosis and inflammation remain to be defined in the contexts of
obesity and lipodystrophy. Despite these unresolved questions, a
series of studies using gene targeting in rodents and mechanistic
experiments at the cellular level have helped elucidate some of the
genetic and molecular mechanisms involved in the regulation of
adipose tissue ECM remodeling and function.

MMP-Dependent Type I Collagen Turnover
during Adipose Tissue Development

Adipocytes differentiate and function in vivo within a 3D
environment surrounded by a number of extracellular matrix
(ECM) proteins (Figs. 1 and 2). In the adipose tissue primordium,
preadipocytes progressively change cell shape and accumulate lipid
droplets in a space juxtaposed to collagen bundles.13 Among the
ECM proteins, collagens are the most abundant proteins that
constitute interstitial fibers and pericellular basement membranes.3

Type I collagen molecules, which exist mainly as [a1(I)]2a2(I)
heterotrimers in a triple helix, are staggered and interwoven with
each other to form thick collagen bundles.14 Type I collagen bundles
provide the major ECM framework necessary to sustain the structure
and function of mesenchymal tissues. Although triple-helical type I
collagen is highly resistant to proteolytic degradation, it can be
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cleaved and degraded by a set of matrix metalloproteinases (MMPs)
in certain stages of development and chronic disease progression.15

Of the 28 members of the MMP family,16 MMP14 (membrane
type 1 matrix metalloproteinase, MT1-MMP) plays a major role in
the postnatal development of mesenchymal tissues, particularly
bones and adipose tissues.17,18 The dominant role played byMMP14
is attributable to its collagenolytic activity tethered to the cell surface.
Although the soluble collagenases of rodents, i.e., MMP2, MMP8,
MMP13 and Mcol1a (an ortholog of human MMP1), are secreted

as inactive zymogens, MMP14 is expressed as an active enzyme on
the cell surface, as its inhibitory pro-domain is intracellularly
removed by furin or furin-like proprotein convertases.19,20

The complete loss of Mmp14 in mice leads to postnatal
lipodystrophy and leptin-null status.18 In vitro studies suggest that
MMP15 (MT2-MMP) possesses pericellular collagenase activity
similar to that of MMP14;21-23 however, the lipodystrophic
phenotype of Mmp14-null mice is not rescued by Mmp15 because
MMP15 is rarely expressed in adipose tissues. Cell-autonomous

Figure 1. Peri-adipocyte collagens. Left: the scanning electron micrograph of mouse inguinal fat pads; the group of round adipocytes are surrounded
with collagen bundles. Middle: immunofluorescent staining of type I collagen (red); thick bundles of type I collagen surrounding the group of adipocytes
as well as thinner fibers of type I collagen enwrapping individual adipocyte is displayed. Right: immunofluorescent staining of type IV collagen (green);
type IV collagen is found as a component of basement membrane that enwraps each adipocytes; type IV collagen can also be found as the basement
membrane underneath the layer of vascular endothelial cells.

Figure 2. Peri-adipocyte ECM proteins. Each adipocyte is surrounded by basement membrane whose framework is defined by type IV collagen. The most
abundant fibrillar structure is provided by the cross-linking of triple-helical type I collagen molecules (enlarged in the inset). Types V and VI collagens
form micro-fibers that exist between type I collagen fibers as well as between cell surface and type I collagen fibers. Fibronectin is the key ECM protein
that defines cell shape and contractility in close association with type I collagen. Matricelluar proteins, i.e., thrombospondins and SPARC, regulate
the fibrilliogenesis of type I collagen and interact with multiple ECM proteins.
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defects in adipogenic potential were confirmed by the observations of
impaired in vitro adipogenesis within a 3D collagen environment
and defective in vivo adipogenesis when Mmp14-null preadipocytes
were transplanted into an MMP14-sufficient host.18 Of note,
Mmp14 is largely dispensable for adipogenesis under 2D culture
conditions, suggesting that the interaction of MMP14 with type I
collagen, particularly in a 3D environment, plays a central role in
regulating adipocyte maturation. As such, MMP14 can be defined as
an in vivo factor that is necessary for adipocyte maturation (Fig. 3).

The inextricable relationship between the MMP family
proteins and type I collagen has been further underscored by
the developmental defects observed in mice that harbor an MMP-
resistant Col1a1 gene mutation.24,25 This knock-in mutation
(Col1a1r/r) renders triple-helical type I collagen molecules resistant
to MMP-dependent hydrolysis and impairs anabolic bone
remodeling.25,26 Although the gene targeting of Mmp2, which
encodes the most abundant collagenase/gelatinase found in tissues
and the circulation, results in only a subtle skeletal growth
defect,27 Mmp2 gene targeting in mice harboring the MMP-
resistant mutant Col1a1 gene leads to a profound defect in
postnatal development; this effect is similar to that observed
with Mmp14-null mice.28 MMP2 is activated by MMP14 on the
cell surface29 in a manner that depends on the physical inter-
actions between MMP2, MMP14 and an endogenous MMP
inhibitor, TIMP2.30 MMP2 can also be activated by the other
membrane-type MMPs, e.g., MMP15 (MT2-MMP) and
MMP16 (MT3-MMP); indeed, the activation of MMP2 under
normal conditions is barely affected by the Mmp14-null state in
rodents.31 These complex results suggest that the phenotypes

observed in Mmp14-null mice are mostly independent of Mmp2;
however, the proteolytic activity mediated by MMP2 may play a
qualitatively distinct role, beyond that of collagenolysis, in certain
stages of development and disease. Consistent with the non-
overlapping roles played by MMP2 and MMP14, Mmp2 and
Mmp14 double-knockout mice die at birth, which is a significantly
more severe and lethal phenotype than that of Mmp14-null mice.32

It is conceivable, however, that the roles played by MMPs in
cleaving substrates other than ECM proteins, particularly chemo-
kines and cytokines, may complicate the phenotypic consequences
of targeting each MMP gene.33-35 Mmp2-deficient mice are more
resistant to high-fat diet-induced weight gain than littermate wild-
type mice36; however, the direct role of MMP2 in regulating adipose
tissue ECM remodeling and function is undefined.

Type V and VI Collagens in Adipose Tissue
Development and Obesity

Type V collagen molecules exist in the form of [a1(V)]2a2(V) or
a1(V)a2(V)a3(V) heterotrimers.37 These molecules constitute
micro-fibers that are closely associated with thick type I collagen
bundles.38 Genetic mutations in Col5a1 and Col5a2 are found in
families with Ehlers-Danlos syndrome,39 underscoring the role
played by type V collagen in regulating the elastic resilience of
connective tissues in association with type I collagen. A previous
study has shown that the loss of Col5a3, which is highly expres-
sed in adipose tissues, muscles and pancreatic islets, leads to a
reduced size of pancreatic islets and adipose tissues.40 In that
study, Col5a3-null adipocytes and skeletal muscles displayed

Figure 3. MMP14 (MT1-MMP) as a 3D factor. MMP14 is required for the cytoskeletal rearrangement of preadipocytes in a 3D collagen environment
(3D preadipocytes). MMP14-dependent cell shape regulation is closely linked to the adipogenic potential of preadipocytes in a 3D environment
(3D adipocytes). The loss of MMP14 activity leads to the aberrant cell shape of preadipocytes and impaired 3D adipogenesis, which is coupled with
the excess accumulation of undigested collagen fibers. MMP14 is not required for adipogenesis under 2D culture conditions (2D adipogenesis).
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insulin resistance due to the suppression of insulin-induced Glut4
translocation. The molecular mechanism through which the loss
of Col5a3 negatively impacts adipocyte size and function,
however, is undefined. In addition to modifying the tensile
strength of type I collagen fibers, type V collagen also binds to
thrombospondin 1, a matricellular ECM protein that is abundant
in connective tissues and the circulation.41 It is conceivable that
type V collagen heterotrimers regulate the composition and
density of ECM proteins in adipose tissues through their
interactions with multiple ECM proteins.

Type VI collagen heterotrimers form microfibrils in the interface
between the basement membrane and thick bundles of type I
collagens.42-44 Col6a1-null mice are born and develop normally with
no gross abnormalities.45 As observed in Bethlem myopathy, which
is linked to 2q37 or Col6a mutations in humans,46,47 these mice
display a mild form of necrotizing myopathy. When Col6a1-
deficient mice were crossed with ob/ob mice, Col6a1 deficiency was
demonstrated to protect mice from the high-fat diet-induced
impairment of glucose metabolism.48 Although Col6a1-deficient ob/
obmice display a lower body weight relative to wild-type mice in the
early stages of postnatal development, the fat mass of Col6a1-
deficient ob/obmice increases faster and catches up with that of ob/ob
mice at 12 weeks of age. Although the consequence of whole-body
Col6a1 deficiency is complex, affecting multiple organs and
displaying reduced food intake and energy expenditure, it has been
suggested that type VI collagen is a fibrotic component that restricts
adipose tissue expandability. In humans, Col6a3 gene expression in
adipose tissues was found to correlate with visceral adipose tissue
mass and pro-inflammatory gene expression.49 The causal roles
played by type VI collagen in regulating adipogenesis, adipocyte
hypertrophy, or adipocyte function, however, have not been fully
addressed in vitro.

Non-Collagen ECM Proteins in Adipocyte Biology

Fibronectin inhibits 3T3 adipogenesis in conjunction with the
regulation of cell shape and stretch.50 The pericellular assembly of
fibronectin molecules dictates cytoskeletal and ECM organiza-
tion.51 Fibronectin plays a critical role in embryonic mesoderm
development and cardiovascular morphogenesis.52,53 Recently,
Wang et al. demonstrated that soluble Pref-1 (DLK1) released
from the cell surface interacts with fibronectin and inhibits
adipogenesis by activating the Rac1-Erk1/2 pathway.54 Pref-1 was
initially identified as a member of the EGF-like family of proteins,
which is highly expressed in preadipocytes and inhibits adipocyte
differentiation.55 The novel interaction identified between Pref-1
and fibronectin,56 which is the major ligand of a5β1 integrin,57

is intriguing in understanding the molecular mechanisms through
which the interaction between cells and pericellular ECM proteins
regulates adipogenesis and adipocyte function. Moreover, fibro-
nectin assembly plays a key role in maintaining the fibrillar
organization of type I collagen and thrombospondin 1.58

Fibronectin can be cross-linked to an a1(I) collagen chain
through factor XIIIa.59 This close molecular interaction between
fibronectin and type I collagen may play a major role in the ECM
interactomes that may regulate adipocyte function. The most recent

study from Spiegelman’s group suggests a role of a myokine, termed
Irisin, in inducing the “browning” of subcutaneous fat and
thermogenesis.60 Irisin is a proteolytically cleaved fragment of
Fndc5 mostly comprising a type III fibronectin domain (Fn3),
which is commonly found in ECM proteins and cell surface
receptors.61 Fn3 promotes cell adhesion via activated β1 integrin.62

Although the molecular mechanism through which Irisin induces
the “browning” of adipose tissues remains undefined, it is intriguing
to speculate that this molecule may regulate adipocyte function by
fine-tuning cell-cell or cell-ECM interactions.

Secreted protein, acidic and rich in cysteine (SPARC) is a
matricellular ECM protein63 that indirectly contributes to the
formation of the structural framework of mesenchymal tissues.
Sparc-null mice display increased adipose tissue size and higher
expandability in response to the consumption of a high-fat
diet.64,65 The phenotype is attributable, at least partly, to the role
played by SPARC in regulating the density and structure of type I
collagen fibrils.66,67 Conversely, the loss of Col1a1 gene expression
in fibroblasts (embryonic fibroblasts isolated from Mov-13 mice)
impairs the extracellular accumulation of SPARC but not the
extracellular accumulation of fibronectin or type III collagen.67

Moreover, the loss of SPARC interferes with the cell-mediated
contraction of collagen gels, which can be rescued with
exogenously added recombinant SPARC protein, suggesting that
SPARC plays paracrine and endocrine roles. SPARC was found to
suppress adipogenesis and promote osteogenesis by regulating the
intra-nuclear content of β-catenin.68 Thus, SPARC, in association
with type I collagen, can be a potent modifier of Wnt signaling in
adipocytes, which is a major pathway in the regulation of
adipogenesis and adipocyte gene expression.69,70

Thrombospondin 1 and 2 (THBS1 and THBS2) belong to the
group of matricellular ECM proteins.63 THBS1 is a large
glycoprotein that contains multiple functional domains, including
a coiled-coil domain for oligomerization, an N-terminal laminin
G-like domain (LG), a thrombospondin type 1 repeat (TSR), an
epidermal growth factor-like domain, type 3 repeats and a
C-terminal lectin-like domain. THBS1 binds to a number of
ECM proteins, cell surface proteins, and growth factors. THBS1
binds to collagens, particularly type V collagen41; however, the
metabolic significance of this interaction is undefined. Given the
positive role of type V collagen in adipose tissue development,40

the specific interaction between THBS1 and type V collagen could
be a biological modifier of adipocyte function. THBS1 expression in
adipose tissue is significantly elevated in obese diabetic humans,
suggesting its role in the progression of metabolic syndrome.71 The
loss of Thbs1 protects mice from diet-induced obesity72; however,
the role of Thbs1 in regulating peripheral insulin resistance remains
elusive in light of the complex effects exerted by this protein on
multiple organs and tissues, including pancreatic islets.73 The effect
of the Thbs1 gene on obesity and metabolism appears to be variable
depending on genetic and environmental factors; another group
reported a subtle effect or almost no effect of Thbs1 gene targeting
on adipose tissue size.74 THBS2 shares most of the functional
domains found in THBS1 except for the N-terminal domain, which
displays distinct sequences. Thbs2-null mice have fragile skin and an
abnormal thickening of cortical bones in association with
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dysregulated type I collagen fibrillogenesis.75 A previous study
showed that Thbs2-null mesenchymal cells displayed better lipid
accumulation than wild-type cells during adipogenesis despite the
gene expression of adipocyte markers being almost identical to that
of wild-type cells.76 In this study, increased fat mass was selectively
found in female mice fed the control diet but not those fed a high-fat
diet, and no significant difference was found in male mice under any
nutritional conditions. Another group demonstrated that Thbs2-null
male mice are modestly protected from high-fat diet-induced
obesity, but no metabolic benefit was observed.77 Despite these
studies, the roles played by either THBS1 or THBS2 in the
regulation of adipogenesis and adipocyte function remain to be
defined at the molecular and cellular levels.

Matrix Elasticity and Geometry in Adipocyte Function

Recently, the role of geometrical constraints in regulating cell fate
and differentiation has been highlighted. The differentiation of
human mesenchymal cells into the cells of adipocyte or osteoblast
lineage can be controlled by cell shape.78 Stretched cells with a
flattened cell shape differentiate more easily into osteoblasts,
whereas small and round-shaped cells differentiate into adipo-
cytes. The study showed that the cell shape-dependent regulation
of lineage commitment was reversed by dominant-negative or
active RhoA, suggesting that the effects of cell shape serve as
upstream initiators of RhoA-dependent mechanotransduction.
Nonetheless, it is difficult to determine the specific effect of

matrix elasticity or 3D geometry in the in vivo environment that
is intricately regulated by ECM protein composition and
density.79 Despite the importance of physical constraints imposed
by a 3D meshwork of collagen, the layer of collagen itself can
exert inhibitory effects on the induction of a set of adipocyte genes
in conjunction with suppressed pro-transcriptional histone mark
modification.80 The use of non-ECM nanomaterials that may
bypass the interaction between cells and ECM proteins may aid in
dissecting the signaling pathways that are regulated by physical
parameters, such as cell shape, force, and pressure.

Future Directions

The critical role played by ECM proteins and their modifying
enzymes (proteinases) in the regulation of adipogenesis and
adipocyte function has been recognized in animal models. Gene
targeting or knockdown has been used to determine the biological
role of ECM proteins and proteinases. The pericellular ECM
composition and its remodeling are physically linked to the
cytoskeleton, which is further linked to the nuclear structure. This
hard-wired interaction between ECM proteins and nuclear structure
is considered to play a central role in the gene regulation and
phenotype switching of cells during their adaptation to the tissue
environment. Due to the multiple players and interactions in ECM
biology, we must advance our understanding of the complex cell-
ECM interactome by combining the evolving system biology and
discovery-oriented reductionist approaches. The comprehensive

understanding of the genetic architecture that
underlies the interactomes of ECM proteins
and their modifiers should help us define the
pathogenesis of adipose tissue fibrosis and
inflammation, which are closely linked to
diabetes and cardiovascular diseases (Fig. 4).
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