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Common blood disorders include hematopoietic cell malignancies or leukemias and plasma cell dyscrasia, all of which have
associated microRNA abnormalities. In this paper, we discuss several leukemias including acute myeloid leukemia (AML) and
chronic lymphocytic leukemia (CLL) and identify altered microRNAs and their targets. Immune disorders with altered blood levels
of antibodies include autoimmune disorders, such as systemic lupus erythematosus (SLE) with associated anti-self-autoantibodies
and immunoglobulin A nephropathy (IgAN) also have related microRNA abnormalities. The alterations in microRNAs may serve
as therapeutic targets in these blood disorders.

1. Introduction

MicroRNAs are small (20–22 nt), evolutionarily conserved,
noncoding single-stranded RNAs discovered in the 1990s
[1, 2], functioning to target 3′ untranslated region (UTR) of
mRNAs in antisense sequence specific way and regulate genes
posttranscriptionally for degradation or translation suppres-
sion. MicroRNAs target 1–3% of all eukaryotic genes yet
regulating ∼30% of protein-coding genes [3]. The miRNAs
are first transcribed by RNA polymerase II in the nucleus
as large primary transcript (pri-miRNA) [4], either from
independent genes or from clustered genes encoding several
miRNAs [5] and further processed into ∼70 nt pre-miRNA
with hairpin structure by Drosha, a RNase III type endonu-
clease (RN3) in the nucleus. Alternatively, in the nucleus,
a small class of “mintron” without the stem-loop and the
flanking single-strand structure as in pri-miRNA required
for Drosha processing, could be generated by passing
Drosha-dependent pathway [6]. In the cytoplasm, ∼20 bp
miRNA/miRNA∗ duplex are generated by Dicer, another
RN3 endonuclease. One of the miRNA duplex strands is
further incorporated into protein-RNA complex called RNA-
induced silencing complex (RISC), although in some cases,
both arms of the pre-miRNA hairpin could generate mature

miRNAs [7–9]. miRNAs interact with target mRNA by se-
quence complementarity, and in perfect base pairing usually
triggers endonucleolytic mRNA cleavage [10]; however, in
most situations, such base pairing is imperfect, resulting in
translational suppression. The key component of this RISC
machinery is Ago protein family (Ago 1–4), but only Ago
2 is known to have the catalytic enzyme function [11, 12].
Besides Ago proteins, GW182 protein is also recruited to the
RISC complex and together localize in cytoplasmic foci
called processing bodies (P bodies or GW bodies), where
mRNA is sequestered from being translated [13–16]. There
are different experimental and bioinformatics approaches
to predict miRNA targets. At a minimum, the precise
matching to 3′UTR of mRNA in multiple copies should

be within the first 2–8 bases from the 5′ end of the
mature miRNA, called the “seed region” [17–20]. To date,
over 2000 human miRNAs have been annotated in the
Sanger miRBASE (Release 18, http://www.mirbase.org/
cgi-bin/browse.pl?org=hsa). The miRNA network is
highly re dundant, since a single miRNA may have multiple
target mRNAs, and in turn, a single mRNA could be targeted
by many miRNAs [21]. Various miRNAs have been shown
to be involved in a myriad of cellular processes including
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differentiation, metabolism, apoptosis, and development
[22]. Physiologically, and pathologically, miRNAs have been
reported to play roles in cancers, inflammatory responses,
diabetes, and autoimmunity [23, 24].

2. MicroRNAs in Hematopoietic Stem Cells

Multiple evidence suggest that microRNAs play a significant
role in the posttranscriptional genetic regulation in stem
and progenitor cells. They are involved in a number of
hematological malignancies such as acute lymphoblastic
leukemia, acute myeloid leukemia, chronic lymphocytic leu-
kemia, chronic myelogenous leukemia, diffuse large-B-cell
lymphoma, and others [25]. Therefore, miRNA profiling is
critical in order to distinguish stem cells of the different
origins, developmental stages, and genetic conditions [26].
Furthermore, it can help classify cancer cell samples and
develop appropriate therapeutic strategies [27]. Recent stud-
ies have demonstrated a causative role for miRNAs in malig-
nant diseases development in the hematopoietic system.
For instance, overexpression of miR-155 or miR-29a in the
mouse hematopoietic system leads to a myeloproliferative
disorder [28] or leukemia [29], respectively. On the other
hand, tumor suppressor miRNAs such as miR-15a/16-1 are
found to be deleted in a subset of lymphomas [30] and have
been shown to cause chronic lymphocytic leukemia in mice
[31, 32]. MicroRNA-125b has been demonstrated to cause
pathological myeloid cells expansion in a dose-dependant
manner [33], and miR-155 is known to induce polyclonal
expansion followed by B-cell malignancy development [34].
In another study on human umbilical cord blood, two par-
ticular miRNAs-hsa-miR-520h and hsa-miR-526b∗- levels
appeared to be elevated. Interestingly, ABCG2, an important
factor of stem cells maintenance, is a known target of hsa-
miR-520h [35].

3. MicroRNAs in the Immune System

Proper regulation of immune response is critical in prevent-
ing immunopathology and autoimmune disorders. Studies
have implicated important functions of miRNA on hemato-
poietic development as well as innate and adaptive immune
responses. Toll-like receptor (TLR) signaling leads to tran-
scriptional activation of a large class of proinflammatory
cytokines as well as multiple miRNAs. For example, miR-
146a and miR-155 have been shown to be upregulated upon
exposure to LPS in the monocytic leukemia cell line THP-
1. More importantly, two key components of TLR4 signaling
pathway, TRAF6 and IRAK1 have been verified to be targets
for miR-146a [36]. This study for the first time profiled
the miRNAs alterations in TLR signaling and proposed the
miRNAs as negative regulators of TLR activation. MiR-155
is another well-studied microRNA reported to be activated
by several TLR pathways [36, 37], and its negative regulatory
role during TLR-mediated activation has also been addressed
[38, 39]. More interestingly, IL-10 is shown to inhibit
TLR-induced miR-155 [40]. To understand global miRNAs’
importance in B and T development, studies were performed
in which knocking out Dicer at different stages of B and T

development resulted in blockage of further differentiation
[41–43]. In addition, miR-155 has been found to be one
of the most important miRNAs in both B and T cells as
well as antigen presentation by dendritic cells (DCs) and is
required for normal germinal center (GC) response [44, 45],
B-cell class switching [46], Th1/Th2 polarization, and Treg
development both in the thymus and peripheral [47].

4. MicroRNA in Autoimmune Diseases

Considering the importance of miRNAs in the immune
system raises the question whether or not there is direct link
between miRNAs abnormalities and immune disorders or
autoimmune diseases. Interestingly, the discovery in 2002
of GW bodies (GWBs), where miRNA-mRNA reside for
degradation was from serum from an autoimmune patient
with motor and sensory neuropathy [48]. Subsequently, anti-
GWB autoantibodies in the serum have been identified from
patients with various autoimmune disorders [49], indicating
an involvement of general miRNA pathway and autoanti-
body production. Dysregulated miRNA expression has been
associated with autoimmunity, for example, miR-146a was
underexpressed in PBMC from SLE patients when compared
with healthy control. The study further showed that miR-
146a is a negative regulator of type I interferon (IFN)
pathway by targeting interferon regulatory factor (IRF) 5
and signal transducers and activators of transcription (STAT)
1, thus the decrease in miR-146a may contribute to the
increased type I IFN signaling pathway observed in SLE
[50]. A recent study in murine models (MRL-lpr, C57BL/6-
lpr, and NZB/NZW F1) of SLE using a combination of
microarray and real-time RT-PCR approaches, Dai et al.
identified that miR-182-96-183 cluster, miR-31, and miR-155
are among those consistently upregulated miRNAs across
different genetic background strains of mice [51]. In addition
to important contribution of miR-155 to physiological
immune response, its activity in autoimmune circumstances
was also investigated. A murine experimental autoimmune
encephalomyelitis (EAE) model with mir-155 −/− was shown
to be resistant to EAE pathology. Thus, unregulated miR-155
may be a link between inflammation and cancer via inducing
a high proliferation rate resulting in increased mutations
[52]. The miR-17-92 cluster locating in human chromosome
13q31 is known as an onco-miR, and this genomic region
is often amplified in lymphomas and other cancer, and the
mature miR-17-92 expression is highly elevated in malignant
cells [27, 53–55]. Results showed that miR-17-92 targets
phosphatase and tensin homolog (PTEN, tumor suppressor)
and Bim (proapoptotic molecule) mRNA directly resulting
in lymphoproliferative and autoimmune diseases [56]. In
a current study from our lab on microRNA abnormalities
in NZB/NZW F1 lupus model by using type I and type
III interferons (IFN-α and IFN-λ) as exogenous disease
accelerators, we identified upregulation of several microR-
NAs correlated to disease severity, yet not with the IFN
treatment. MiR-15a was one of the most significant elevated
microRNAs as autoimmunity developed in these mice and
the level of splenic miR-15a was correlated to the level of
anti-dsDNA IgG, in addition, the cellular level of miR-15a
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was also reflected in the plasma (manuscript accepted for
publication).

5. MicroRNAs in Hyperimmunoglobulinemias

Multiple myeloma (MM) is characterized by a clonal ex-
pansion of plasma B cells in the bone marrow or in extra-
medullary sites which results in high levels of monoclonal
immunoglobulins in the serum [57]. Cytogenetic abnormal-
ities are present in many MM cases, characterized by either
hyperdiploidy with the presence of trisomies of odd chromo-
somes or nonhyperdiploidy with chromosomal aberrations
and translocations involving the IgH locus on chromosome
14. In addition to these advancements in understanding
MM pathogenesis, studies on the role of microRNAs in
recent years have shown them to be key players in MM
development not only in the sustenance of malignant cells
but also in the initiation of malignancy due to methylation
of microRNAs that function as tumor suppressors. Studies
investigating microRNAs in MM began in 2007 with the
discovery that interleukin 6 (IL-6) indirectly induces the
transcription of miR-21 through signal transducer and acti-
vator of transcription 3 (STAT3) transcription in the human
myeloma cells line. The same upstream enhancer controls
miR-21 and STAT3 transcription, and STAT3 controls the
transcription of survivin, Bcl2, and Mcl-1. Thus, Stat3 exerts
its antiapoptotic affect through the induction of miR-21 [58].
A microRNA microarray analysis in 20 myeloma samples
revealed that miR-335 and miR-342-3p were upregulated
and may be involved in plasma cell homing and other
interactions in the bone marrow [59]. Subsequent studies
uncovered various microRNAs that are key players in MM.
For example, miR-106b-25 cluster, miR-181a/b, and miR-
32 target a histone acetyltransferase, P300/CBP-associated
factor (PCAF) that reversibly acetylates transcriptional reg-
ulators including p53, thus accounting for the low levels of
PCAF observed in MM cells. Also miR-17–92 downregulates
Bim, a proapoptotic molecule, and miR-19a/b target SOCS-
1, a silencer of the STAT3, thus enhancing the oncogenicity
of MM cells [60, 61]. As seen in CLL, miR-15a/16-1 is seen
to be downregulated in multiple myeloma [62]. Normally
encoded within the DLEU2, a gene frequently deleted in
lymphocytic leukemia, miR-15a/16-1 activity is central to
the antiproliferative activity of DLEU2 [63], as miR-15a/16-1
inhibits cyclinD1, cyclinD2, and CDC25a [62]. Also, several
microRNAs have been seen to target the p53 gene. For
example, miR-25 and miR-30d are increased in MM and
target the 3′UTR of the p53 gene [64]. Also, MM cells have
low levels of miR-192, miR-194, and miR-215 which targets
MDM2, a p53 antagonist, thereby lowering p53 levels and
increasing oncogenic potential [65]. Moreover, the promoter
of miR-34b/c, a transcriptional target of p53 was found to be
hypermethylated and thus inactivated in multiple myeloma
cell lines. Such epigenetic modifications are observed to
be causal in other microRNAs as well. Hypermethylation
of the promoters of various tumor suppressors such as
miR-124-1 (a target of CDK6) [66], miR-203 (a target of
cyclic-responsive element-binding protein which increases
proliferation) [67], and miR-29b (a target of Mcl-1 which

antagonizes IL-6) increase the tumorigenicity of myeloma
cells [68]. Extranodal marginal zone lymphomas are most
associated with mucosal-associated lymphoid tissue (MALT)
and are characterized by clonal proliferation of plasma cells
that produce the immunoglobulin A isotype. Investigations
involving microRNAs have found the miR-203 promoter to
be hypermethylated in samples of gastric lymphoma, and
this microRNA targets the c-abl1 oncogene, thus enabling
tumor growth and proliferation [69]. In addition, miR-150
and miR-155 were upregulated, while miR-184, miR-205 and
miR-200a/b/c (which targets cyclin E2) were downregulated
[70]. In another hyperimmunoglobulin disorder, Immu-
noglobulin A nephropathy (IgAN) is characterized by the
deposition of immune complexes in the kidney mesenchyme
causing renal injury and usually coincides with mucosal
infections [57]. These immune complexes are composed of
IgA1 molecules that are galactose-deficient, causing a confor-
mational change in the molecule, and autoantibodies (IgA or
IgG) form to its exposed epitopes [71]. Since miR-155 and
miR-146 are involved in B lymphocyte development, their
levels were examined in 43 IgAN biopsy specimens and urine
samples. The results showed that miR-146 and miR-155 were
high in IgAN biopsy and urine sediment, suggesting their
role in IgAN pathogenesis [72].

6. MicroRNAs in Acute Myeloid
Leukemia (AML)

MicroRNAs (miRNAs) have been well studied in various can-
cers including leukemias [73, 74]. Acute myeloid leukemia
(AML) is a hematopoietic progenitor cell-originated malig-
nant disorder affecting the myeloid lineage, which could be
classified into subtypes based on the differentiation stages of
the malignant cells found in peripheral blood and in bone
marrow [75]. Among various symptoms and manifestations
identified in association with AML, one of the most common
characteristics involved in ∼50% of AML patients is a group
of cytogenetic abnormalities, which is considered to be con-
tributing to the disease heterogeneity and with prognostic
significance [76]. Other AML patients without detectable
chromosomal abnormalities may display mutations or dys-
regulations in specific genes, a signature ubiquitously found
in cancers [77–79]. MicroRNA signatures in AML have been
sought, and many groups of researchers performed large-
scale profiling of miRNA expression in different populations
of AML patients. In the first study where AML patient
samples were compared to acute lymphoblastic leukemia
(ALL), both groups with similar chromosomal alterations,
27 miRNAs were reported to be different between the two
groups [80]. Importantly, miR-146a was inversely correlated
to overall survival in both AML and ALL [81]. However,
these studies focused on miRNA profile distinguishing AML
from ALL, which was not sufficient for understanding the
abnormalities of miRNAs expression exclusive to AML.

Another study compared 122 AML samples to CD34+
cells from 10 normal controls. Among the 122 AML samples,
60 cases were untreated and 54 relapsed or refractory [82].
By microarray profiling, 26 microRNAs were downregulated
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in AML samples. Several of these downregulated miRNAs in
AML were also underexpressed in mature myeloid cells sug-
gesting that miRNAs related to the differentiation patterns
in AML (miR-126, miR-130a, miR-93, miR-125a, and miR-
146). In correlating cytogenetic abnormalities with miRNA
expression, 14 downregulated and 8 upregulated miRNAs
were associated with 11q23 translocation versus all other
AML, including the downregulation of miR-196 and miR-
15a, and overexpression of miR-21 in t(6; 11) with worse
prognosis [82]. In AML patients (n = 36) achieving complete
remission the levels of miR-15a/16 were upregulated. Sub-
sequently, in 2 patients in which relapse occurred, miR-15a
decreased. All-trans retinoic acid (ATRA) in vitro treatment
in AML cell lines and primary leukemic cells induced miR-
15a/16 upregulation, in addition, miR-15a/16 enhanced the
effects of ATRA inducing leukemic cell differentiation [83].
Despite the poor overall survival of these AML patients,
the study showed several associations between miRNA
expression and the outcome of patients, especially the
overexpression of miR-199a and miR-191, identified in AML
with trisomy 8 and associated with poor outcome. This study
was the first to identify the distinct miRNAs profile between
AML patients and normal control, and the subsets of
miRNAs related to cytogenetic groups and disease outcome
[82].

Almost at the same time, a study with 215 heterogeneous
AML samples was performed to demonstrate the signatures
of miRNAs expression in cytogenetic and molecular subtypes
[84]. A group of upregulated miRNAs were prominent in
t(15;17) cases. In contrast, t(8;21) was characterized by
downregulated miRNA alterations, for example, tumor sup-
pressor let-7. In molecular subgroups of AML, nucleophos-
min (NPM1) mutations, which represent the most common
molecular abnormality in AML, are associated with overex-
pression of homeobox genes (HOX) [85]. Upregulation of
miR-10a, miR-10b, miR-196a and miR-196b, was identified
in AML carrying NPM1 mutations, and these miRNAs
were located within the HOX genes. Although miR-196a
directly targets HOXB8 mRNA [86], the upregulated miR-
196a in this AML subgroups may represent a breakage in
the regulation loop between miRNAs and HOX genes [84].
Consistent with other studies, miR-155 was significantly
upregulated in AMLs with internal tandem duplications of
Flt3(FLT3-ITD), corroborating the oncogenic effect of miR-
155 in myeloid cells in addition to such effects in lymphoid
lineages [84, 87, 88]. In comparing AML to normal CD34+
cells, upregulation of miR-21 in AMLs was found, consistent
with other studies and further strengthening the importance
of miR-21 in AML [82, 84].

Interestingly, in an analysis of AML subgroups the
t(8;21) and inv(16) were grouped together by miRNA profile,
supporting the notion that both subgroups belong to core-
binding factor (CBF) AMLs, suggesting some common path-
ways shared by CBF-AMLs [89]. Overexpression of miR-224,
miR-368, and miR-382 was restricted to the t(15;17) samples,
while miR-17-92 cluster was overexpressed exclusively in
mixed-lineage leukemia (MLL) rearrangements [89]. In
addition, in a study of 100 AMLs, comparing leukemic
samples to normal bone marrow, miR-155 and miR-181a

were upregulated [90]. MiR-181a has been reported to target
p27Kip1 in AML cell lines, resulting in an abrogation of 1,
25-dihydroxyvitamin D3 (1,25D) induced differentiation in
AML cell lines [91]. A recent study classified AML cases
into favorable, moderate, and poor as the predicted outcome
according to the karyotype. MiR-181a high expression was
suggested to be associated with better-risk groups suggesting
a potential therapeutic approach involving manipulation of
miR-181a level in AML patients. In contrast to elevated miR-
181a as favorable prognostic factor, miR-155 upregulation
predicts poor prognosis in AML [92].

7. MicroRNAs in Chronic Lymphocytic
Leukemia (CLL)

CLL is characterized by the accumulation of malignant B-
1 cells (CD5+CD19+CD20dullCD23+IgMdull) in peripheral
lymphoid organs, bone marrow, and peripheral blood [93].
It accounts for 30% of all leukemias in the Western
world, making it the most common lymphoid malignancy
with mainly elderly with disease. CLL is broadly classi-
fied into aggressive (Zap70hi-unmutated IgH) and indolent
(Zap70low-mutated IgH) [94]. CLL cells have genomic insta-
bility, chromosomal alterations and have several characteris-
tic genetic abnormalities. Prominent among them are 11q23
deletions (ATM; miR-34b/c cluster), trisomy 12 (increased
MDM2), 17p deletion (TP53), and 13q14 deletions (miR-
15a/16-1) [95]. Dysregulation of several microRNAs like
miR-15a/16-1, miR-34 cluster, miR-155, miR-29, and miR-
181b has been implicated in the pathogenesis of CLL.
The most common genetic abnormality in CLL patients is
the deletion of 13q14 region (50–60% of CLL cases) that
encodes a crucial microRNA locus, miR-15a/16-1 [30, 96].
Decreased miR-15a/16-1 confers a growth advantage as these
microRNAs target key cell cycle regulatory and antiapoptotic
proteins such as cyclin D1 and Bcl2 [97, 98]. It is interesting
to note that NZB mice (spontaneously occurring mouse
model of CLL) also exhibit a 50% reduction in the level
of miR-15a/16-1, that is associated with a point mutation
and deletion in the 3′ flanking region of miR-16-1 [99].
Moreover targeted deletion of the miR-15a/16-1 locus or a
larger surrounding minimal deleted region (MDR) led to the
development of CLL in mice, further confirming the tumor
suppressor function of this locus [32]. Other microRNAs
are abnormal in CLL including miR-29 and miR-181, which
target Tcl1, a gene that is highly elevated in aggressive
CLL [100]. MiR-29 expression is decreased in aggressive
CLL, while it is increased in indolent CLL as compared to
normal volunteers [100, 101]. Thus, the same microRNA can
function as both an oncogene and as a tumor suppressor in
CLL. MiR-34a/b/c is decreased in patients with 11q deletions.
Normally, upon transactivation by TP53, miR-34 expression
would result in decreased Zap70 [102]. MiR-34a has also
been shown to target E2F1 and B-Myb oncogenes in CLL
as well as AML [103]. MiR-155, miR-150, and miR-21
expression is increased in B-CLL cells as compared to normal
B cells [23, 104]. Increased miR-155 levels are associated with
increased Zap70 expression and faster progression. v-Myb is
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Table 1: MiR-15/107 group involvement in common blood disorders§.

Blood disorders MiR-15/107 group alterations Abnormalities associated Effects of miRNAs

AML

MiR-15a/16 decreased in t(11q23) AML
patients [82], elevated in patients with
complete remission, and decreased with
relapse [83]

MiR-15a/16 enhanced ATRA effects
inducing AML cell differentiation [83]

APL
MiR-15a/16 upregulation and miR-107
downregulation in a cohort of APL
patients [135]

Patients showed increased miR-15/107
during remission, and miR-15/107
upregulation was induced by ATRA in vitro
in APL cells [135]

MiR-15a/16 underexpressed in CLL
patients with 13q14 deletion and NZB
mice (CLL model) [96, 99]

Uncontrolled B-1 cell
proliferation [97]

Overexpression of miR-15a/16 in CLL
murine model resulted in exclusive
elimination of malignant B-1 cells [136]

CLL
MiR-195 upregulation reported from a
study of 9 CLL patients compared to
normal controls [137]

Not determined

MiR-107 downregulated in CLL patients
[138]

Underexpression of miR-107 resulted in
overexpression of oncogenic PLAG-1
protein [138]

MM
MiR-15a/16 decreased in MM patients
[62]

Uncontrolled clonal plasma cell
proliferation and
proangiogenesis in bone marrow
[62]

MiR-15a/16 targeted cell cycle regulators,
inhibited NF-κB pathway, and
downregulated proangiogenic genes [62]

SLE

miR-15a upregulated in spleen cells from
NZB/NZW F1 mice (SLE model), when
disease fully developed (manuscript
accepted for publication)

Elevated autoreactive antibody
producing cells terminally
differentiated plasma cells

MiR-15a enhanced plasma cell
differentiation

§
AML: acute myeloid leukemia; APL: acute promyelocytic leukemia; CLL: chronic lymphocytic leukemia; MM: multiple myeloma; SLE: systemic lupus

erythematosus; PLAG-1: pleomorphic adenoma gene.

found to be elevated in CLL patients, and it stimulates the
miR-155 host gene [105]. The oncogenic potential of miR-
155 is further supported by the development of B-cell malig-
nancies in Eμ-mmu-miR-155 transgenic mice [34]. Using
a poorly understood mechanism, microRNAs are secreted
into body fluids such as serum and urine, and their levels
can be used as noninvasive biomarkers for diagnosis and
monitoring of cancer and various other diseases [106, 107].
In a recent, study it was shown that elevated miRNA levels
in serum may offer early CLL detection and differentiation
between Zap70 status [108]. The authors further concluded
that increased expression of miR-150, miR-29a, miR-222,
and miR-195 can be used as a highly sensitive diagnostic test
for CLL.

8. Conclusion

In this paper, a variety of blood disorders were discussed in
terms of microRNA abnormalities observed. One microRNA
family of interest stood out as a potential regulator of cell
fate (Table 1 and Figure 1). Recently, miR-15 family members
(miR-15a/b, miR-16, miR-103, miR-107, miR-195, and miR-
497) have been grouped together due to their identical
“AGCAGC” sequence at 5′ end “seed region (nucleotides
2–7)” [109, 110], which offers this miRNA group various
overlapping functions in gene-regulatory pathways and dis-
ease scenarios, especially in cancers. MiR-15/107 gene group
could be upregulated by tumor suppressor p53 [102], altered

by various cell stress [111–115], or inhibited by Myc [116,
117]. A broad spectrum of mRNAs is targeted by miR-
15/107, importantly, miR-15/16 paralogs regulate cell cycle
via targeting of Cyclin D1 [97] and induce apoptosis via
targeting of Bcl-2 [118], and miR-107 also induces cell cycle
arrest [119]. The tight involvement of miR-15/107 in cell
growth and cell fate control, and their upstream regulators,
such as p53 and Myc, which by themselves are important
players in tumorigenesis [120, 121], revealed critical mech-
anisms for abnormalities in cancer development, including
leukemias. Indeed, all members from miR-15/107 group
have been identified to be altered in various tumor cells
[122–125]. Specifically, underexpression of miR-15a/16 as
a result of deletion or mutation of mir-15a/16 loci has
been linked to the pathogenesis of CLL [96, 99, 118],
similarly in AML and MM, where the downregulation of
miR-15a/16 was associated with the loss of control for
malignant cells differentiation and proliferation [62, 83]. In
contrast, in SLE which is characterized by elevated plasma
cell differentiation contributing to increased autoantibody
production [126, 127], splenic miR-15a was increased, and
this was significantly correlated with autoantibody levels in
lupus-like autoimmune mouse model (manuscript accepted
for publication), suggesting a role of miR-15a upregulation
in cell cycle arrest in order for plasma cell differentiation.

Future directions may be directed toward stem cell trans-
plantation for many of these blood disorders. Cellular
transplantation therapy holds a huge potential for a variety of
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Figure 1: Schematic mechanism of miR-15/107 family alterations in hematopoietic disorders. Decreased expression of miR-15/107 family
members is found in malignant cells from AML (acute myeloid leukemia), CLL (chronic lymphocytic leukemia), and MM (multiple
myeloma) patients. The underexpression of miR-15/107 may also contribute to increased immunosuppressive regulatory B (Breg) and T
cells (Treg), which further promote the expansion and survival of malignant cells. In contrast, with increased miR-15/107, there may be a
loss of immunosuppression that leads to SLE (systemic lupus erythematosus) development and antitumor responses. In the therapeutically
induced differentiated AML cells, and terminally differentiated B cells, plasma cells (with decreased B-cell-specific activator protein (BSAP),
the negative regulator of miR-15a/16-1), miR-15/107 family members would be upregulated, leading to the loss of malignant potential and
an increase in differentiation function (SLE).

degenerative, genetic, and malignant conditions treatment.
Hematopoietic stem cell transplantation is the most widely
used form of such a therapy, but many patients do not
benefit from that because of the lack of a suitable HLA-
matched donor [128]. In this sense, patient-specific autol-
ogous pluripotent stem cells generation would provide a
great opportunity to combine gene therapy with autologous
cell transplantation to treat different human conditions
including hematological disorders such as AML. For this
reason, robust protocols for the generation of safe autologous
induced pluripotent stem (iPS) cells are strongly needed. To
this end, microRNAs represent an attractive tool for both
iPS generation efficiency enhancement and gene targeting
approaches. It is known that expression of embryonic stem
(ES) cell-specific microRNAs such as miR-294 promotes iPS
cells induction from somatic cells [129]. Recently, it has
even been demonstrated that the expression of miR-302/367
cluster can directly reprogram mouse and human somatic
cells to a pluripotent stem cell state in the absence of the
commonly used reprogramming factors [130]. Alternatively,
inhibition of tissue-specific miRNAs would also enhance
iPS generation, which has been confirmed by antisense
silencing of a prodifferentiation let-7 miRNA [131]. Another

application of microRNAs lies in promoting patient-specific
iPS differentiation towards the required cell lineage, for
example HSC expansion. MiR-145 has been shown to induce
ES cell differentiation by inhibiting the expression of Sox2,
Oct4, Klf4, and c-Myc, key reprogramming factors, and led to
an increase of HSC number in vivo by more than 8 fold [132–
134]. Nevertheless, HSC expansion from iPS cells by means
of microRNAs needs to be further developed. Hopefully, the
recently achieved success in the production of iPS cells with
the use of miRNAs will pave the way for successful in vitro
expansion of HSCs with miRNAs.
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