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A B S T R A C T

Gamma activity is thought to serve several cognitive processes, including attention and memory. Even for the simplest stimulus, the occurrence of gamma activity is
highly variable, both within and between individuals. The sources of this variability, however, are largely unknown.

In this paper, we address one possible cause: the cross-frequency influence of spontaneous, whole-brain network activity on visual stimulus processing. By applying
Hidden Markov modelling to MEG data, we reveal that the trial-averaged gamma response to a moving grating depends on the individual network dynamics, inferred
from slower brain activity (<35 Hz) in the absence of stimulation (resting-state and task baseline). In addition, we demonstrate that modulations of network activity in
task baseline influence the gamma response on the level of trials.

In summary, our results reveal a cross-frequency and cross-session association between gamma responses induced by visual stimulation and spontaneous network
activity. These findings underline the dependency of visual stimulus processing on the individual, functional network architecture.
1. Introduction

Narrow-band gamma activity can be observed in numerous species
and brain areas with various recording techniques (Bosman et al., 2014),
including M/EEG recordings in humans (Jensen et al., 2007). It has been
proposed to play a role in a variety of cognitive processes, including
attention (Bosman et al., 2012; Grothe et al., 2012), feature binding
(Engel et al., 1991; Singer and Gray, 1995), memory encoding (Sederberg
et al., 2003; Jutras et al., 2009), memory retrieval (Osipova et al., 2006;
Montgomery and Buzsaki, 2007), decision-making (vanWingerden et al.,
2010, 2014), and reward processing (Berke, 2009; Kalenscher et al.,
2010).

Importantly, gamma responses to visual stimuli vary substantially
within and between subjects. Invasive recordings in monkeys (Lundqvist
et al., 2016) and humans (Kucewicz et al., 2014) revealed that gamma
responses of the same individual vary markedly from trial to trial. In fact,
single-trial gamma responses have been described as transient events of
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varying amplitude, duration and frequency. These findings suggest that
the oscillation-like appearance of the trial-averaged gamma response
might be a misleading consequence of averaging, not reflecting the actual
physiological processes engaged in single trials (Jones, 2016; van Ede
et al., 2018). Still, averaging across trials results in a remarkably repro-
ducible pattern, as shown by MEG studies measuring trial-average
gamma responses in human visual cortex repeatedly in the same sub-
jects (Hoogenboom et al., 2006; Muthukumaraswamy et al., 2010). Be-
tween subjects, in contrast, the trial-average response differs markedly
with respect to amplitude, frequency and bandwidth (Muthukumar-
aswamy et al., 2010) and this between-subject variability has been shown
to have a relatively strong genetic basis (van Pelt et al., 2012).

To date, the cause of within- and between-subject variability in gamma
activity is not completely understood. Here, we propose that gamma re-
sponses might differ between subjects because subjects differ in the dy-
namics of basic, intrinsic networks which are common to all tasks and
contexts (Finn et al., 2015). According to our hypothesis, these
che Neurowissenschaften, Medizinische Psychologie, Universit€atsstr. 1, 40225,

November 2019

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:Jan.Hirschmann@med.uni-duesseldorf.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2019.116374&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.116374
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2019.116374


J. Hirschmann et al. NeuroImage 207 (2020) 116374
inter-individual differences become apparent even in the absence of
gamma-inducing stimuli, implying that resting-state activity can predict
gamma responses. This idea is based on functional magnetic resonance
imaging (fMRI) (Smith et al., 2009; Cole et al., 2014, 2016; Tavor et al.,
2016) and one recent MEG study (Becker et al., 2018), which demon-
strated that resting-state network activity predicts inter-individual differ-
ences in task-related brain activity. Rest-task cross-frequency relationships
affecting gamma oscillations, however, have not been investigated so far.

Notwithstanding the existence of robust networks, the brain is able to
adapt flexibly to changes in the environment. Hence, we propose that
network dynamics do not only reflect the individual, but also, possibly to
a lesser extent, the current situation. With respect to gamma activity, this
assumption implies that induced responses might differ between trials
because individual network activity is modulated within a task.

To test these hypotheses, we derived an estimate of network dynamics
by applying Hidden Markov Modelling (HMM) to whole-brain MEG data,
describing re-occurring patterns of network activity as repeated visits to a
finite set of brain states (Fig. 1). Using the HMM, we investigated whether
gamma responses differ between subjects because some subjects spend
more time in certain brain states than others (between-subject effect). In
addition, we tested whether the amplitude of the gamma response differs
between trials because the pre-stimulus brain state differs between trials
(within-subject effect). And finally, we compared the predictive potential
of task baseline vs. resting-state activity with respect to gamma amplitude.

2. Methods

2.1. Experimental design

2.1.1. Participants
15 healthy participants were recruited for this study (21–45 years; 5

female). The study was approved by the Montreal Neurological In-
stitute’s ethics committee (NEU 011–036) and was in accordance with
the Declaration of Helsinki. All participants gave written informed con-
sent and were compensated for their participation.

2.1.2. Paradigm
Subjects were presented with a modified version of the visual stim-

ulation paradigm by Hoogenboom et al. (2006): An inward-moving,
circular sine wave grating with a diameter of 5� accelerated from 1.6
Fig. 1. Experimental paradigm and rationale of the study. Upper row: Timeline of a
central fixation cross, an inward-moving grating appeared which accelerated at an
arrows). Subjects indicated they detected the acceleration via a button press. Lower l
brain being in any of four states (color-coded). State inference was limited to epoch
resting-state (not shown). Each state is characterized by a unique spatio-spectral profi
of delta power shown here for states 2 (left) and 4 (right). Lower right: The inward-m
whether the strength of this stimulus-induced gamma response is related to spontaneo
this figure legend, the reader is referred to the Web version of this article.)
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deg/s to 2.2 deg/s at an unpredictable moment between 3 and 5 s after
stimulus onset. Subjects indicated that they had detected the velocity
change by pressing a button with the index finger of the dominant hand.
The button press ended the trial and the stimulus was turned off. During
the inter-trial interval (baseline period), subjects were presented with a
central fixation cross. Inter-trial intervals varied between 2 and 4s. A few
trials with longer interval (17–19 s) were randomly interspersed in the
trial sequence for all subjects but P1 (6–16 per subject; mean: 13). This
was done to facilitate an analysis of the influence of baseline duration,
but is not relevant for the analyses reported here.

2.1.3. Experimental procedure
Each session started with a 5 min resting-state recording with eyes

open, which was immediately followed by task practice and task
recording. Before the start of the reaction time task, participants
completed 10 practice trials. The task was divided into 2–5 blocks,
containing 35–78 trials each (mean: 62.85). After each block, partici-
pants received a feedback on the accuracy of their responses and had the
possibility to take a break. Following the reaction time task, a further 5
min resting-state recording was acquired.

In two subjects (P3 and S006R), additional task data were acquired 6
days and 1 day after the first recording session, respectively. Subject P1
was not recorded in resting state.

2.2. Data acquisition

Participants were measured in a seated position with a 275-channel
VSM/CTF MEG system at a sampling rate of 2400 Hz (no high-pass fil-
ter, 660 Hz anti-aliasing low-pass filter). Electrocardiography (ECG) and
vertical electrooculography (EOG) were recorded simultaneously using
MEG-compatible electrodes. Magnetic shielding was provided by a
magnetically-shielded room with full 3-layer passive shielding. Partici-
pant preparation consisted of affixing 3 head-positioning coils to the
nasion and both pre-auricular points. The position of the coils relative to
the participant’s head was measured using a 3-D digitizer system (Pol-
hemus Isotrack, Colchester, USA).

A T1-weighted MRI of the brain (1.5 T, 240� 240 mm field of view, 1
mm isotropic, sagittal orientation) was obtained from each participant
either at least one month before or immediately after the session.
single trial, locked to grating onset. Following a baseline period of 2–4 s with a
unpredictable moment 3–5 s following grating onset (illustrated here with red
eft: Hidden Markov Modelling yielded at each time sample the probability of the
s without stimulation, i.e. to the pre-stimulus baseline, as shown here, or to the
le within the frequency range below gamma (1–35 Hz), including the topography
oving grating induced strong gamma activity in occipital areas. We investigated
usly occurring whole-brain states. (For interpretation of the references to color in
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2.3. Preprocessing

Data were preprocessed and analysed using the HMM-MAR (Vidaurre
et al., 2016) and Fieldtrip (Oostenveld et al., 2011) toolboxes for Matlab
(The Mathworks). All data were screened visually. Noisy channels and
noisy epochs were excluded from analysis. Data were down-sampled to
250 Hz. A 60 Hz discrete Fourier transform filter was applied to remove
line noise. Cardiac and eyemovement artefacts were isolated by FASTICA
(Hyvarinen, 1999) and removed in non-automatic component selection.

2.4. Source reconstruction

Individual T1-weighted MR scans were aligned to the MEG’s coordi-
nate system, segmented and used for the construction of a single-shell,
realistic head model (Nolte, 2003). To define a set of source coordinates,
the “colin27” template MRI (Holmes et al., 1998) was inflated using
FreeSurfer (Fischl et al., 1999) and a cortical mesh consisting of 2052
sources was constructed using MNE (Gramfort et al., 2014). The corre-
sponding coordinates in individual head space were obtained by applying
the inverse of the normalizing transform matching the individual to the
template MR scan. The lead field (forward model) was computed based on
the source coordinates and the head model. Subsequently, a Linearly
Constrained Minimum Variance (LCMV) spatial filter (Van Veen and
Buckley, 1988) was computed based on the lead field and the sensor
covariancematrix, and datawere projected through thisfilter trial-by-trial.

To reduce dimensionality, we grouped sources into parcels, defined
by the Talairach Tournoux atlas (Lancaster et al., 1997), and carried out
all subsequent analyses on the parcel level. First, each source was either
assigned to one of 25 bilateral brain areas of interest or discarded from
further analysis if it was more than 5 mm away from an area of interest
(325 of 2052 sources). The areas of interest consisted of all cortical areas
contained in the atlas, with the exception of seven areas at the base of the
brain or deep within the interhemispheric fissure, which were assumed
to have poor MEG signal quality (rectal gyrus, parahippocampal gyrus,
subcallosal gyrus, transverse temporal gyrus, orbital gyrus, and uncus).
The 25 bilateral brain areas of interest were further sub-divided into a
left- and a right-hemispheric parcel, resulting in 50 cortical parcels of
interest (Tab. 1 of the Supplementary Material). The first principle
component was extracted from each parcel of interest and magnetic field
spread between parcels was reduced by symmetric, multivariate
orthogonalization (Colclough et al., 2015).

Note that the sign of this processed beamformer output is arbitrary.
Because our analysis requires sign consistency across subjects, we applied
a sign flipping procedure to maximize sign consistency; see (Vidaurre
et al., 2016) and (Vidaurre et al., 2018b) for details.

2.5. Stimulus-induced gamma activity

We quantified post-stimulus gamma responses in order to relate them
to brain states inferred from slower activity (�35 Hz) occurring in the
pre-stimulus baseline period or the resting-state recordings. Post-
stimulus gamma responses were computed by multitaper spectral esti-
mation using 2 Slepian tapers (Thomson, 1982). Power was estimated for
frequencies between 40 Hz and 100 Hz in a 300 ms sliding segment
which was moved in steps of 50 ms. At each time step, the segment was
Fourier-transformed, multiplied with each of the two,
Fourier-transformed tapers, and the products were averaged over tapers.
We screened post-stimulus parcel activity and identified a frequency
band, a time window and a location of interest. Because individual
gamma peak frequencies varied markedly across subjects (between 42
and 74 Hz), frequency selection was subject-specific, i.e. we defined an
individual gamma band for each subject (individual gamma peak fre-
quency �10 Hz). The time window of interest was set to 0.6–2 s relative
to stimulus onset because all subjects were found to exhibit stable gamma
activity in this window. The bilateral cunei were chosen as the locations
of interest because this was generally the area with the strongest gamma
3

response. For the analyses described in the following, gamma power
within �10 Hz of individual gamma peak frequency was normalized by
computing, for each frequency and each trial, the percent change relative
to mean power in the response baseline (�0.5 to �0.2 ms from grating
onset). Subsequently, gamma power was averaged over frequency, time
and locations of interest.

2.6. Hidden Markov models

HMMs are probabilistic sequence models that find recurring patterns
in time series data (Rabiner and Juang, 1986). Unlike sliding-window
approaches, they can reveal fast state changes present in multichannel,
electrophysiological recordings (Baker et al., 2014; Vidaurre et al., 2016,
2018a, 2018b). HMMs describe the dynamics of brain activity as a
sequence of transient events, each of which corresponds to a visit to a
particular brain state. For each state, the HMM infers a time-course that
describes the probability of that state being active. Furthermore, each
state is characterized by a unique spatio-spectral profile. In summary,
HMM brain states can be considered a compact description of
multi-faceted, recurring patterns in dynamic network activity. HMMs
have been widely used in a variety of applications, such as the decoding
of speech (Varga and Moore, 1990), the comparison of nucleotide se-
quences (Eddy, 1998) or the detection of pathological brain signals
(Hirschmann et al., 2017; Kottaram et al., 2019). They are used here to
categorize multi-channel data in an unsupervised fashion, similar to
network analyses based on Independent Component Analysis (Brookes
et al., 2011) or k-means clustering (Cabral et al., 2017). The HMM is,
however, more flexible and data-driven in including the different spectral
properties within the data e.g. phase-coupling (Vidaurre et al., 2018b),
without relying on previous filtering or computations of power
envelopes.

2.7. State inference

States were inferred separately from the baseline periods of the task
and the resting-state recordings. For the baseline period, the first second
of each trial was removed because it was assumed to contain activity
related to the button press of the previous trial. Next, we z-scored and
concatenated the data from all subjects in time, resulting in a total of
71.44 min of pre-task rest data (per subject mean: 5.10 min, STD: 1.40
min), 164.85 min of baseline data (per subject mean: 10.99 min, STD:
2.19 min) and 63.47 min of post-task rest data (per subject mean: 4.53
min, STD: 0.69 min). The rest recording preceding the task and the rest
recording following the task were combined by concatenation in the time
dimension to increase the amount of resting-state data available for state
inference. Importantly, we applied a spectral filter with a pass-band of
1–35 Hz to ensure that brain states were not based on gamma activity.
This was done to demonstrate the universality of rest-task/baseline-task
interactions, which we hypothesized to occur across frequency bands.

State inference was performed by applying a variety of the HMM
designed to capture transient patterns of power and phase-coupling,
referred to as Time-delay Embedded HMM (TDE-HMM; Vidaurre et al.,
2018b). In this model, each state is characterized by certain patterns of
cross-correlation, which contain spectrally-defined patterns of power and
phase-coupling. The TDE-HMM parameters were chosen as in (Vidaurre
et al., 2018b).

Similar to the frequency resolution in spectral analysis, the number of
states K in a HMM determines the level of detail of the solution. Here, we
set K ¼ 4 to guarantee a reasonable amount of trials per state, and to
provide enough detail to investigate the question at hand. Similar results
were obtained for K ¼ 3.

2.8. State properties

Following state inference, we computed the power and coherence
associated with each state as detailed in (Vidaurre et al., 2016). In short,
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we used a Fourier-based multitaper approach to obtain a time-frequency
representation of the concatenated data with high temporal resolution.
The resulting time series of Fourier coefficients was weighted by the state
probabilities, i.e. multitaper Fourier transformation, defined as

Sðf Þ¼ 1ffiffiffi
R

p
XR
r¼1

XT
t¼1

δðrÞt yte�2πift

was modified as follows:

SðkÞðf Þ¼ 1ffiffiffi
R

p
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t¼1

ρðkÞt δðrÞt yte�2πift

Here, R denotes the number of tapers, T the number of time points, δ the
taper, y the signal, f the frequency, and t the time point. ρ denotes the
state- and time-specific weight, defined as the posterior probability of a
state k at time t relative to its mean over time:
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γðkÞt
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Note that frequency measures such as power and coherence are
theoretically defined for each time point (Huang et al., 2009). Therefore,
as discussed in (Vidaurre et al., 2018b), estimation of very low fre-
quencies within states is possible even though state visits are short, in-
sofar as there is enough total time in the time series for that state.

As a result of spectral estimation, we obtained a multi-region pattern
of power and coherence per state. For topographic illustrations, power
and coherence were interpolated on a 3D-reconstruction of the template
brain after computing the relative difference with respect to the mean
over states. In case of coherence, we display the average coupling with all
other parcels.

State dynamics can be summarized by statistics such as fractional
occupancy (FO), lifetime and interval time (See Baker et al., 2014 for
formal definitions). FO quantifies the fraction of samples assigned to a
given state. Here, a sample was assigned to a state if that state had the
highest posterior probability at the time point in question (posterior
decoding). Lifetime quantifies the duration of a state visit. Interval time
quantifies the time in between subsequent visits of the same state.

3. Matching states across recordings

In order to match brain states occurring at rest and brain states
occurring in task baseline, we correlated the spatial maps of spectral
power for each pair of states using Pearson’s correlation coefficient.
Pearson’s coefficient was chosen here because we wanted to find linear
relations between power maps. Correlation was computed for each fre-
quency band separately (delta: 1–3 Hz, theta: 4–7 Hz, alpha: 8–12 Hz,
beta: 13–30 Hz, and gamma: 60–90 Hz) and the resulting correlation
matrices were averaged across bands. Subsequently, we applied hierar-
chical clustering to the mean correlation matrix to group similar states
(Johnson, 1967). This was achieved by Matlab’s linkage function, using
the Euclidian distance as metric and the ‘ward’ method (inner squared
distance) for computing the distance between clusters.
3.1. Statistical analyses

3.1.1. Analysis of between-subject variability
We assessed whether the amplitude of trial-averaged, stimulus-

induced gamma responses is related to state preferences in the baseline
periods of the task and/or the rest recordings preceding and following
the task. State probabilities were averaged across the entire baseline/rest
recording and tested for a linear correlation with the amplitude of the
trial-averaged gamma response using a non-parametric permutation test,
where we use the Spearman’s correlation coefficient as the base statistic
4

(Nichols and Holmes, 2002).
To probe the importance of regional oscillations for the between-

subject effects, we also correlated regional, band-limited power with
the induced gamma response across subjects. For the computation of
power, baseline/resting-state data were cut into segments of 1 s length
without overlap, Fourier-transformed and multiplied with a single,
Fourier-transformed Hanning taper. Power was averaged over tapered
segments and related to the amplitude of the gamma response using
Spearman’s correlation.

3.1.2. Analysis of within-subject variability
We hypothesized that the strength of stimulus-induced gamma ac-

tivity depends on the brain state immediately before stimulus presenta-
tion (Fig. 1). To test this, we first computed, for each state, the average
state probability in the pre-stimulus time window of interest, which
served as state-specific trial weight. The pre-stimulus time window of
interest was defined as �106 to 0 ms because 106 ms was the average
state lifetime in task baseline (Supplementary Material).

Following weight specification, we computed a weighted trial
average for each state using the obtained weights. This procedure can be
considered a weighted (soft-assigned), within-subject grouping of trials
by pre-stimulus state. Next, we tested whether the resulting trial groups
consistently differed in post-stimulus gamma amplitude across subjects.
This was achieved by running a Friedman test, followed by Bonferroni-
corrected, post-hoc Wilcoxon rank sum tests. Note that trials were
grouped by pre-stimulus state, not post-stimulus gamma amplitude, i.e.
any consistent difference in gamma amplitude must be due to a rela-
tionship between pre-stimulus state and post-stimulus gamma amplitude.

To probe the importance of regional oscillations for the within-
subject effects, we correlated the gamma response to pre-stimulus,
baseline power (�106 to 0 ms) in selected frequency bands. We first
computed the power envelope using the Hilbert transformation. Next, we
assigned trials to one of four “pseudo-states” based on binned, pre-
stimulus power. A trial was assigned to pseudo-state 4, for example, if
the pre-stimulus power fell within 75% and 100% of the observed values.
The remaining analysis was conducted as described above.

3.1.3. Comparison of effect size
We compared the between-subject and the within-subject effects of

network activity on gamma responses by correlating FO with the
amplitude of the gamma response. To separate between-subject from
within-subject effects for both FO and gamma activation, we regressed
out the average value for each subject from the single trial time courses.
Spearman correlation between the subject-specific averages yielded the
between-subject effects, and the correlation between the residual, trial-
specific values yielded the within-subject effect. Note that trial-specific
values could only be obtained for baseline, not for resting-state re-
cordings. FO was originally represented as a 2-dimensional matrix
(number of trials x number of states). To obtain a single value per trial,
we applied Principal Component Analysis and kept only the first prin-
cipal component.

In order to assess the variability of the different effects, we generated
1000 bootstrapped samples for each effect, using random sampling with
replacement on the level of subjects to produce an empirical distribution
of correlations (Rindskopf, 1997). p-values were obtained by computing
the fraction of random samples with correlation 1 > correlation 2.

4. Results

4.1. Resting-state activity and gamma responses

In this study, we describe 1–35 Hz spontaneous network activity by
applying an HMM to resting-state MEG recordings and to the baseline
periods of a task, respectively. An HMM estimates, for each sample of
multivariate data, the probability of belonging to each of K possible brain
states.
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Using this approach, we derived four brains states from the combined
resting-state recordings. Whereas it is possible to describe the data using
more states, four were adequate for our purposes (see Materials and
Methods).

We analysed the spectral properties of the brain states occurring in
resting-state. Fig. 2A shows the spatial distribution of state power in the
delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz) and
gamma band (60–90 Hz). Note that gamma oscillations did not
contribute directly to state inference because they were removed by a
low-pass filter, but states may differ in gamma oscillations nevertheless,
e.g. through cross-frequency interactions (Jensen and Colgin, 2007).
Fig. 2B shows the correlations between state probability and the ampli-
tude of the trial-averaged, stimulus-induced gamma response. Plots on
state coherence are provided in Fig. S1 of the Supplementary Material.

Rest state 3 showed a significant positive correlation with the
amplitude of the trial-averaged gamma response (r ¼ 0.75, p ¼ 0.004;
permutation test). This state was characterized by high delta power in
central and parietal areas, low alpha and beta power in several brain
regions, and high gamma power in frontal and central areas. The
Fig. 2. Brain states at rest. A: Power topography of each state and frequency band. R
state probability and the amplitude of the gamma response to visual stimulation. r ¼ S
this figure legend, the reader is referred to the Web version of this article.)

5

probability of visiting rest state 4, in contrast, correlated negatively with
the gamma response (r¼�0.89, p¼ 0.0001; permutation test). This state
was characterized by low delta and theta power but high alpha and beta
power in central areas (Fig. 2).
4.2. Baseline activity and gamma responses

The results presented so far indicate that the strength of gamma re-
sponses to visual stimulation is predicted by the fraction of time spent in
particular brain states occurring at rest (rest state 3 and rest state 4). We
next investigated whether the same or a similar brain states occur in the
baseline periods of the task. To this end, we inferred four brain states
from the baseline periods of the task (see Figs. S2 and S3 of the Sup-
plementary Material for spatial maps of power and coherence) and
evaluated the spatio-spectral similarity between baseline states and the
two rest states of interest by correlating spatial maps of state power and
applying hierarchical clustering.

As depicted in Fig. 3A, baseline state 2 was clearly the closest match
to rest state 3. Similar to rest state 3, baseline state 2 was characterized by
elative difference to the mean over states is color-coded. B: Correlation between
pearman correlation. p ¼ p-value. (For interpretation of the references to color in
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strong delta power in parietal areas, low alpha and beta power in several
brain regions, and high gamma power in central and frontal regions. A
high probability of visiting baseline state 2 was associated with high
amplitude gamma responses to visual stimulation (Fig.3C; r ¼ 0.59, p ¼
0.023; permutation test). These results demonstrate that the HMM could
recognize a state similar to rest state 3 in task baseline, which was like-
wise indicative of strong gamma responses.

A brain state clearly matching rest state 4 was not found in the
baseline periods of task. The most similar state was baseline state 1,
which did not correlate with the amplitude of gamma responses (r ¼
�0.19, p ¼ 0.506; permutation test).

Next, we assessed the relationship between baseline brain states and
gamma responses on the level of trials (within-subject analysis). More
specifically, we tested whether the baseline state occurring immediately
before stimulus onset affects the amplitude of the gamma response. As
illustrated in Fig. 4, gamma responses depended on the preceding base-
line state (Friedman test; p ¼ 0.014). They were strongest when baseline
state 2, i.e. the state positively correlated with the trial-average gamma
response between subjects (see above), preceded grating onset. Post-hoc,
pairwise testing revealed a difference between baseline states 2 and 4
(Wilcoxon rank-sum test; p ¼ 0.004). This pattern was observed in most
individual subjects (Fig. S4 of the Supplementary Material) and was not
an artefact of the trial-weighting procedure used in the analysis (Sup-
plementary Material). In another control analysis, we verified that
incompletely removed pre-stimulus eye blinks, which might impact the
subsequent gamma response, were not the cause of pre-stimulus state
changes (Fig. S5 of the Supplementary Material).

Due to the association with a strong gamma response both within and
between subjects, we refer to baseline state 2, which likely corresponds
Fig. 3. Matching states occurring at rest and in task baseline. A, lower panel: The correl
correlation coefficient is color-coded. A, upper panel: The cluster hierarchy reveale
similar the states. The black square marks the best match (rest state 3 and baseline sta
difference to the mean over baseline states is color-coded. C: Correlation between the
to visual stimulation. r ¼ Spearman correlation. p ¼ p-value. (For interpretation of the
of this article.)

6

to rest state 3, as the “gamma-enhancing brain state” in the following.
We investigated whether the gamma-enhancing brain state was

upregulated as the baseline period progressed, in anticipation of the
stimulus. To this end, we averaged the decoded states, time-locked to the
beginning of the baseline period (fixation-cross onset), over trials. The
resulting average, referred to as fractional occupancy (FO), quantifies
how often a given state occurred at each time point in the baseline period
(Baker et al., 2014). Indeed, baseline state 2 appeared more frequently
towards the end of the baseline period (Fig. 4A; mean slope ¼ 0.086, p <

0.001; t-test). Baseline state 1 was predominantly occurring early in the
baseline, but its FO decreased over time (mean slope ¼ �0.065, p <

0.001; t-test). The FO of baseline state 3 showed a weak negative de-
pendency on time (mean slope ¼ �0.020, p ¼ 0.02; t-test) and baseline
state 4’s FO did not change significantly (mean slope¼�0.001, p¼ 0.87;
t-test).

Importantly, all subjects visited all brain states and none of the brain
states was dominated by a small subset of subjects (Fig. S6 of the Sup-
plementary Material), indicating that the model represented all subjects
and that the HMM was able to successfully capture within-session
variability.

4.3. Comparison of effect size

So far, we have revealed three different effects of spontaneously
occurring brain states on stimulus-induced gamma responses: an across-
subject correlation for rest, an across-subject correlation for task base-
line, and a within-subject effect for task baseline. We now compare the
strength of these different effects, finding a dominance of between-
subject over within-subject effects. A quantitative comparison of effect
ation between spatial maps of spectral power for each pair of states. The Pearson
d by hierarchical clustering. The smaller the height of a bifurcation, the more
te 2). B: Power topography of baseline state 2 for each frequency band. Relative
probability of visiting baseline state 2 and the amplitude of the gamma response
references to color in this figure legend, the reader is referred to the Web version



Fig. 4. Relationship between gamma responses and pre-stimulus brain state. (A) Fractional occupancy in the baseline period (1–4 s before grating onset), averaged over
subjects and time-locked to the onset of the fixation cross. Shaded areas indicate the standard deviation over subjects. The first second of each trial was discarded to
reduce the effect of movement-related processing occurring after the button press. (B) Left: Weighted average time-frequency representations of gamma responses in
the cuneus (left and right averaged), time-locked to the appearance of the moving grating. 0 Hz marks individual gamma-peak frequency (between 42 and 74 Hz).
Power was baseline-corrected (�0.5 to �0.2 s from grating onset). Right: Power averaged over frequency (individual gamma peak frequency �10 Hz) and time
(0.6–2s). * corrected p < 0.05.

Fig. 5. Comparison of effect size. Resampling subjects with replacement yielded
empirical distributions of the absolute Spearman correlation coefficient. The
distribution medians are represented by red lines and the 0.25–0.75 inter-
quartile range (IR) is indicated by black whiskers. Outliers (median � 2.5 IR) are
represented by plus signs. rest-pre (subj): between-subject correlation for resting-
state recording acquired before the task; BL (subj): between-subject correlation
for baseline periods of the task; rest-post (subj): between-subject correlation for
resting-state recording acquired after the task. BL (trial): within-subject corre-
lation for baseline periods of the task. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of
this article.)
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size is displayed in Fig. 5. To investigate possible after-effects of task
performance on resting-state activity, we considered the two resting-state
recordings separately.

The within-subject effect was much weaker than any of the between-
subject effects. Qualitatively, the between-subject effect was stronger for
task baseline than for rest-pre and for rest-post, respectively. These dif-
ferences, however, were not significant (BL vs. rest-pre: p ¼ 0.35, BL vs.
rest-post: p ¼ 0.27).

4.4. Robustness of effects

We investigated the robustness of both the within- and the between-
subjects effect in task baseline against variations in the ROI used for
extracting gamma amplitude. Both effects were robust against systematic
variations of response latency (Fig. S7A) and bandwidth (Fig. S7B).
Changing the brain area of interest from cuneus to another area in oc-
cipital cortex, however, diminished the effect, in particular within sub-
jects (Fig. S7C). This is most likely due to the fact that some subjects did
not show clear gamma responses in the alternative areas of interest.

4.5. Feature analysis

Fig. 3 suggests that high delta power in central and parietal areas and
low alpha power in posterior areas might be a commonality between
brain states associated with strong gamma responses. Here, we tested the
influence of these features directly. We first investigated the importance
of brain regions by restricting the HMM to baseline activity from a
centro-parietal region of interest (bilateral precentral gyrus, postcentral
gyrus, paracentral lobule and superior parietal cortex) and an occipital
region of interest (bilateral cuneus, inferior, middle and superior occip-
ital gyrus), respectively. We observed a (trend) positive correlation be-
tween the trial-average amplitude of the induced gamma response and
the probability of visiting one of the states in both cases (centro-parietal:
r¼ 0.74, p¼ 0.002; occipital: r¼ 0.51, p¼ 0.06), similar to the between-
subject association with whole-brain states. In contrast, a within-subjects
effect could only be found for the centro-parietal (Friedman test; p ¼
0.04) but not for the occipital model (p ¼ 0.56).

Next, we replaced the state probabilities by mean power in the delta
7
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(1–4 Hz) and the alpha band (8–12 Hz), respectively, to probe the
importance of regional power. The gamma response correlated with
mean occipital alpha power (r ¼ �0.65, p ¼ 0.01) but not with central
alpha (r ¼ �0.42, p ¼ 0.12) or delta power (r ¼ 0.31, p ¼ 0.26) in the
baseline periods of the trial.

Differences in response amplitude within subjects could not be pro-
duced by replacing state probabilities with central delta or occipital
alpha power in the 106 ms preceding stimulus onset. We did not find
differential gamma responses following different “pseudo-states” that
were defined according to the level of central delta power (Friedman test;
p ¼ 0.56) or occipital alpha power (p ¼ 0.65) in the pre-stimulus period
of interest (�106 to 0 ms relative to stimulus onset).

These results indicate the between-subject relationship between brain
states and gamma responses might be conveyed by local alpha power in
occipital cortex, at least in the baseline period. The within-subject effect,
in contrast, seems to require long-range interactions with central and
parietal areas.

5. Discussion

In this paper, we have demonstrated that inter-individual differences
in gamma responses to visual stimulation are reflected by inter-
individual differences in spontaneous network dynamics. Furthermore,
we have revealed a similar, albeit weaker, influence of brain states on
trial-specific gamma responses. Our results imply that it is possible to
predict a subject’s gamma response from their resting-state activity
profile.
5.1. Hidden Markov Modelling of brain activity

The HMM has several useful properties for network-level analysis of
electrophysiological data. Unlike sliding-window approaches, it pro-
cesses the data sample by sample, facilitating the characterization of
electrophysiological networks at very high temporal resolution. In
addition, the HMM is a multivariate approach that considers all signals
simultaneously. Rather than defining a region of interest, one can process
all brain areas at once. Subsequent statistical tests do not need to be
corrected for testing many areas, improving statistical efficiency.
Importantly, the HMM is not a biophysical model able to explain how
brain activity arises mechanistically, even though it is capable of sam-
pling new data. Rather, it is a data-driven approach providing a compact
representation of multi-channel/multi-area data.

Recent MEG studies made use of these properties to reveal a rich
repertoire of fast-changing network states characterized by distinct to-
pographies of spectral power and coupling, many of which were remi-
niscent of the resting-state networks originally obtained with fMRI
(Baker et al., 2014; Vidaurre et al., 2016, 2018a, 2018b). HMMs and
other whole-brain models have also been applied to describe dynamic
connectivity in fMRI data (Cabral et al., 2017; Vidaurre et al., 2017).
Here, we have used this approach to assess the relationship between
spontaneous network activity (resting-state and task baseline) and
stimulus-induced gamma responses.

Brain states found by an HMM can be described in different ways.
Here, we focused primarily on spectral power. The feature analysis
revealed that occipital alpha power might mediate the between-subject
effect of brain states on the amplitude of gamma responses. The
within-subject effect, in contrast, was not based on local activity in visual
cortex, but might arise through interactions of visual cortex with central
and parietal areas. These findings are an example of how multivariate
techniques like the HMM can inform subsequent region-of-interest
analyses.

We note, however, that the HMM might have used additional/other
features than occipital alpha power and central delta power to categorize
the data. The fact that the selected features only partially reproduced the
effects of the HMM brain states indicates that other factors played a role.
8

5.2. Interactions between spontaneous and task-related brain activity

A number of fMRI studies have previously demonstrated interactions
between resting-state and task-related activity (Northoff et al., 2010).
Resting-state and task-related networks were found to be highly similar
across a wide variety of tasks (Smith et al., 2009; Cole et al., 2014).
Furthermore, stimulus-induced patterns of activation could be predicted
from resting-state activity (Cole et al., 2016; Tavor et al., 2016). These
findings suggest that task-related brain activity arises by relatively minor
modulations of a basic network profile, which can be considered a neural
signature or fingerprint, allowing for accurate identification of individual
subjects (Finn et al., 2015).

The current MEG study is one the first to show that the above concept
might be transferable from fMRI to neurophysiology. The fact that the
individual preference for a particular brain state correlated with the in-
dividual gamma response implies that spontaneous brain activity
measured in the absence of stimulation (rest or task baseline) is predic-
tive of brain activity induced by a visual stimulus. These findings com-
plement studies investigating spatial and spectral aspects of functional
anatomy by focusing on the temporal activity profile. In the framework
applied here, inter-individual differences in brain responses are thought
to arise because individuals differ in the time they spend in certain brain
states, defined at the population level.

So far, there is only one comparable piece of work from Becker et al.,
who likewise combined MEG and HMMs to predict electrophysiological
responses to visual stimuli and own movements from resting-state ac-
tivity (Becker et al., 2018). The current study differs from this paper in
several ways. First, it investigates induced rather than evoked responses.
Second, it assesses within-subject variability in addition to
between-subject variability. Third, it predicts gamma band responses
from low-frequency activity (cross-frequency analysis). And finally, it
compares the predictive potential of resting-state and task baseline
activity.

A unique insight resulting from this study is that rest-task relation-
ships exist across frequency bands, as evidenced by an influence of
spontaneous 1–35 Hz activity on stimulus-induced responses in the
gamma band (>35 Hz). A possible explanation might be that funda-
mental brain functions like attention, which do impact brain responses
andmight be reflected by brain states, involve predominantly oscillations
below the gamma band. This possibility is discussed in more detail below
(see Brain States and Attention).

In addition, our study shows for the first time that induced gamma
responses in human visual cortex are biased by pre-stimulus, spontaneous
brain activity below 35 Hz. While this finding aligns with similar ob-
servations made for spiking (Tsodyks et al., 1999), evoked responses in
local field potentials (Arieli et al., 1996; Kisley and Gerstein, 1999) and
the BOLD signal (Fox et al., 2006), as well as perception (e.g. van Dijk
et al., 2008; Busch et al., 2009; Baumgarten et al., 2015), it highlights one
of the major advantages of our approach. The combination of MEG and
HMM provides network activity resolved on a millisecond time scale,
thus providing insights on the level of subjects and trials. On the one
hand, the approach allows for estimating a subject’s average gamma
response based on the brain states generally preferred by this subject
(between-subject effect). On the other hand, the same model allows for
estimating the gamma response in the current trial based on the brain
state last visited before stimulus onset (within-subject-effect).

5.3. The relationship between the within- and the between-subject effect

We found a positive bias of a particular brain state both between and
within subjects. Such correspondence between trial- and subject-level is
not unexpected, since spending a lot of time in a gamma-enhancing state
in general increases the probability of visiting this state immediately
before stimulus onset. It is, however, a good indicator that the reported
correlations are not driven by outliers. While it is possible that any brain
state is overrepresented in strong responders by chance, it is very unlikely
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that the same random confound occurs on the level of trials. Conversely,
differences arising by chance within subjects are not expected to translate
into a relationship across subjects.

Although the direction of the between- and of the within-subject ef-
fect was identical, we found the within-subject effect to be much weaker
than the between-subject effect. One possible explanation could be that
baseline activity is markedly different between but rather homogenous
within subjects, making trial-level predictions a more difficult task. In
addition, gamma responses are noisier on the trial-level, even when
considering weighted-averages instead of single trials, making them
harder to predict.

5.4. Possible mechanisms behind gamma modulation

We can only speculate on how brain states influence gamma re-
sponses. A candidate mechanism could be the simple addition of state-
and stimulus-specific gamma activity. This, however, could only explain
the bias when assuming that (i) the HMM captured differences in gamma
activity in the low-pass filtered data, e.g. by detecting coupled oscilla-
tions at lower frequency, and that (ii) brain states lasted from stimulus to
brain response onset (600 ms) in a sufficient number of trials, despite a
much shorter average life time (100 ms).

Another, trivial mechanism could be an influence of the pre-stimulus
brain state on the baseline applied to trial-specific gamma responses. One
might suspect the existence of such a confounder based on the observa-
tion that gamma responses were weak when baseline state 4 preceded
stimulation. This state was characterized by relatively strong gamma
power in posterior areas (Fig. S2). Thus, it is conceivable that, in those
trials, gamma power tended to be high in the response baseline, leading
to a weak baseline-corrected gamma response (the response baseline did
not coincide with the pre-stimulus epoch used for state inference, but was
close). If this were the case, however, one would expect medium re-
sponses following state 1, a weak response following state 2 and a strong
response following state 3. This hypothetical pattern does not match the
observed one (Fig. 4), suggesting that baseline effects are not con-
founding the interpretation given here. Further, the between-subject ef-
fect is at odds with a baseline confound: strong average gamma responses
were observed in those subjects preferring rest state 3 and baseline state
2. These states were not characterized by low gamma power (Figs. 2 and
3).

5.5. Comparing the predictive potential of baseline and resting-state
activity

We investigated whether task baseline activity is more predictive of
brain responses than resting-state activity. The first thing to note is that
both kinds of recordings contained a similar pattern related to gamma
responses (“the gamma-enhancing brain state”), indicating that predic-
tion depends on how well the individual preference for this pattern can
be estimated from a given recording. While a recent fMRI study suggests
that task recordings might allow for a better discrimination between
individuals than resting-state recordings (Greene et al., 2018), we
observed only qualitative differences when predicting gamma responses.

It is theoretically possible that the brain states correlating positively
with the gamma response represent different situations in each experi-
mental condition, despite the spatio-spectral similarities described here.
This would imply that the HMM isolated similar situations in each
experimental condition which accidently share the property of enhancing
gamma responses.

5.6. Brain states and attention

The current study did not attempt to quantify attention, and thus it
cannot establish a direct link between attention and brain states.
Nevertheless, there are several observations indicating that spontaneous
switching between brain states in part reflects the dynamicmodulation of
9

attention. First, attention can enhance gamma responses in visual cortex,
similar to the gamma-enhancing brain state observed here (Tallon-Bau-
dry et al., 2005). Second, the gamma-enhancing brain state became more
common towards the end of the baseline period, which might reflect an
anticipatory upregulation of attention as stimulus presentation
approached. Third, the gamma-enhancing brain state is characterized by
relatively low alpha power, which is believed to reflect the current level
of attention. This view is grounded inM/EEG studies showing that briefly
presented visual stimuli are more likely to be perceived if posterior alpha
oscillations are desynchronized (Hanslmayr et al., 2007; Dijk et al., 2008;
Lange et al., 2013). When subjects are instructed to pay attention to one
visual hemifield, alpha power increases in the ipsilateral hemisphere,
probably to reduce the influence of distractors in the irrelevant hemifield
(Mazaheri and Jensen, 2008; Treder et al., 2011; Horschig et al., 2015).
Similar observations have been reported for other sensory modalities
(Haegens et al., 2011; Mazaheri, 2014; Baumgarten et al., 2016), sug-
gesting that alpha power might serve as a general mechanism for con-
trolling whether or not a stimulus is noticed by the subject. Finally, recent
MEG studies demonstrated a relationship between pre-stimulus alpha
and post-stimulus gamma oscillations in visual (Popov et al., 2017) and
somatosensory areas (Wittenberg et al., 2018).

Importantly, however, the gamma-enhancing brain state described
here cannot be equated with low posterior alpha power. Differences in
alpha power did not entirely account for the effects of brain states in this
study, and low occipto-parietal alpha power was not the most prominent
feature shared across states correlating positively with the gamma
response. Thus, low alpha power in occipital and parietal areas might be
just one aspect of sensory gating.

Assuming that brain states do reflect the level of attention, it is
possible to give a rather parsimonious interpretation of our findings.
First, the correlation between rest states and the trial-average gamma
response indicates that it is possible to identify subjects capable of
maintaining a high level of attention based on resting-state activity. The
identification works equally well or even better when basing the iden-
tification on task baseline activity. This robustness against variations in
recording session suggests that the individual preference for putatively
attention-like brain states is not a temporary condition but rather an
individual trait. It might thus be interesting to link these to genetic fac-
tors that are known to correlate with behavioural measures of attention,
such as the gene for the dopamine transporter (Rueda et al., 2005) or for
the neural nicotinic cholinergic receptor (Parasuraman et al., 2005).
Temporary fluctuations of attention within subjects, on the other hand,
might underlie the within-subjects effects reported here.

5.7. Limitations

While this work demonstrates a correlation between resting-state
activity and brain responses, it is limited to the amplitude of induced
gamma responses in the visual system. Other features such as frequency
or latency were not assessed. And, unlike previous fMRI studies (Cole
et al., 2016; Tavor et al., 2016) and the MEG study by Becker et al.
(2018), it did not probe the predictive power of resting-state activity by
generating out-of-sample predictions.

HMM state changes can in principle be caused by other factors than
neuronal activity, such as noise in the data, or they could be a result of the
Markovian assumption. However, there is converging evidence that
relaxing that assumption does not change state life times significantly
(Trujillo-Barreto et al., 2019). Also, as shown in previous work (Vidaurre
et al., 2017) the HMM output can contain information at much slower
time scales than the scale of state switching - an observation that is
incompatible with state switching caused by noise.

6. Conclusions

We have shown that brains states describing spontaneous network
activity <35 Hz are correlated with the amplitude of stimulus-induced
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gamma responses. Our findings suggest that each subject is characterized
by individual network dynamics predictive of brain responses.
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