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Abstract: Selenium (Se) is an essential micro-element for many organisms, including Chlamydomonas
reinhardtii, and is required in trace amounts. It is obtained from the 21st amino acid selenocysteine
(Sec, U), genetically encoded by the UGA codon. Proteins containing Sec are known as selenoproteins.
In eukaryotes, selenoproteins are present in animals and algae, whereas fungi and higher plants lack
them. The human genome contains 25 selenoproteins, most of which are involved in antioxidant
defense activity, redox regulation, and redox signaling. In algae, 42 selenoprotein families were
identified using various bioinformatics approaches, out of which C. reinhardtii is known to have
10 selenoprotein genes. However, the role of selenoproteins in Chlamydomonas is yet to be reported.
Chlamydomonas selenoproteins contain conserved domains such as CVNVGC and GCUG, in the case
of thioredoxin reductase, and CXXU in other selenoproteins. Interestingly, Sec amino acid residue
is present in a catalytically active domain in Chlamydomonas selenoproteins, similar to human
selenoproteins. Based on catalytical active sites and conserved domains present in Chlamydomonas
selenoproteins, we suggest that Chlamydomonas selenoproteins could have a role in redox regulation
and defense by acting as antioxidants in various physiological conditions.

Keywords: selenoprotein; selenocysteine; antioxidants; algae; Chlamydomonas

1. Introduction

Many organisms, including bacteria and humans, require Selenium (Se) as an essential
trace element. Se is known to have various roles essentially related to redox homeosta-
sis. Moreover, Se in trace amounts provides various health benefits such as improving
immunity and preventing heart diseases and cancer [1–5]. Selenocysteine (Sec, U), the
21st amino acid, is Se’s main biologically active and available form. Sec is encoded by the
UGA stop codon followed by co-translational insertion into selenoproteins in response to
various elements involved in the Sec biosynthesis pathway. Selenoproteins are present in
animals, bacteria, and archaea, whereas fungi, higher plants, and yeast lack selenoproteins.
However, plants have cysteine-containing homologs of selenoprotein (hereafter referred to
as Cys-homologs) [6].

Sec biosynthesis is highly complex, follows a unique translation process compared to
other amino acid syntheses, and requires various cis- and trans-acting elements [7–11]. The
Sec biosynthesis pathway is different in prokaryotes and eukaryotes. Here, we focus on
Chlamydomonas selenoproteins; hence, we have covered the Sec biosynthesis pathway of
eukaryotes only in the next part. In all organisms containing selenoproteins, the Sec biosyn-
thesis starts with serylation of a specialized tRNASec, catalyzed by a seryl-tRNA synthetase
(SerRS). Next, O-phosphoseryl-tRNASec kinase (PSTK), phosphorylates the seryl moiety of
Sec (Ser-tRNASec) followed by replacement of the phosphoryl group with a selenol moiety
by O-phosphoseryl-tRNA:selenocsteinyl-tRNA synthase (SepSecS) [12–16]. Here, selenol
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moiety is provided by the enzyme Sec lyase, which extracts Se from existing Sec, and is
further used by selenophosphate synthetase (SPS2) to form selenophosphate [14,17]. Once
Sec-tRNASec is synthesized, translation of UGA requires Sec-specific elongation factor (eEF-
Sec) and SECIS binding protein 2 (SBP2) to recruit Sec-tRNASec to the ribosome in addition
to the SECIS element [18–20]. SECIS is in the cis-element, forming a hairpin structure, and
is present in selenoprotein in 3′-UTR [21–24]. In addition, after tRNA release, the ribosomal
protein eL30 binds to SECIS and displaces SBP2 in eukaryotes and archaea [25].

2. Selenoproteins and Cysteine-Containing Homologs

Cysteine (Cys) is a principal sulfur-containing amino acid, while Sec is a Se-containing
amino acid. Sec is structurally similar to Cys, except for the selenol group instead of the
thiol group (Figure 1). Se and sulfur are chalcogens; thus, Sec and Cys share specific
chemical properties. Nevertheless, there are slight differences in terms of electronegativity,
oxidation state, and atomic radius between Se and sulfur. Se has a longer atomic radius
and longer bond lengths than sulfur. Se clearly has unique chemical properties that differ
from sulfur, but perhaps the similarities between the two elements are more striking. Slight
differences in the electronic structures of sulfur and Se are enough to give selenoproteins
distinctive catalytic potential [26,27]. Moreover, Sec has a lower pKa (~5.2) than Cys (~8.0);
this way, it can exist as a nucleophile without electrostatic interactions, and hence, Sec
is more reactive than Cys under physiological conditions [28]. Selenoproteins are more
highly resistant to irreversible oxidation under severe oxidative stress conditions than
their Cys-homologues [6,29]. Previous reports of Sec residue elimination, Sec residue
alkylation at pH 6.5, and Sec substitution with Cys result in reduced catalytic efficiency
of selenoprotein [30–34].
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Human selenoproteins broadly can be classified into two groups based on the position
of Sec amino acid in selenoprotein. In a group, I Sec is positioned at the C-terminal region,
while in a group, II Sec is positioned at the N-terminal region. Group I includes thioredoxin
reductases (TrxR), Selenoprotein I (SelI), SelK, SelO, SelR, and SelS, while Group II includes
glutathione peroxidases (GPX), SelM, SelN, SelT, SelV, and SelW [36]. The human genome
codes for 25 selenoproteins, most of which are involved in oxidative stress responses and
redox signaling [2,37]. A common feature observed in Cys-homologues where Cys is
present instead of Sec includes a conserved CXXC motif. CXXC motif alterations have
been observed to affect the protein’s redox potential, its ability to function as a disulfide
isomerase, and its interaction with folding protein substrates and oxidants [34]. Amongst
human selenoproteins, SelV, SelW, Sep15, SelM, SelT, SelP, and others contain a CXXU
motif instead of a CXXC motif at the Trx active site, indicating its antioxidant potential.
Human selenoproteins contain Sec in the catalytic site identified for carrying out various
redox functions, including redox signaling, antioxidant defense, and the regulation of
redox homeostasis. However, there are also various selenoproteins from a human whose
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role is yet to know, including SelH, SelI, SelM, SelO, SelV, and SelW [36–39]. Isolation
and quantification of selenoproteins are essential aspects due to its antioxidant properties.
Isolation of selenoproteins, particularly selenoprotein P, is carried out using immunoaffinity
precipitation, chromatography (using antibodies), chemical affinity, and immobilized metal
affinity methods, which are further characterized using MS-based methods [40]. Recom-
binant selenoprotein production in E. coli is another widely used area for selenoprotein
production. Mammalian TrxR selenoprotein obtains higher expression when expressed
recombinantly in E. Coli with certain modifications [41,42]. For recombinant TrxR purifica-
tion, a redox-active Sel-tag was developed. This tag can be used for one-step purification
of tagged protein, selenolate-targeted fluorescent labeling, as well as selenolate-targeted
radiolabeling can be purified using protocol [43,44].

3. Selenoproteins from Algae

Till 2002, selenoproteins were known only in animals. Interestingly ten selenopro-
teins were identified in C. reinhardtii, including methionine-S-sulfoxide reductase (MsrA),
a selenoprotein specific to Chlamydomonas and not found in other organisms. Out of
10 Chlamydomonas selenoproteins, two selenoproteins, namely, GPX and SelW1, were
identified at the protein level using mass spectrometry, while the rest of the amino acids
were identified using genomic and EST databases. Moreover, the same study also reports
that a selenocysteyl-tRNA (Sec tRNA) explicitly recognizes the UGA codon [45,46]. Further,
more than 1000 selenoprotein genes from 42 selenoprotein families were predicted from
genomic (36 organisms) and/or transcriptomic (including EST) datasets of 137 species of
algae by using various bioinformatics approaches. Of them, 19 selenoproteins including
AhpC, DsbA, SPS, GPX, DIO, TrxR, Sel F, Sel K, Sel M, MsrB, Sel S, Sel T, and SelW were
also reported in animals [47,48]. GPX, TrxR, Sel U, and Sel T were the most abundant
selenoproteins in algae, as these were found in more than half of the 36 genomes [47],
while in specifically Chlamydomonas genome, GPX and SelW1 were the most abundant
selenoproteins [45]. Further, we will discuss the known role of selenoproteins in humans,
followed by the information available on selenoproteins from Chlamydomonas. We focused
on Chlamydomonas selenoproteins only as these are identified by various groups [45–47].

3.1. Glutathione Peroxidase (GPX)

Selenoprotein glutathione peroxidase (GPX) is a cellular antioxidant enzyme that
catalyzes the reduction of hydrogen peroxide, lipid hydroperoxides, and other organic
hydroperoxides by oxidizing glutathione and, thus, helps to protect cells against oxida-
tive damage [49,50]. The GPX family is widespread in living organisms, from archaea to
bacteria to eukarya domains. In the case of mammals, five out of eight are selenoprotein
GPX [51]. Loss of GPX activity is associated with muscle disorders [52], cancer [53,54], hep-
atopathies [55], renal failure [56,57], and neurological disorders such as Parkinson’s disease
and Alzheimer’s disease [58–60]. It has been observed that mammalian selenoprotein GPXs
have much higher activity than plant GPXs containing Cys [61]. Interestingly, mammalian
selenoprotein GPX activity declines drastically when Sec is replaced by Cys [62]. The
peculiar role of various selenoprotein GPXs are listed below in Table 1. In the case of
Chlamydomonas, two selenoprotein GPX (GPX1-accession no. AY051144; GPX2- Gene
Identifier from Phytozome- Cre08.g358525) were identified both containing Sec residue.
Out of the two GPX selenoenzyme, in one GPX, the presence of Sec residue is confirmed at
the proteomics level using mass spectrometry [45,46]. Moreover, its subcellular location is
suggested in the mitochondria [46]. Another GPX is identified using Chlamydomonas EST
and genomic databases [45].
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Table 1. Functions of some of the selenoproteins.

Selenoprotein
(Containing Sec Residue) Functions References

Glutathione peroxidase 1
(GPX 1) As an antioxidant, also functions as Se storage house [63,64]

GPX 2 As an antioxidant, anti-apoptotic function in the
colon regulates mucosal homeostasis [65]

GPX 3 As an antioxidant, preventing plasma LDL
oxidation, functions in the reduction of H2O2

[66–68]

GPX 4
As an antioxidant protects brain membranes from

peroxidative degradation, catalyzes the reduction of
hydroperoxides, inhibits lipid peroxidation

[69–72]

GPX 6 Unknown -

Thioredoxin reductases 1
(TrxR1)

As an antioxidant, reduction of thioredoxin, actin
polymerization for cell membrane restructuring [37,73]

TrxR2 Regulation of mitochondrial redox homeostasis,
Maintains thioredoxin in a reduced state [37]

TrxR3 Unknown -

3.2. Thioredoxin Reductase (TrxR)

TrxRs are prominent selenoproteins enzymes that are known to regulate redox metabolism.
Various studies suggest that human TrxR inhibits multiple stages of tumor progression [74–76].
Moreover, its loss or overexpression in humans is linked with the onset of several diseases,
such as cancer, cardiovascular diseases, type II diabetes, neurological disorders, and hu-
man immunodeficiency virus infection [77–80]. Some of the important roles of TrxR are
mentioned below in Table 1. Generally, TrxR contains an N-terminal redox center with
a ‘CVNVGC’ conserved sequence and a C-terminal redox center with GCUG conserved
amino acid sequence [81–83]. One TrxR selenoprotein (accession no. AF494052) was found
in the Chlamydomonas genome [45,47]. Interestingly, TrxR from Chlamydomonas contains
both conserved sequences at the N- and C-terminals with Sec amino acid residue C-terminal
catalytic region (Figure 2).
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3.3. Other Selenoproteins

In addition, to two GPXs and a TrxR, there are seven selenoproteins found in Chlamy-
domonas, namely, Selenoprotein (Sel) K (accession no. AAN32902), Sel M1 (accession no.
AAN32905), Sel M2 (accession no. AAN32900), Sel T (Gene Identifier from Phytozome-
Cre14.g616950, Sel W1 (accession no. AAN32901), Sel W2 (accession no. XP_001693902),
and Chlamydomonas specific selenoprotein MsrA (accession no. AAN32904) [45]. Human
SelT knockdown mutant induces expression of another selenoprotein gene Sel W along
with oxidoreductase genes, indicating a role of SelT in redox regulation [84]. Moreover, in
humans, SelT was found to prevent severe movement impairment in Parkinson’s disease by
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protecting dopaminergic neurons against oxidative stress [85]. However, most selenopro-
teins such as SelM and SelW have not been explored to find out its function. Interestingly
Chlamydomonas, selenoproteins Sel M1, Sel M2, SelT, SelW1, and SelW2 contain a CXXU
motif instead of the CXXC motif of the Trx active site (Figure 3), as they have been found in
human selenoprotein, indicating its antioxidant potential [34].
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4. Selenoproteins from Chlamydomonas Can Be Potential Antioxidants

It has been observed that Se is required for optimal growth of Chlamydomonas [45].
To the best of our knowledge, no reported study points out the role of selenoproteins in
the Chlamydomonas and other algae until now. It has been observed that Sec biosynthesis
machinery and selenoproteins containing Sec are present in Chlamydomonas but during
evolution from the other amino acid biosynthesis pathways. Chlamydomonas and other
green algae maintain all these enzymes in their genome, suggesting that selenoproteins
might have some key roles. Selenoproteins found in Chlamydomonas share various
similarities with selenoproteins from humans, including conserved regions, catalytic sites,
and the presence of Sec instead of Cys in catalytic sites. In Chlamydomonas, most of the
selenoproteins contain catalytically important CXXU region corresponding to the CXXC
motif in the Trx active site. In contrast, TrxR contains both catalytically necessary conserved
sequences at N-terminal and C-terminal redox center. It has been noted that alteration in the
amino acid residues between two Cys affects redox potentials which shows the critical role
of this catalytic site in redox regulation [86]. Chlamydomonas selenoproteins contain active
catalytic sites required for redox functioning, indicating a potential role of selenoproteins
as an antioxidant and in redox signaling in various physiological conditions, as was the
case with human and other organism selenoproteins [36–39]. It has been observed that
Emiliania huxleyi and Aureococcus anophagefferens algae have the most selenoprotein genes.
Interestingly, both algae showed strong resilience against several environmental conditions
such as wide temperature range, low light, and broad geographical distribution [87], which
could be attributed to its extensive repertoire of selenoproteins. This study also indirectly
supports the hypothesis that selenoproteins may be involved in various redox functions
related to plant defense against stress growth conditions.
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5. Conclusions and Future Perspectives

This opinion article is focused on various selenoproteins from C. reinhardtii. After the
discovery of 10 selenoproteins in Chlamydomonas and knowing that Se is necessary for
optimal growth of Chlamydomonas, no study has been reported suggesting the precise
role of selenoprotein in Chlamydomonas. This area has a huge potential to find its roles in
various physiological conditions. Such studies not only unravel the role of selenoproteins
but will also provide information about the evolution process of selenoprotein, which
would be very helpful in finding how and why selenoprotein is lost in higher plants.
Moreover, if the Chlamydomonas selenoproteins are involved in oxidoreductase functions,
it opens a wide area to make a climate-resilient plant system to combat various biotic and
abiotic stress conditions using selenoproteins.
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