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Acute myeloid leukemia (AML) is a haematological malignancy characterized by the excessive proliferation of immature myeloid
cells coupled with impaired differentiation. Many AML cases have been reported without any known cytogenetic abnormalities and
carry no mutation in known AML-associated driver genes. In this study, 200 AML cases were selected from a publicly available
cohort and differentially analyzed for genetic, epigenetic, and cytogenetic abnormalities. Three genes (FLT3, DNMT3A, and
NPMc) are found to be predominantly mutated. We identified several aberrations to be associated with genome-wide
methylation changes. These include Del (5q), T (15; 17), and NPMc mutations. Four aberrations—Del (5q), T (15; 17), T
(9; 22), and T (9; 11)—are significantly associated with patient survival. Del (5q)-positive patients have an average survival of
less than 1 year, whereas T (15; 17)-positive patients have a significantly better prognosis. Combining the methylation and
mutation data reveals three distinct patient groups and four clusters of genes. We speculate that combined signatures have the
better potential to be used for subclassification of AML, complementing cytogenetic signatures. A larger sample cohort and
further investigation of the effects observed in this study are required to enable the clinical application of our patient

classification aided by DNA methylation.

1. Introduction

AML is a haematological disorder characterized by excessive
proliferation of undifferentiated myeloid cells [1] in the bone
marrow that infiltrate the liver, spleen, lymph node, and
circulating blood [2]. This cancer type progresses rapidly
and is relatively fatal due to acquired genetic and/or cytoge-
netic aberrations. In 2014, AML was the most common type
of leukemia diagnosed and accounted for 1.78% of predicted
cancer deaths in the United States [3]. Overall, the 5-year
survival rate varies drastically based on the cytogenetic risk
classification: 55%, 24%, and 5% overall survival for favour-
able, intermediate, and adverse risk group patients, respec-
tively [4]. Relapse is the major reason for a poor survival
rate as it occurs in up to 80% of AML patients [5]. Almost
50% of all AML cases belonging to the intermediate risk

group have been reported to lack any cytogenetic abnor-
malities [6]. Furthermore, a significant proportion of the
patients carry no reported genetic mutations in any known
AML-associated driver genes [7, 8]. These findings clearly
indicate that there are other elements predisposing to and
driving the disease in the case of cytogenetically normal
AML (CN-AML).

It has already been reported that epigenetic modifications
are involved in the regulation of haematopoietic develop-
ment [9, 10]. DNA methyltransferases and histone methyl-
transferases are well-known epigenetic modifiers that
contribute to cellular identity through regulation of gene
expression in myeloid progenitor lineages. They are among
the frequently mutated group of genes in AML [11, 12] which
suggests that epigenetic modification could be a causative
agent for disease progression and relapse in CN-AML.
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HOX genes are often hypomethylated in CN-AML, whereas
DNMT3A tends to be mutated [13]. Mutation of other epige-
netic regulators, such as TET2 [14], MLL [15], IDH1/2 [16],
FLT3 [11], NPM1 [11], RUNXI [17], and ASXL1 [18], has
been associated with unfavourable clinical outcomes for
AML patients [7]. Therefore, mutations in epigenetic modi-
fiers as well as alterations of genome-wide methylation
patterns in AML imply epigenetic deregulations as one of
the fundamental causal agents in AML pathogenesis.

AML is a biologically heterogeneous and complex
malignant disorder, and no single causative agent has yet
been identified which is capable of oncogenic transforma-
tion alone. The overwhelming evidence suggests a complex
interplay of genetic events contributing to AML pathogen-
esis [11]. From the biological point of view, the cancer
phenotype is likely directly associated with gene expression,
which can be potentially driven by genetic, epigenetic, and
cytogenetic changes. In order to explore the pathophysiol-
ogy of this disease, integration of genetic, epigenetic, and
cytogenetic data and differential analysis are required. The
combination of information on every single molecular
parameter into phenotypic signatures would be a robust
classifier in disease diagnosis and risk stratification in
AML [19-21]. Disease prognosis and classification of
AML are important for physicians to decide particular
treatment protocol in order to avoid minimal residual dis-
ease and risk of relapse [22]. None of the two well-known
classifications (French-American-British [23] and World
Health Organization [24]) integrate epigenetic signatures
with genetic and cytogenetic ones. To facilitate a molecular
pathophysiological study of AML, The Cancer Genome
Atlas (TCGA) research network has generated a huge
amount of data that are publicly available for further anal-
ysis and interpretation of AML pathogenesis, classification,
and risk stratification [11]. TCGA is providing the most
comprehensive molecular and clinical data on over 33 dif-
ferent tumor types of 10000 cancer patients [25]. Although
TCGA has made many important discoveries and pub-
lished more than 20 marker papers, still remarkable oppor-
tunities exist to analyze the data using novel methods and
strategies from dynamic viewpoints.

For this study, we used the data available in TCGA
under study code LAML and differentially analyzed using
a carefully selected set of online and offline platforms.
For the comprehensive analysis of differential DNA meth-
ylation, we used specifically RnBeads [26]. In order to
integrate genome-wide methylation and mutation data
with cytogenetic data, we developed custom R scripts ana-
lyzing every single event and combining events. We also
used circos, ingenuity pathway analysis (IPA) database,
and other platforms to organize and visualize the data.
We used hierarchical clustering and heatmaps to identify
and visualize distinct groups of AML patients and genes.
Further, we used a large collection of diagnostic and phe-
notypic traits to calculate individual and composite risk
factors and presented them as Kaplan-Meier curves. Our
integration strategy provides useful insight into disease
subtype identification, risk measurement, and detection of
clinical prognostic markers.
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TasLE 1: Characteristics of AML patients.

Patient characteristics Values (units)

Gender (M/F) 109/91

. . 55.50+16.07
Age at diagnosis (years)
Race (black/white/NA) 15/183/2
Ethnicity (nonhispanic/hispanic/NA) 194/3/3
Vital status (dead/alive) 133/67

Blasts in peripheral blood (M/F)*
WBC counts after 24 h of storage®
Platelets counts

67.76/64.86 (%)
37.246 (k/mm?)
65.98 (cells/uL)
36.28 (cells/uL)
12.16 (k/mm?)
27.50 (cells/pL)
12.34 (cells/pL)

Blast cell counts

Neutrophil counts after 24 h of storage
Lymphocytes counts

Monocytes counts

Number of patients with cytogenetic

L. 1
abnormalities 06

Number of patients with genetic abnormalities 160

M: male; F: female; NA: not available. 'Blasts = immature white blood cells.
More than 20% of blasts is generally required for a diagnosis of AML.
*Number of WBCs reduce after long time storage.

2. Materials and Methods

2.1. Data Source and Software. We used TCGA (https://tcga-
data.nci.nih.gov/tcga/) data repositories as our primary data
source for this study. To analyze the AML data generated
by TCGA, we directly accessed and downloaded the raw data,
using the “Data Matrix” tool provided by TCGA Data Portal.
We also downloaded clinical, gene expression, and DNA
methylation data of all available AML patients. In total, we
found 200 patients having clinical and gene expression data
and 194 DNA methylation data (date of download: August
15,2015). The available data type for DNA methylation anal-
ysis was Illumina Infinium HumanMethylation450 Bead-
Chip (450 K microarray). We used human genome (UCSC
hgl9) as reference. Gene definitions were based on Ensembl
release 75.

Data analysis was performed using the R platform
(http://www.r-project.org/, version 3.1.3) and a collection of
R/Bioconductor packages. We used RnBeads (http://rnbeads.
mpi-inf.mpg.de/) to analyze and visualize DNA methylation
data. RnBeads is a software tool written in the R program-
ming language for large-scale analysis and interpretation
of genome-wide datasets, particularly epigenomic data
(bisulfite sequencing and Infinium microarrays) with a
user-friendly and customizable analysis pipeline. It provides
self-configuring workflow at data input, quality control,
preprocessing, and tracking and table stages. We inspected
the output, in particular at the exploratory analysis and dif-
ferential methylation analysis stages, available as interactive
hypertext report with high-quality figures and tables [26].

2.2. Analysis and Visualization. The analysis presented here
can be broadly separated into clinical and molecular analysis.
Later on, we combined molecular and clinical data to study
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FiGure 1: Distribution of genetic and cytogenetic abnormalities in AML. FLT3 and NPMc mutations are the most common abnormalities in
AML patients. Many patients have multiple abnormalities. More than 50% of NPMc-positive patients are also FLT3 positive. Gray color

represents either negative or unknown.

the survival proportion. In case of clinical data, we uploaded
the preprocessed txt file to RStudio and analyzed every col-
umn of available patient information and characteristics.
The distribution of all the available genetic and cytogenetic
abnormalities reported in clinical data table is visualized
using “OncoPrint” that can show overlapping abnormalities,
if any, across the patient cohort. For multivariate analysis and
low-dimensional representation of AML dataset, we applied
principal component analysis (PCA). Later, we run “Wil-
coxon rank sum test” for the first eight principal components
(PC) against each trait to identify significant association
between traits. Multidimensional scaling (MDS) was tested
after performing Kruskal’s nonmetric test. It is important
to note that in many cases, patient clinical data is incom-
plete. Although we analyzed all available data, a large num-
ber of patients’ information was missing in the TCGA data
file that presented separately and some information was not
relevant to this study. We also applied various techniques
for batch effect detection, as implemented in RnBeads.
We used “heatmap.2” for unsupervised hierarchical cluster-
ing of samples and genes in a heatmap. Differentially meth-
ylated sites and regions were identified using limma tests
and Fisher’s method for the combination of p values. We
used a scatter plot and volcano plot for the visualization
of differential methylation with a false discovery rate-

(FDR-) adjusted p value < 0.05. Enrichment analysis was
conducted for overrepresented or underrepresented gene
sets using Gene Ontology (GO) terms and presented as
word clouds. We analyzed the gene ontology, functional
genes, and transcriptomes using the IPA (Ingenuity Sys-
tems, Mountain View, CA). The distribution of hyper-
methylated gene promoters in AML cohort is visualized
by a histogram, and highly common genes are presented
as a circos plot with corresponding chromosome. We ana-
lyzed gene mutations in the patient cohort and presented
as a histogram. In the case of survival analysis, we com-
bined available data to draw Kaplan-Meier curves and cor-
rected for the effect of age and gender, adjusted the
resulting p values using the Benjamini-Hochberg method,
and applied a significant threshold of 0.05. We used the
survival interval from the date of diagnosis until the date
of death or last follow-up.

Sample annotation and DNA methylation data analysis
was performed in a systematic way in this study. Com-
bined differential DNA methylation at individual CpGs
as well as extended genomic regions increased statistical
power, interpretability, and reproducibility [27, 28]. In
case of differential DNA methylation analysis, we consid-
ered not only statistical significance but also biological sig-
nificance of the output.



3. Results

3.1. Characteristics of the Patient Cohort and Clinical Testing.
In the primary study cohort, a total of 200 AML patients were
listed in the TCGA database. The mean age at diagnosis was
55.50 years; 109 (54.5%) patients were male and 91 (45.5%)
female. The majority of the patients were white American
(91.50%) and non-Hispanic (97%). Only 106 patients were
cytogenetically abnormal. Overall genetic abnormalities were
around 80% in the cohort, and patients with both genetic and
cytogenetic abnormalities were more prone to death com-
pared to those with single-type abnormality. Detected genetic
abnormalities were higher than cytogenetic abnormalities.
Additional information, such as average blood cell counts,
is shown in Table 1.

Cytogenetic tests were performed for almost every
patient (196), and fluorescence in situ hybridization (FISH)
test was performed for 155 patients. Only three patients
showed previous other haematological disorders, and 14
patients showed other malignancies. Neoadjuvant treatment
was prescribed to 24.50% of the patients. The vast majority
of the patients (79.5%) had never been exposed to leukemo-
genic agents before; all-trans retinoic acid- (ATRA) induced
apoptosis was reported for only 4 patients. Exposure data
was missing for 37 patients. The number of FISH test-
positive patients was equal to that of FISH test-negative
patients (78), and available data was not found for 44 patients.
Molecular abnormalities were detected for only 38 patients,
and data was not available for 112 patients. Supplementary
Figure S1 available online at https://doi.org/10.1155/2017/
2913648 summarizes the clinical tests in the form of bar plot.

3.2. Genetic and Cytogenetic Abnormalities. Almost 30%
(n=58) of the patients showed FLT3 mutation
(Figure 1), whereas only one patient showed BCR-ABL
tusion and T (8; 21). The second highest mutation rate
(23%) was found for NPMc. More than 50% of NPMc-
positive patients were also FLT3 positive, and 21 patients
were positive for both trisomy 8 and Del (7q). IDH1 R132-
positive and T (15; 17)-positive patients were only 18 (9%);
IDH1 R140-positive and Del (5q)-positive patients were 15
(7.50%), and activating RAS was reported for only 5.5% of
the patients. The rest of the genetic and cytogenetic
abnormalities were reported in <5% of the patients.
Unknown cytogenetic abnormalities were significantly
higher than unknown genetic abnormalities. The highest
negative test was reported for IDH1 R172 (96.5%). One
notable observation in the clinical data file was that the
patients exhibiting multiple abnormalities tended to have
shorter survival time. Statistical tests were not significant
for many reported abnormalities mostly due to small
positive sample size.

3.3. Methylation Profiles. RnBeads implies two methods for
visual inspection of methylation datasets: multidimensional
scaling (MDS) and principal component analysis (PCA).
After ignoring incomplete features due to missing values,
439751 CpGs were used for MDS and 436441 for PCA. Sim-
ilarly, promoters used for MDS were 28642 and PCA were
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FIGURE 2: Low-dimensional representation of AML dataset. Scatter
plot shows coordinates of NPMc traits on principal components
(PC). Gray circles represent missing values. PC2 and PC3 show
better separation of NPMc-positive and NPMc-negative patients
(positive in upper and negative in lower) than PC1 and PC2 (not
shown). PC3 is highly significant for NPMc (Wilcoxon rank sum
test, p=5.1E—13).

28547. A gene promoter was defined as the region spanning
1500 bases upstream and 500 bases downstream of the gene’s
transcription start site. The mean number of interrogated
probe sites (CpG sites) per promoter is 10 in the dataset. In
case multiple CpG sites lie in a particular promoter, we
assigned the average methylation (beta) value as the overall
methylation level of the promoter. The scatter plot on
Figure 2 shows the sample coordinates of the second and third
principal components for NPMc. NPMc-positive samples
occupy the upper region of the plot, and negative samples
are located in the lower region of the plot. Only one sample
does not conform to this separation. Although there are some
homogenous samples, two groups are clearly clustered in the
picture at the top and bottom sides. Second and third princi-
pal components (PC) show the strongest association with
traits. PC2 and PC3 together can explain around 55% of the
total variance, as seen in the cumulative distribution func-
tions. PCA and MDS for FLT3 are shown in Figure S2. The
first eight PC together can explain more than 99% of total var-
iance. The Wilcoxon rank sum test shows that PC1 is not sig-
nificant for any traits except IDH1 R140 (Figure S3).

3.4. Batch Effects. Different properties of the dataset were
tested for significant associations. All genetic and cytogenetic
traits were tested against principal components (Figure S3) as
well as between traits (Figure S4). Two statistical tests were
performed: Wilcoxon rank sum test and Fisher’s exact test
where significant p values were less than 0.01. In case of
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FIGURE 3: Methylation distribution in genomes. (a) Methylation distribution (beta value) across all promoters that follow bimodal
distribution pattern. (b) Methylation value density estimation in all samples at different CpG region. (c) IDH1 R172-positive and IDH1
R172-negative patient’s promoter methylation distribution. Negative patient distribution is similar with (a), but positive patients show
lower density. (d) T (9; 11)-positive and T (9; 11)-negative patient’s promoter methylation distribution, and here, also positive patients

show lower density.

association between traits, Del (5q) and Del (7q) were more
associated than other genetic traits and cytogenetic traits
were more associated than genetic traits. Many association
tests could not produce reliable results due to insufficient

sample size.

3.5. Regional Sites and Methylation Value Distribution in the
Whole Genome. After annotation and necessary adjustment,
28642 promoters with available methylation data were iden-
tified in the TCGA dataset. Total samples were divided based
on abnormality types (genetic and cytogenetic), and among
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FIGURE 4: Hierarchical clustering of AML samples. Heatmap displayed only sites with the highest variance across all samples and complete
linkage strategy. x-axis represents the number of patients, and y-axis represents different CpG regions. Gray color in across x-axis side bar
represents unknown for particular trait. Color key represents beta value (red means hypomethylated and blue means hypermethylated).
Del (5q)-positive patients show mostly hypermethylation across the genomic regions. T (15; 17)-positive patients show hypomethylation

across the genomic regions.

each group, there were positive and negative patients. The
average number of CpG sites per promoter was approxi-
mately 10. It is worth noting that the reported promoter
methylation values are based predominantly on probes
located very close to the transcription start site of the corre-
sponding gene. The overall promoter methylation pattern is
similar to the genome-wide CpG methylation distribution
(Figure 3(a)); that is, it is bimodal. IDH1 R172 and T (9;
11) seem to have an effect on the methylome in the sense
that the distributions of promoter methylation for the pos-
itive and negative patients differ (Figures 3(c) and 3(d)).
This is also the case for other aberrations: FLT3, IDHI
R140, trisomy 8, trisomy 21, and Inv (16) (data not shown).

Not suprisingly, we found very high levels of methylation at
shelf (2-4kb from CGI) and then open sea (>4kb from
CGI) regions and much lower at shores (up to 2kb from
CGI) and islands (Figure 3(b)).

3.6. Clustering of Samples. We had clustered samples hierar-
chically based on methylation values using correlation-
based distance metric and visualized them as heatmaps. Only
2 traits show good clustering: Del (5q) and T (15; 17). The
Del (5q)-positive group showed hypermethylation, whereas
the T (15; 17)-positive group showed hypomethylation
(Figure 4). It is difficult to determine whether the lack of
association between other traits and the identified
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Ficure 5: Differential methylation of samples based on traits and GO enrichment. (a) Density plot of average promoter methylation in
T (15; 17) positive (x-axis) versus negative (y-axis) patient groups. The density plot is overlaid with a scatter plot in which promoters with
FDR-corrected p value < 0.05 are depicted as red points. (b) Volcano plot for T (15; 17) showing the relationship between differences in
group mean methylation and uncorrected p value for every gene promoter. (c) Word cloud showing the most enriched Gene Ontology
terms in the category molecular function, when the top 100 hypomethylated gene promoters in the T (15; 17)-positive patient group are

considered. Larger font size indicates a more significant p value.

methylation-based patient subgroups (data not shown) can
be attributed to the heterogeneity of the disease or the incom-
plete annotation.

3.7. Differential Methylation. Differential methylation on
CpG sites and gene promoters was computed using different
metrics, including limma statistical test. The differentially
methylated promoters for T (15; 17) are depicted as red
points in the scatter plot of Figure 5(a). Despite the overall
very high correlation of average promoter methylation
between the T (15; 17)-positive and T (15; 17)-negative
patient groups, there is a substantial number of gene
promoters for which the two groups show a significant differ-
ence in methylation (mean beta value). The volcano plot in

Figure 5(b) shows the relationship between mean
methylation difference and the p values obtained from
the limma test. Word clouds for Gene Ontology (GO)
enrichment analysis of T (15; 17) indicate aberrations in
the carboxylic acid-binding pathway based on promoter
hypomethylation (Figure 5(c)).

3.8. Highly Methylated Genes in AML. We found more than
1300 highly methylated gene promoters in the AML dataset.
Around 1100 genes were hypermethylated for only 5%
patients. There are 200 gene promoters that were hyper-
methylated among 90% patients (Figure 6). These 200 genes
were one of our areas of interest, whether their distribution in
the chromosome follows any pattern. We generated a circos
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We checked the distribution of those genes across the chromosomes in Figure 7.

plot for those frequently (>90%) hypermethylated genes with
associated chromosomal position (Figure 7). There was no
particular distribution pattern of those genes across chromo-
somes; with the notable exception of Y and 18. Chromosome
1 showed a comparatively large number of hypermethylated
genes compared to other chromosomes.

3.9. Gene Mutation and Hypermethylation Pattern. Only a
small number of AML patients show high mutation, and
majority patients are without any known driver gene muta-
tion (Figure S5). We plotted all highly mutated and hyper-
methylated genes against 200 AML cases in a single
heatmap (Figure 8). Genes that were both mutated and
hypermethylated were indicated with different color signs.
Mutation or hypermethylation was also shown in different
colors. Unsupervised hierarchical clustering dendrogram
uncovered some interesting clusters. There were three groups
of patients and four major groups of genes clearly visible.
Genes that are both mutated and hypermethylated were scat-
tered randomly. This is quite an interesting pattern that
could be useful in the future for better AML classification.
The specialties among those groups are still unknown and
would be a future area of our interest.

3.10. Pathway Analysis. Integrated pathway analysis for AML
was performed using IPA online database, and deregulated
transcripts are listed in Table S1. The total number of factors
(genes, transcription factors, and RNAs) affected was 1083
(checked on September 23, 2015). Upregulated transcripts
were numbered 64 and downregulated transcripts were num-
bered 29. Proteasome subunit beta type-9 (PSMB9) and other
PSMBs were downregulated and hampered assembly of the
proteasome complex in AML. Only 15 miRNAs were found
directly affected in the case of AML, and miR-10 was affected
in multiple AML subtypes.

3.11. Survival Curves. We combined all risk factors and traits
in order to draw Kaplan-Meier survival curves (Figure 9). We
calculated p values for all possible traits (Table S2), and only
Del (5q), T (9; 11), T (9; 22), and T (15; 17) showed statistical
significance (0.0149, 0.0233, 0.0443, and 0.0457, resp.) after
necessary adjustment with the age and sex of the patients.
Patients with Del (5q) positive and T (15; 17) positive showed
distinctive results. The Del (5q)-positive patients’ average
survival rate was less than 1 year (Figure 9(a)). But the T
(15; 17)-positive patients’ average survival rate was more
than 3 years (Figure 9(b)). Other traits did not affect much
in the case of patient survival, and also, most of them were
not statistically significant. Only T (15; 17) showed a higher
survival rate, and the causes were unknown. We hypothe-
sized that maybe some chemotherapeutic drugs were work-
ing better due to this particular translocation, and those
patients survived more than others.

4. Discussion

AML is a complex genetic disease because of the accumu-
lation of numerous genomic lesions that regulate the
expression of oncogenes as well as tumor-suppressor
genes. Chromosomal aberrations that cause gene fusions
were mostly considered as markers for diagnosis, prog-
nosis, and classification in the early days [29-31]. There
were some problems with classification based on cytoge-
netic factors, because AML patients with normal karyo-
types (CN-AML) were classified as the intermediate
risk group [32]. Although this heterogeneous group was
turther classified based on genetic factors, many cases
had been reported without even genetic abnormalities.
The incorporation of epigenetic factors with genetic and
cytogenetic factors might be helpful for better classification
as well as diagnostic and prognostic risk stratification.
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F1GURE 7: Distribution of hypermethylated genes in chromosomes. Commonly hypermethylated genes in AML are randomly distributed
across the chromosomes. Chromosome 1 contains the highest number of genes than any other chromosomes.

The classification of AML considering all possible
genetic, epigenetic, and cytogenetic aberrations is not only a
complex and challenging problem but also a matter of clini-
cal validation that was never done before. Here, we integrated
all available data from TCGA and tried to look for any pat-
tern that could be useful for patient classification. We used
different software and strategies to visualize the dataset. This
comprehensive and large-scale study of mutation and meth-
ylation in human disease demonstrates that genetic and epi-
genetic patterns within the biological and clinical signatures

and DNA methylation classifiers can be derived from popu-
lation studies with clinical predictive capacity [33]. Although
we have not attempted to subclassify AML in this study,
some identified pattern (Figure 8) would help to better
understand the overall data structure through which clini-
cally implementable classification might become possible in
the future. Our analyses demonstrate that systematic integra-
tion of gene expression and DNA methylation profile could
improve the classification methods. CN-AML especially
could be understood better and in broader ways.
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FIGURE 8: Pattern recognition after combination of methylation and mutation. x-axis represents the number of patients (n = 200), and y-axis
represents the number of the most hypermethylated genes (n = 879). Dendrogram represents three clusters of AML patients and four clusters

of the most hypermethylated genes.

Although the vast majority of regulatory elements are
located outside promoters, most of the DNA methylation
studies in AML have focused mainly on CGI promoter
regions [34, 35]. There are almost 28 million CpG dinucleo-
tides in the human genome [36], and only 2% of them are
located within gene-promoter regions [13]. Significant statis-
tical and biological evidence of non-CGI methylation is now
increasing and suggests it plays an important role in the reg-
ulation of gene expression [37, 38]. In our study, we found

that total numbers of methylation distributions are high at
open sea and shore (Figure 3(b)) compared to those of pro-
moter regions. In CLL, methylation alterations have been
reported in non-CGI regions [39]. DNA methylation in
shores is strongly correlated with gene expression changes
in colorectal cancer [40, 41]. Non-CGI DNA methylation
can be used as a biomarker for the differentiation of pluripo-
tent stem cells [42]. Leukemogenic mutations alone, such as
FLT3, NPM1, CEBPA, and DNMT3A, are not sufficient to
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The survival time of 50% of the Del (5q)-positive patients is less than 1 year. (b) The survival time of 50% of the T (15; 17)-positive patients is

more than 4 years.

explain diverse clinical AML subtypes; epigenetic alterations
are abundant and common and might explain the biology
behind various AML groups.

It has been reported that some genes (FLT3, NPM1, and
DNMT3A) are recurrently mutated (more than 20%) in
AML [11]. But it is not clear yet which genes are particularly
responsible for that specific methylation pattern. The muta-
tion of NPM1 was associated with four slightly distinct epige-
netic signatures that cannot be explained by concurrent
FLT3-ITD mutation [33]. This suggests that there might be
some unrecognized mechanisms to determine different epi-
genetic groups. Our study also suggests that almost 200 genes
are recurrently hypermethylated (Figure 6) in 90% of AML
cases and evenly distributed among chromosomes (Figure 7).

As DNA methyltransferases are responsible for de novo
methylation, DNMT3A is a crucial gene for the epigenetic
alteration of AML. DNMT3A-mutated patients show global
hypomethylation [13], because of recently reported impaired
catalytic activity due to this mutation [43]. There are differ-
ent patterns of DNMT3A methylation in AML cases. In bone
marrow, mononucleotide cells in AML showed significant
hypomethylation of DNMT3A [44], whereas in peripheral
blood cells, this gene was found hypermethylated [45]. We
can say that aberrant DNMT3A methylation would be an
independent negative prognostic factor in AML. In our anal-
ysis, many traits have been associated with abnormal methyl-
ation patterns. T (15; 17)-positive patients showed global
hypomethylation, and Del (5q) correlates with hypermethy-
lation (Figure 4). Other traits not showing any significant
cluster or pattern in a heatmap might still be informative
but not detected due to insufficient sample numbers or
molecular heterogeneity between inter- and intratraits.

One of the notable findings of this study is the identifica-
tion of clusters in a heatmap (Figure 8) with the combination

of all probable genetic and epigenetic signatures. Three
groups of patients are clearly visible through the x-axis of
the figure, whereas four groups of genes are able to be identi-
fied through y-axis. Genes that are both methylated and
mutated have no clear pattern. We are not able to figure
out yet the common or special characteristics of those clus-
ters. This could be a further area of study before considering
epigenetic patterns as factors for AML patient classification
in clinics.

Another important observation in AML dataset is the
role of traits for patient survival. Del (5q)-positive patients
survive less than one year. Only T (15; 17) is associated with
an exceptionally higher survival rate (>3 years) compared to
other traits (Figure 9(b)). We hypothesize that maybe some
chemotherapeutic drugs were more effective due to this
translocation. There is no prescribed drug information in
the TCGA AML clinical data files. It is known that many
drugs were designed by targeting this particular translocation
which may influence this high survival rate. A large cohort of
AML patients with detailed clinical information is required
to validate the hypothesis. Survival curves (Kaplan-Meier)
for many traits were not statistically significant (0.05) due
to small positive sample size, and some traits (like FLT3
and NPMc) showed the same survival pattern for both posi-
tive and negative patients [46].

There are some drawbacks of this study that should be
considered before clinical implementation. Samples were col-
lected over a long period of time, and all clinical tests were
not performed equally. Many routine tests changed in the
clinic, and new genetic testing was assigned. Some data were
missing in the clinical data files. Feasibility of the findings has
not been tested in the clinical context. Although we presented
statistically significant data, statistical significance might not
always be significant clinically.
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Finally, this secondary data analysis revealed global pic-
tures of AML genomes that would be useful for further broad
spectrum analysis and interpretation of cancer data. Our
integrated analysis approaches show some interesting find-
ings like epigenetic patterns and survival curves. We show
how individual traits are associated with global methylation
changes. In conclusion, a combination of genetic, epigenetic,
and cytogenetic data could further expand our understand-
ing of the biology of AML. This analysis would motivate to
other groups to increase the sample size to confirm our find-
ings as well as to include epigenetic signatures for the classi-
fication of AML. We hope our analysis might motivate
clinicians to eventually include epigenetic signatures in the
classification of AML and inspire to investigate patient sur-
vival, T (15; 17), and particular drug responses.
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