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Abstract

Background

Individuals with pre-diabetes and diabetes have increased risks of developing macro-vas-

cular complications including heart disease and stroke; which are the leading causes of

death globally. The objective of this study was to estimate the prevalence of pre-diabetes

and diabetes, and to investigate their predictors among adults�18 years in Florida.

Methods

Data covering the time period January-December 2013, were obtained from Florida’s

Behavioral Risk Factor Surveillance System (BRFSS). Survey design of the study was

declared using SVYSET statement of STATA 13.1. Descriptive analyses were performed to

estimate the prevalence of pre-diabetes and diabetes. Predictors of pre-diabetes and diabe-

tes were investigated using multinomial logistic regression model. Model goodness-of-fit

was evaluated using both the multinomial goodness-of-fit test proposed by Fagerland, Hos-

mer, and Bofin, as well as, the Hosmer-Lemeshow’s goodness of fit test.

Results

There were approximately 2,983 (7.3%) and 5,189 (12.1%) adults in Florida diagnosed with

pre-diabetes and diabetes, respectively. Over half of the study respondents were white,

married and over the age of 45 years while 36.4% reported being physically inactive, over-

weight (36.4%) or obese (26.4%), hypertensive (34.6%), hypercholesteremic (40.3%), and

26% were arthritic. Based on the final multivariable multinomial model, only being over-

weight (Relative Risk Ratio [RRR] = 1.85, 95% Confidence Interval [95% CI] = 1.41, 2.42),

obese (RRR = 3.41, 95% CI = 2.61, 4.45), hypertensive (RRR = 1.69, 95% CI = 1.33, 2.15),

hypercholesterolemic (RRR = 1.94, 95% CI = 1.55, 2.43), and arthritic (RRR = 1.24, 95% CI

= 1.00, 1.55) had significant associations with pre-diabetes. However, more predictors had
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significant associations with diabetes and the strengths of associations tended to be higher

than for the association with pre-diabetes. For instance, the relative risk ratios for the asso-

ciation between diabetes and being overweight (RRR = 2.00, 95% CI = 1.55, 2.57), or

obese (RRR = 4.04, 95% CI = 3.22, 5.07), hypertensive (RRR = 2.66, 95% CI = 2.08, 3.41),

hypercholesterolemic (RRR = 1.98, 95% CI = 1.61, 2.45) and arthritic (RRR = 1.28, 95% CI

= 1.04, 1.58) were all further away from the null than their associations with pre-diabetes.

Moreover, a number of variables such as age, income level, sex, and level of physical activ-

ity had significant association with diabetes but not pre-diabetes. The risk of diabetes

increased with increasing age, lower income, in males, and with physical inactivity. Insuffi-

cient physical activity had no significant association with the risk of diabetes or pre-

diabetes.

Conclusions

There is evidence of differences in the strength of association of the predictors across levels

of diabetes status (pre-diabetes and diabetes) among adults�18 years in Florida. It is

important to monitor populations at high risk for pre-diabetes and diabetes, so as to help

guide health programming decisions and resource allocations to control the condition.

Introduction
Diabetes is a metabolic disease characterized by high blood sugar or glucose levels, resulting
from worsening or severe insulin resistance. It is observed in individuals with a glycated hemo-
globin (also called hemoglobin A1c, HbA1c, A1C or Hb1c) level of 6.5% or higher, a Fasting
Plasma Glucose (FPG) of 126 mg/dl or higher, and Oral Glucose Tolerance Test (OGTT) levels
of 200 mg/dl or higher [1, 2]. However, the precise mechanisms that lead to diabetes remain
unknown [3]. Pre-diabetes, also known as borderline diabetes or intermediate hyperglycemia,
is observed in individuals with an A1c of 5.7% to 6.4%, an FPG level from 100 mg/dl to< 126
mg/dl and an OGTT> 200 mg/dl [4–6]. It results when either the pancreatic β-cells do not
produce sufficient insulin to dispose off blood glucose, or the body does not use the insulin well
enough in order to lower blood glucose levels, or as a result of failure of the pancreatic β-cells
to secrete insulin. Pre-diabetes increases the risk of type 2 diabetes that consequently predis-
poses individuals to heart disease, stroke, nerve damage, kidney failure, and eye problems [5,
7]. Nevertheless, studies report that for pre-diabetic patients, lifestyle modification can help
prevent or reduce its progression to diabetes by 40–70%, which emphasizes the need for early
diagnosis [8, 9].

Globally, the prevalence of diabetes is on the rise with an estimated 387 million diabetics;
and it is estimated that by 2035, 592 million people will have diabetes [8, 10]. Unfortunately,
the actual global prevalence of pre-diabetes is unknown. Thus, despite the potential for a rise in
the prevalence, and the serious complications associated with the disease, many public health
planners and policy makers remain generally unaware of its current prevalence, and the varia-
tions in significant risk factors for both pre-diabetes and diabetes [11]. In the United States
alone, at least 86 million adults aged� 20 years old are currently pre-diabetic with 51% of
adults aged 65 years or older having the disease. Moreover, 9 out of 10 people with pre-diabetes
don’t know they have it; 1 in 3 American adults are living with pre-diabetes; 15–30% of
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individuals with pre-diabetes will develop type 2 diabetes and there are currently 29.1 million
adults in America with diabetes [12].

Geographic disparities in the prevalence of the conditions are also known to exist with the
Southeast region of the US, including Florida, having higher rates of diabetes and other chronic
diseases, compared to other parts of the country. Moreover, Florida has the highest number
(1.2 million) of people living with pre-diabetes and approximately 1.7 million diabetics [13].
The high risk of diabetes in the area are mainly due to modifiable (30%) and non-modifiable
(37%) risk factors [14]. It is estimated that healthcare costs are 2.3 times higher in patients with
diabetes than those without the condition; and there is a 50% higher risk of mortality among
individuals with diabetes than those without the condition [15].

It is generally assumed that the risk factors for pre-diabetes are the same as those for diabe-
tes. However, it is unclear if the strength of association of the risk factors are the same for both
pre-diabetes and diabetes. Most previous studies have investigated risk factors for pre-diabetes
and diabetes as binary variables in separate models. Thus, no studies have investigated the two
conditions as a polytomous variable in the same model, while investigating the association of
each level of the polytomous variable with suspected risk factors. Moreover, there is little data
available on the current prevalence of pre-diabetes. Understanding the current burden of each
of the conditions and their predictors is important for guiding programing decisions to combat
the conditions. Thus, the objective of this study was to estimate the prevalence of pre-diabetes
and diabetes and to investigate their predictors among adults�18 years in Florida. The find-
ings of this study will be important for guiding programming decisions, resource allocation,
and for informing public health policy decisions.

Methods

Study Area
The study area included all the 67 counties in the state of Florida. Florida was chosen because it
is thought to have one of the highest number of people living with these conditions in the coun-
try [13]. Based on the 2010 population census, the state consisted of 4,245 census tracts and
had an estimated total population of approximately 18.8 million people. The state has a mix-
ture of urban and rural areas with Miami-Dade County being the most urban, and most popu-
lated with 2.5 million residents, and Liberty County being the most rural and least populated
with 8,365 residents. About 75% of the population are white, 16% are black and 9% comprise
of other races [16]. Ethnically, non-Hispanics make up 77.5% of the population while 22.5%
comprise the remainder of the population. Approximately 49% are male, while 51% are female.
The majority of the population are aged 18 years and older with the largest percentage (26%)
being in the 35–49 years age category. Eight percent, 16%, 25%, and 22% of the adult popula-
tion are aged 20–24, 25–34, 50–64, and� 65 years respectively. Approximately 21% of the pop-
ulation are between 0 and 18 years.

Data Source and Variable Selection
Data for this study, covering the time period January-December 2013, were obtained from
Florida’s Behavioral Risk Factor Surveillance System (BRFSS), an on-going health telephone-
based questionnaire survey conducted with technical and methodological support from the
Centers for Disease Control and Prevention (CDC) [17]. Collection of the BRFSS data involved
monthly telephone interviews of a random sample of all non-institutionalized civilian residents
aged 18 years or older. To gather a representative sample, a multistage design based on Ran-
dom Digit Dialing (RDD) was used to obtain both landline and cell phone numbers. The ques-
tionnaire was administered via telephone interviews by a survey company. However, the
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Florida Department of Health continually monitored the telephone interviews to ensure data
quality. The collected data were sent to the CDC. The CDC collated and then sent the data to
the Florida Department of Health. The interview questionnaire included questions on health-
related risk behaviors, chronic health conditions, and the use of preventive services. Access to
the de-identified data was granted by the Florida Department of Health.

The outcome variable of interest was diabetes status (Diabetes, pre-diabetes, and no diabetes
or pre-diabetes). The questionnaire and codebook were reviewed in order to identify questions
and variables that would be useful in identifying the diabetes status as well as potential predic-
tors of diabetes or pre-diabetes. Diabetes status was defined on the basis of survey respondents
having reported being informed by a physician that they had pre-diabetes or diabetes. How-
ever, pregnancy diabetes was not included in the definition and no distinction was made
between type 1 and 2 diabetes.” Participants were identified as having pre-diabetes or diabetes,
if they reported being told by a doctor that they had either conditions. Participants who
reported being told by a doctor that they had diabetes, or did not have either diabetes or pre-
diabetes were also included in the study. Based on a conceptual model (Fig 1), 16 potential pre-
dictors of diabetes status were considered for investigation: age, sex, race, marital status, body
mass index (BMI), physical activity, quantity of sleep, smoking status, fruit intake, vegetable
consumption, hypertension, high cholesterol, arthritis, education, income level and having
health insurance.

Data Preparation and Descriptive Analyses
A single diabetes status variable was created by combining responses to the pre-diabetes and
diabetes questions. Respondents who reported being told by a doctor that they had pregnancy
diabetes were excluded. Race/ethnicity was re-coded by combining non-Hispanic Asians,
American Indian/Alaskan Natives and other race as one category; leaving non-Hispanic white,
non-Hispanic black and Hispanics as three separate categories.

Survey design of the study was declared using SVYSET statement of STATA 13.1 [18]. Per-
centages and 95% Confidence Intervals (CI) were computed for all categorical variables of
interest. Shapiro-Wilk test was used to test for normality of all continuous variables and shapes
of the distributions were assessed using histograms. Since the continuous variables were non-
normally distributed, medians and interquartile ranges were used for summary statistics. Chi-
square tests were used to investigate the bivariate relationship between each potential predictor
variable and the outcome of interest (diabetes status: diabetes, pre-diabetes and neither). Statis-
tical inferences were based on a critical p�0.05.

Multinomial Logistic Model
The first step in building the multivariable multinomial logistic model involved fitting simple
multinomial models between each of the potential predictors, and the polytomous diabetes sta-
tus variable. Variables that were significantly associated with the outcome (p�0.05) were con-
sidered for inclusion in the multivariable multinomial model. However, to avoid highly
correlated predictor variables, two-way correlations between the predictor variables were
assessed using Pearson’s correlation coefficient.

Manual backwards elimination procedure was used to fit a weighted (to account for the
complex sampling design) multivariable multinomial model with all predictors that had simple
associations; setting the p-value for removal at 0.05. Confounding was assessed using a change
in parameter estimate of 20% [19] when the model is run with and without a specific suspected
confounder of interest. Variables that either had a significant association (p�0.05) with the
outcome, or resulted in at least a 20% change of the parameter estimates of the variables already
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in the model were retained in the model to form the final main effects model. Age was forced
in the model due to the apriori belief that it was a confounder. Two-way interaction terms of
the variables in the final main effects model were then assessed for statistical significance. Sig-
nificant ones were retained in the final model. Relative risk ratios (RRR) and their 95% confi-
dence intervals (CI) were then computed for all variables in the final model.

Model goodness-of-fit was assessed using the goodness-of-fit test proposed by Fagerland,
Hosmer, and Bofin using STATA’s estimation command mlogitgof [20]. Hosmer-Lemeshow
goodness of fit test was also used to assess the fit of each of the ordinary logistic regression por-
tions of the multinomial model as proposed by Dohoo, Martin and Stryhn [19]. The impact of
individual observations on the model were assessed using graphical techniques. All statistical
analyses were performed using Stata version 13.1 [18].

Ethical Statement
This study was approved by the University of Tennessee, Knoxville Institutional Review Board.
Since this was a retrospective study, informed written consent could not be obtained from the
study participants. However, records of all participants were anonymized and de-identified
before the study data were released to the investigators.

Results

Prevalence Estimates
This study included a total of 34,186 survey respondents, of which 2,983 (7.3%) and 5,189
(12.1%) had been told by a doctor that they had pre-diabetes and diabetes, respectively. Table 1

Fig 1. Conceptual model Representing Predictors of Pre-diabetes and Diabetes in Adults 18 Years and Older in Florida, 2013

doi:10.1371/journal.pone.0145781.g001
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Table 1. Demographic, Health, and Lifestyle Characteristics of Adults 18 Years and Older in FloridaWhoWere Included in the Behavioral Risk Fac-
tor Surveillance Study, 2013*.

Characteristic Categories n (in 1000’s) **Weighted % (95% CI)***

Age category (years)

18–24 1,377 11.54 (10.64, 12.50)

25–34 2,518 15.48 (14.55, 16.46)

35–44 3,196 15.38 (14.48, 16.33)

45–54 5,149 17.59 (16.68, 18.53)

55–64 7,331 16.51 (15.70, 17.36)

65 or older 14,615 23.51 (22.74, 24.29)

Sex

Male 13,340 48.36 (47.16, 49.57)

Female 20,846 51.64 (50.43, 52.84)

Race

White (non-Hispanic) 27,368 59.61 (58.40, 60.80)

Black (non-Hispanic) 2,947 13.93 (13.01, 14.89)

Other race (non-Hispanic) 1,353 4.31 (3.87, 4.79)

Hispanic 2,518 22.16 (20.96, 23.41)

Marital status

Married 14,192 59.49 (58.21, 60.76)

Never married 2,720 14.52 (13.49, 15.62)

Separated/divorced/ widowed 10,851 25.99 (24.95, 27.06)

BMI (kg/m2)

Underweight (< 18.5) 720 2.27 (1.95, 2.64)

Normal (18.5–24.9) 10,815 34.96 (33.79, 36.15)

Overweight (25–29.9) 11,597 36.40 (35.20, 37.61)

Obese (� 30) 9,420 26.38 (25.33, 27.44)

Education

< High school 3,394 14.96 (13.91, 16.08)

High school 10,679 30.15 (29.03, 31.29)

Some college 9,904 31.18 (30.11, 32.27)

College 10,209 23.71 (22.85, 24.59)

Income level

< $15,000 4,222 14.40 (13.44, 15.43)

$15,000–< $25,000 6,390 20.40 (19.35, 21.48)

$25,000–< $35,000 3,798 12.44 (11.6, 13.33)

$35,000–< $50,000 4,415 14.71 (13.85, 15.62)

� $50,000 10,346 38.04 (36.83, 39.27)

Healthcare coverage

Yes 4,858 22.86 (21.78, 23.99)

No 29,145 77.14 (76.01, 78.22)

Diabetes status

Pre-diabetes 2,983 7.31 (6.76, 7.90)

Diabetes 5,189 12.06 (11.32, 12.85)

No Pre-diabetes/Diabetes 24,707 80.63 (79.70, 81.53)

Hypertension

Yes 15,684 34.59 (33.50, 35.69)

No 18,390 65.41 (64.31, 66.50)

Hypercholesterolemia

(Continued)
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shows the characteristics of the respondents. The respondents were mostly women (52%), mar-
ried (59.5%) and overweight (36.4%) individuals. Additionally, they were predominantly white
(59.6%) and 31% had above high school education. Thirty-eight percent of the respondents
reported earning� $50,000 annually (Table 1). Moreover, most (77%) respondents reported
having no health care coverage. The percentage of self-reported hypertension, hypercholester-
olemia and arthritis were 35%, 40% and 26%, respectively. Most respondents reported consum-
ing more than one fruit (62%) or vegetable (79%) per day. Both age and amount of sleep the
respondents reported were markedly non-normally distributed (p< 0.0001). The age of the
respondents ranged from 18 to 99 years, with a median of 61 and interquartile range of 48 to
72. Reported amount of sleep over a 24-hour period ranged from 1 to 24 hours, with a median
of 7 and interquartile range of 6 to 8.

Simple Associations
The following variables had significant simple associations with the polytomous diabetes status
variable: age (p< 0.0001), sex (p = 0.0288), marital status (p< 0.0001), BMI (p< 0.0001),
hypertension (p< 0.0001), hypercholesterolemia (p< 0.0001), arthritis (p< 0.0001), educa-
tional level (p< 0.0001), income level (p< 0.0001), having any health care coverage
(p< 0.0001), smoking at least 100 cigarettes and physical activity (p< 0.0001) (Table 2). How-
ever, race (p = 0.0815), fruit intake (p = 0.8251) and vegetable consumption (p = 0.3277) were
not significantly associated with diabetes status. Additionally, simple multinomial models indi-
cated that older adults who were or had been married were more likely to be pre-diabetic and/
or diabetic compared to the younger adults and those who had never been married. Obese

Table 1. (Continued)

Characteristic Categories n (in 1000’s) **Weighted % (95% CI)***

Yes 14,445 40.33 (39.12, 41.56)

No 15,771 59.67 (58.44, 60.88)

Arthritis

Yes 13,242 26.02 (25.11, 26.94)

No 20,655 73.98 (73.06, 74.89)

Smoked � 100 cigarettes

Yes 16,679 54.93 (53.74, 56.12)

No 16,399 45.07 (43.88, 46.26)

Consume vegetable(s)

< 1 per day 5,824 20.83 (19.80, 21.90)

� 1 per day 24,491 79.17 (78.10, 80.20)

Consume fruit(s)

< 1 per day 11,588 37.95 (36.73, 39.17)

� 1 per day 19,390 62.05 (60.83, 63.27)

Physical activity

Highly Active 9,688 31.38 (30.18, 32.60)

Active 4,152 15.72 (14.75, 16.73)

Insufficiently Active 4,245 16.55 (15.57, 17.59)

Inactive 10,112 36.35 (35.03, 37.70)

*Data Source: Behavioral Risk Factor Surveillance System

**Column subtotals may not sum to the total due to missing data,

***95% Confidence Intervals.

doi:10.1371/journal.pone.0145781.t001
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Table 2. Prevalence of Predictors and their Bivariate Relationship with the Polytomous Diabetes Status Variable among Adults 18 Years or Older
in Florida, 2013*.

Pre-diabetes Diabetes No Pre-diabetes / Diabetes
(n = 2,983) (n = 5,189) (n = 24,707)

Characteristic Categories % (95% CI) % (95% CI) % (95% CI) P-value

Age (years) <0.0001

18–24 0.32 (0.22, 0.49) 0.13 (0.06, 0.30) 10.85 (9.92, 11.84)

25–34 0.70 (0.48, 1.01) 0.34 (0.20, 0.58) 13.66 (12.75, 14.64)

35–44 1.09 (0.84, 1.41) 0.72 (0.54, 0.96) 12.68 (11.85, 13.57)

45–54 1.21 (1.01, 1.44) 2.04 (1.70, 2.44) 14.60 (13.73, 15.52)

55–64 1.59 (1.35, 1.87) 2.88 (2.52, 3.29) 12.54 (11.78, 13.34)

65 or older 2.40 (2.17, 2.66) 5.95 (5.46, 6.49) 16.30 (15.66, 16.95)

Sex 0.0288

Male 3.61 (3.19, 4.09) 6.41 (5.84, 7.03) 39.01 (37.78, 40.26)

Female 3.70 (3.36, 4.07) 5.65 (5.16, 6.19) 41.62 (40.41, 42.83)

Race 0.0815

White (nonHisp) 4.65 (4.31, 5.03) 7.24 (6.77, 7.74) 47.87 (46.73, 49.01)

Black (nonHisp) 1.15 (0.88,1.49) 1.81 (1.50, 2.19) 11.11 (10.24, 12.04)

Other race (nonHisp) 0.34 (0.24, 0.49) 0.45 (0.31, 0.65) 3.30 (2.92, 3.72)

Hispanic 1.17 (0.89, 1.53) 2.57 (2.11, 3.12) 18.35 (17.16, 19.61)

Marital status <0.0001

Married 5.21 (4.71, 5.77) 8.45 (7.78, 9.17) 45.92 (44.61, 47.23)

Never married 0.91 (0.72, 1.14) 0.92 (0.74, 1.14) 12.76 (11.74, 13.86)

Sep./divor./ widow. 2.44 (2.15, 2.78) 4.76 (4.23, 5.35) 18.63 (17.75, 19.55)

BMI (kg/m2) <0.0001

Underweight (< 18.5) 0.07 (0.04, 0.13) 0.10 (0.06, 0.18) 2.07 (1.74, 2.45)

Normal (18.5–24.9) 1.37 (1.14, 1.63) 1.73 (1.51, 2.00) 31.38 (30.20, 32.59)

Overweight (25–29.9) 2.74 (2.38, 3.16) 4.46 (3.95, 5.02) 29.60 (28.42, 30.81)

Obese (� 30) 3.12 (2.76, 3.51) 5.92 (5.38, 6.51) 17.45 (16.53, 18.41)

Education <0.0001

< High school 0.92 (0.69, 1.21) 2.89 (2.40, 3.48) 11.52 (10.53, 12.60)

High school 2.22 (1.90, 2.59) 3.73 (3.37, 4.14) 24.57 (23.47, 25.71)

Some college 2.42 (2.12, 2.75) 3.37 (3.02, 3.77) 25.27 (24.24, 26.33)

College 1.76 (1.54, 2.00) 2.07 (1.84, 2.33) 19.26 (18.45, 20.09)

Income level <0.0001

< $15,000 1.25 (0.95, 1.64) 2.56 (13.57, 15.64) 10.77 (9.89, 11.72)

$15,000–<$25,000 1.48 (1.20, 1.83) 3.00 (19.34, 21.53) 15.93 (14.94, 16.96)

$25,000–<$35,000 0.96 (0.79, 1.18) 1.70 (11.59, 13.37) 9.79 (8.99, 10.65)

$35,000–<$50,000 1.13 (0.92, 1.38) 1.79 (14.04, 15.89) 12.02 (11.19, 12.91)

� $50,000 2.56 (2.25,2.91) 3.08 (36.38, 38.88) 31.99 (30.79, 33.21)

Healthcare coverage <0.0001

No 6.23 (5.73, 6.76) 10.56 (9.87, 11.29) 60.64 (59.41, 61.86)

Yes 1.09 (0.86, 1.38) 1.55 (1.25, 1.93) 19.93 (18.85, 21.05)

Hypertension <0.0001

No 3.27 (2.86, 3.74) 3.04 (2.63, 3.51) 57.98 (56.78, 59.17)

Yes 4.05 (3.69, 4.44) 9.02 (8.38, 9.69) 22.64 (21.65, 23.67)

Hypercholesterolemia <0.0001

No 3.40 (2.96, 3.90) 4.78 (4.19, 5.44) 50.99 (49.68, 52.31)

Yes 4.86 (4.41, 5.35) 9.24 (8.56, 9.96) 26.74 (25.64, 27.87)

Arthritis <0.0001

(Continued)
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individuals, those who reported that they had hypertension, hypercholesterolemia, and arthri-
tis or had smoked at least 100 cigarettes were more likely to be pre-diabetic or diabetic. In addi-
tion, persons who were insufficiently active (Less than 150 minutes of moderate-intensity, or
75 minutes of vigorous-intensity physical activity per week) or inactive were more likely to be
pre-diabetic and/or diabetic compared to those who were active. There was no statistically sig-
nificant association between the amount of sleep and either pre-diabetes (p = 0.650) or diabetes
(p = 0.468).

Multivariable Multinomial Logistic Model
Table 3 shows the results of the final multinomial logistic model. The conceptual model was
revised based on the results of this model and significant predictors are presented in Fig 2.
Based on this model, the following factors were associated with pre-diabetes: being overweight
(Relative Risk Ratio (RRR) = 1.85, 95% CI: 1.41, 2.42) or obese (RRR = 3.41, 95% CI: 2.61, 4.45)
or hypertensive (RRR = 1.69, 95% CI: 1.33, 2.15) or hypercholesterolemic (RRR = 1.94, 95%
CI: 1.55, 2.43) as well as being arthritic (RRR = 1.24, 95% CI: 1.00, 1.55). The factors that had
statistically significant association with pre-diabetes also had statistically significant associa-
tions with diabetes. However, stronger associations were observed for each of the predictors of
diabetes compared to pre-diabetes. Moreover, some variables such as age, sex, income level and
level of physical activity had significant associations with diabetes but not pre-diabetes.

For instance, being 55–64 years (RRR = 9.40, CI: 1.28, 69.22), and 65 years or older
(RRR = 13.33, CI: 1.81, 98.14) increased the risk of diabetes but not pre-diabetes. Furthermore,
being male (RRR = 1.39, 95% CI: 1.12, 1.71), having an income of less than $15,000
(RRR = 2.40, 95% CI: 1.67, 3.43), $15,000–<$25,000 (RRR = 1.78, 95% CI: 11.36, 2.33),

Table 2. (Continued)

Pre-diabetes Diabetes No Pre-diabetes / Diabetes
(n = 2,983) (n = 5,189) (n = 24,707)

Characteristic Categories % (95% CI) % (95% CI) % (95% CI) P-value

No 4.43 (3.97, 4.93) 6.14 (5.56, 6.78) 62.89 (61.77, 63.99)

Yes 2.83 (2.53, 3.16) 5.94 (5.46, 6.46) 17.78 (17.01, 18.57)

Smoked � 100 cigarettes <0.0001

No 3.61 (3.17, 4.11) 5.50 (4.97, 6.09) 45.40 (44.13, 46.67)

Yes 3.74 (3.40, 4.10) 6.65 (6.09, 7.26) 35.11 (33.95, 36.28)

Consume vegetable(s) 0.3277

< 1 per day 1.41 (1.15, 1.72) 2.77 (2.37, 3.24) 16.84 (15.85, 17.87)

� 1 per day 5.89 (5.40, 6.43) 9.41 (8.71, 10.15) 63.68 (62.43, 64.92)

Consume fruit(s) 0.8251

< 1 per day 2.911 (2.56, 3.31) 4.583 (4.12, 5.10) 30.37 (29.17, 31.59)

� 1 per day 4.527 (4.07, 5.04) 7.559 (6.91, 8.26) 50.05 (48.75, 51.36)

Physical activity <0.0001

Highly Active 2.19 (1.91, 2.50) 3.34 (2.97, 3.77) 26.13 (24.95, 27.34)

Active 1.06 (0.87, 1.28) 1.84 (1.50, 2.26) 12.37 (11.45, 13.34)

Insufficiently Active** 1.26 (1.00, 1.58) 1.81 (1.53, 2.14) 12.96 (12.03, 13.96)

Inactive 3.06 (2.64, 3.53) 6.30 (5.64, 7.02) 27.71 (26.42, 29.03)

*Data Source: Behavioral Risk Factor Surveillance System

**Insufficiently active = Less than 150 minutes of moderate-intensity, or 75 minutes of vigorous-intensity physical activity per week

***95% Confidence Intervals.

doi:10.1371/journal.pone.0145781.t002
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$25,000–<$35,000 (RRR = 1.76, 95% CI: 1.29, 2.40) and being physically inactive (RRR = 1.59,
95% CI: 1.26, 2.00) also significantly increased the risk of diabetes but not pre-diabetes. It was
interesting to note that the risk of diabetes decreased with increasing income levels. No biologi-
cally meaningful significant interactions were detected.

Table 3. Final Multivariable Multinomial Logistic Regression Model Investigating Predictors of Pre-diabetes and Diabetes among Adults 18 Years
or Older in Florida, 2013*.

Pre-diabetes Diabetes

Characteristic Categories **RRR (95% CI) P-value RRR (95% CI) P-value

Age Group (years)

65 or older 1.36 (0.64, 2.89) 0.42 13.33 (1.81, 98.14) 0.011

55–64 1.21 (0.57, 2.56) 0.618 9.40 (1.28, 69.22) 0.028

45–54 0.94 (0.45, 1.97) 0.866 5.86 (0.79, 43.44) 0.083

35–44 1.06 (0.48, 2.33) 0.889 3.75 (0.49, 28.54) 0.202

25–34 0.61 (0.27, 1.38) 0.239 2.47 (0.29, 20.91) 0.408

18–24 Reference group

BMI

Underweight (< 18.5) 0.56 (0.27, 1.13) 0.103 0.53 (0.28, 0.98) 0.044

Normal (18.5–24.9) Reference group Reference group

Overweight (25–29.9) 1.85 (1.41, 2.42) < 0.0001 2.00 (1.55, 2.57) < 0.0001

Obese (� 30) 3.41 (2.61, 4.45) < 0.0001 4.04 (3.22, 5.07) < 0.0001

Hypertension

Yes 1.69 (1.33, 2.15) < 0.0001 2.66 (2.08, 3.41) < 0.0001

No Reference group

Hypercholesterolemia

Yes 1.94 (1.55 2.43) < 0.0001 1.98 (1.61, 2.45) < 0.0001

No Reference group

Arthritis

Yes 1.24 (1.00, 1.55) 0.053 1.28 (1.04, 1.58) 0.022

No Reference group

Income level

< $15,000 1.43 (0.91, 2.24) 0.123 2.40 (1.67, 3.43) < 0.0001

$15,000–<$25,000 1.14 (0.86, 1.52) 0.363 1.78 (1.36, 2.33) < 0.0001

$25,000–<$35,000 1.23 (0.91, 1.65) 0.18 1.76 (1.29, 2.40) < 0.0001

$35,000–<$50,000 1.15 (0.85, 1.57) 0.368 1.25 (0.95, 1.65) 0.106

� $50,000 Reference group

Sex

Male 1.08 (0.86, 1.35) 0.501 1.39 (1.12, 1.71) 0.002

Female Reference group

Level of physical activity

Inactive 1.20 (0.93, 1.54) 0.157 1.59 (1.26, 2.00) < 0.0001

Insufficiently Active 1.00 (0.74, 1.37) 0.973 1.21 (0.92, 1.59) 0.169

Active 0.99 (0.73, 1.35) 0.96 1.36 (1.00, 1.84) 0.051

Highly Active Reference group

*Data Source: Behavioral Risk Factor Surveillance System

**RRR = relative risk ratio.

doi:10.1371/journal.pone.0145781.t003
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Discussion
This study was designed to estimate the burden of pre-diabetes and diabetes in Florida and to
investigate their predictors in this population. Most previous studies have investigated the pre-
dictors of either pre-diabetes or diabetes in separate models. Thus, no past studies have investi-
gated the two conditions in the same model in an attempt to assess how the associations
between the outcomes (pre-diabetes and diabetes) and the suspected predictors vary depending
on the level of the outcome. Therefore, this study is among the first to use multinomial models
to investigate the predictors of both pre-diabetes and diabetes. Although multinomial logistic
regression model offers insight into risk factors and their complex relationships with health
outcomes, not many studies have used them. The modeling approach used in this study (i.e.
multinomial logistic regression) provides an insightful tool to epidemiological investigations
and is important in the investigation of categorical outcomes with more than two levels. The
findings of this study will be important for guiding programming decisions and resource allo-
cation for disease control and prevention.

Although the prevalence of pre-diabetes and diabetes continue to rise in the United States
[21], it remains widely unreported at the state level compared to available documentation at
the national level. This makes understanding existing disparities for both conditions challeng-
ing. A prevalence study in Florida reported 2010 estimates of self-reported diabetics to be

Fig 2. Conceptual Model Representing Only the Significant Predictors of Pre-diabetes and Diabetes Based on the Results of the Multinomial
Logistic Model for Adults 18 Years and Older in Florida, 2013

doi:10.1371/journal.pone.0145781.g002
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10.4% (95% confidence interval [95% CI]: 9.8, 11.1) [22]. Our study indicates the prevalence
has since increased to 12.1% (95% CI: 11.32, 12.85). This finding is consistent with reports by
the CDC illustrating an increasing trend in prevalence of both conditions over the past decade
[13]. Furthermore, the results of our study show that the prevalence of pre-diabetes and diabe-
tes increased with increasing age and BMI. Thus, the increase in pre-diabetes and diabetes can
be closely linked to an increasing aging population, as well as, a worsening obesity problem.

Evidence from this data suggests that self-reported pre-diabetes and diabetes is significantly
associated with being overweight or obese, hypertensive, hypercholesterolemic, and arthritic.
Several studies have identified significant associations of pre-diabetes and diabetes with these
risk factors among diverse populations [23–31]. However, to our knowledge, this is the first to
identify a significant association between arthritis and pre-diabetes.

Some differences were observed in the degree of association for some of the predictor vari-
ables depending on the diabetes status. For instance, age was not significantly associated with
pre-diabetes, whereas it was significantly associated with diabetes. The observed increasing
odds of diabetes with age is consistent with findings from other studies [32–36]. The associa-
tion between diabetes and increasing age is related to the increase in glycated hemoglobin levels
and the changes in insulin sensitivity which is measured by the Quantitative Insulin Sensitivity
Check Index (QUICKI) [33, 37, 38]. Thus, identifying older adults with pre-diabetes may be
important to help initiate early preventive or treatment measures, thus decreasing the develop-
ment to diabetes, thus decreasing its burden, and subsequently decreasing healthcare costs.

In contrast to findings from previous studies that found significant associations between
pre-diabetes and sex [39], there was no significant association between pre-diabetes and sex,
and the reason for this remains unclear. However, our findings suggest that females had lower
risk of diabetes than males. This could be due to lower detection rates in women since they are
more likely to have impaired glucose tolerance (IGT) without impaired fasting glucose (IFG)
compared to men [24]. Moreover, women are more likely to undergo fasting glucose tests
instead of OGTTs [24]. On the contrary, males are at higher risk of having impaired fasting
glucose than females leading to higher pre-diabetes and thus diabetes in males than females
[40, 41]. These sex differences may also be due to differences in body size, genetics and in fast-
ing glucose levels as women have been reported to have overall better insulin sensitivity [24,
39].

Being inactive (less than 150 minutes a week of moderate-intensity, or 75 minutes of vigor-
ous-intensity aerobic physical activity, or an equivalent combination of moderate and vigor-
ous-intensity aerobic activity) approximately doubles the risk of diabetes compared to being
highly active. Also, individuals who were just active (30 minutes a day of physical activity) had
a higher risk of diabetes than those who were highly active. On the contrary, physical activity
was not significantly associated with pre-diabetes after controlling for age and the other predic-
tors in the final model. This is consistent with findings from a study that examined the relation-
ship between physical activity and pre-diabetes in which subjects who were the most physically
active were 0.77 times as likely to be pre-diabetic as their BMI matched controls who were not
as physically active, but these effects were erased when controlled for age; even among those
participants who achieved the recommended 30 min of daily moderate to vigorous physical
activity [42]. Our findings on diabetes are comparable to other epidemiological studies that
suggest that high level physical activity for more than 30 minutes a day or 150 minutes a week
is significantly associated with a reduced risk of diabetes [25]. This is because high levels of
physical activity aids the absorption of the hormone insulin into all the body’s cells, including
the muscles, thus speeding up blood flow to the muscles and increasing energy consumption
that translates to lower risk of diabetes by lowering blood glucose levels [43]. High levels of
physical activity may also result in muscle building that enhances the body’s ability to utilize
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glucose better than fat. Therefore, building muscle can help prevent higher than normal blood
glucose levels. Additionally, high levels of physical activity helps control body weight through
increased fat metabolism which also significantly reduces the risk of diabetes [25, 44]. It is
worth noting that the association between physical inactivity and diabetics with the trend of
increasing BMI among pre-diabetes and diabetes in this and other studies, points to a very real
area of focus for prevention programs [25, 45, 46].

Income level was used as one of the indicators of socioeconomic status (SES), and a poten-
tial predictor of pre-diabetes and diabetes. In this study, there was no significant association
between pre-diabetes and income strata although other studies have shown that lower SES is
generally expected to be associated with poor health outcomes [23, 47], However, significant
associations were found between diabetes and income at the three lowest income levels
(< $15,000, $15,000–<$25,000, and $25,000–� $35,000) with lower odds of diabetes being
associated with increasing income. Low income level is associated with poverty which can
cause a 2–3 fold increase in the odds of developing diabetes [48]. This is because living in pov-
erty generally means less access to education, which culminates to fewer opportunities for jobs
that pay well, and provide health insurance [49, 50]. Moreover, individuals who cannot afford
insurance are less likely to seek care for diabetes and hence suffer complications from diabetes
(such as heart disease and stroke, blindness, kidney failure, and lower-limb amputation) if
undiagnosed or treated [2]. Even with universal health coverage, poverty still increases the inci-
dence of type 2 diabetes and inequality of care for existing cases [51]. Living in poverty also
means lack of access to resources such as adequate and healthy nutrition, safe walking and bik-
ing trails, and recreational or exercise facilities which increases a person’s risk for developing
other risk factors (such as obesity) associated with diabetes [52]. Additionally, some studies
have found that association between low income levels and diabetes incidence remains signifi-
cant after adjusting for age, sex, health behaviors, and psychological distress [53]. As a result, it
is important that intervention strategies integrate poverty as a major risk factor for diabetes
and develop health policies to reduce socioeconomic disparities, in particular income inequi-
ties, along with individual-level risk factors in order to effectively prevent, manage and reduce
the overall burden of diabetes.

An important strength of our study is the multinomial modeling approach within a concep-
tual framework in investigating how the association between the outcomes (pre-diabetes and
diabetes) and suspected predictors vary at different levels of the outcome. However, the study
also had some limitations including lack of availability of data for some important potential
predictors of the diseases. For instance, we did not explore the associations between alcohol
intake, family history of diabetes and consumption of certain foods (such as fast foods) with
the outcome of interest. It was not possible to investigate if the survey respondents had been
subjected to an OGGT test in order to be defined as pre-diabetic or diabetic. Neither could we
separate type 1 from type 2 diabetes which may differ in pathogenesis. Moreover, we could not
determine if diabetic patients received treatment so as to better understand associations found
in this study. Furthermore, since the BRFSS data are self-reported, data collected are subject to
recall bias leading to potential under or over-reporting. For example, height and weight infor-
mation obtained from the respondents in order to calculate the BMI is likely to be misreported.
Thus, the percentage of the respondents with higher BMI may be under-reported. However,
other studies have reported that self-reported information on diabetes status and sociodemo-
graphic characteristics from the BRFSS have proven to be accurate [54, 55]. Moreover, self-
reported level of physical activity in survey data have also been shown to have high accuracy
[56]. Thus, the above limitations notwithstanding, the findings from this study provide useful
information to both guide future studies as well as health planning and programming
decisions.
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Conclusions
The findings of this study show significant demographic disparities in the risk of pre-diabetes
and diabetes in the study area with the highest risk observed among overweight or obese,
hypertensive, hypercholesterolemic and arthritic adults for both conditions. This study pro-
vides some evidence to the fact that, there may be differences in importance of significant pre-
dictors between pre-diabetes and diabetes. When studied alone, it is assumed that the factors
are equally important. Lifestyle modification programs can help high risk individuals with pre-
diabetes from becoming diabetic. Therefore, intervention and prevention of both diseases may
be effective if concentrated in these areas.

Multinomial logistic regression models provide insight into the differences in associations
between the predictor and health outcomes at different levels (categories). Therefore, multino-
mial regression models are a useful statistical method in investigating the associations between
disease outcomes with precursors such as pre-diabetes in order to better understand the predic-
tors at different levels of the disease. Thus, this approach should be part of the investigative
methods used by epidemiologist as it would help provide a further insight into predictors at dif-
ferent stages of the disease process. However, further research needs to be conducted to
improve model diagnostics of multinomial regression models.
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