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Transcriptomic analysis reveals 
pathophysiological relationship 
between chronic obstructive pulmonary disease 
(COPD) and periodontitis
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Abstract 

Background:  The aim of this study was to detect potential crosstalk genes, pathways and immune cells between 
periodontitis and chronic obstructive pulmonary disease (COPD).

Methods:  Chronic periodontitis (CP, GSE156993) and COPD (GSE42057, GSE94916) datasets were downloaded. Dif-
ferential expressed genes (DEGs; p < 0.05) were assessed and screened for overlapping results, following functional 
pathway enrichment analyses (p < 0.05). The xCell method was used to assess immune cell infiltration relationship 
between CP and COPD. Features of the detected cross-talk genes were revealed using conventional Recursive Feature 
Elimination (RFE) algorithm in R project. Receiver-operating characteristic curves were applied to evaluate the predic-
tive value of the genes. Furthermore, Pearson correlation analysis was performed on crosstalk markers and infiltrating 
immune cells in CP and COPD, respectively.

Results:  A total of 904 DEGs of COPD and 763 DEGs of CP were acquired, showing 22 overlapping DEGs between 
the two diseases. Thereby 825 nodes and 923 edges were found in the related protein–protein-interaction network. 
Eight immune cell pairs were found to be highly correlated to both CP and COPD (|correlation coefficients |> 0.5 and 
p-value < 0.05). Most immune cells were differently expressed between COPD and CP. RFE identified three crosstalk 
genes, i.e. EPB41L4A-AS1, INSR and R3HDM1. In correlation analysis, INSR was positively correlated with Hepatocytes 
in CP (r = 0.6714, p = 0.01679) and COPD (r = 0.5209, p < 0.001). R3HDM was positively correlated with Th1 cells in CP 
(r = 0.6783, p = 0.0153) and COPD (r = 0.4120, p < 0.01).

Conclusion:  EPB41L4A-AS1, INSR and R3HDM1 are potential crosstalk genes between COPD and periodontitis. 
R3HDM was positively correlated with Th1 cells in both diseases, while INSR was positively correlated with Hepato-
cytes in periodontitis and COPD, supporting a potential pathophysiological relationship between periodontitis and 
COPD.
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Introduction
Periodontitis is an opportunistic, multifactorial inflam-
matory disease, affecting the periodontal tissues, i.e., the 
marginal gingiva, periodontal ligament and alveolar bone 
[1]. During the disease process, progressive destruction 
of both soft and hard tissue occurs, finally resulting in 
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tooth loosening and loss in the end-stage of the disease 
[1]. However, these inflammatory processes and potential 
consequences are not only restricted to the oral cavity; 
different effects of oral, especially periodontal diseases on 
systemic health are known [2]. Especially, relationships 
between periodontitis and non-communicable diseases, 
including diabetes or cardiovascular diseases are evident 
[2].

In this context, periodontitis is also potentially related 
to respiratory diseases, including asthma, pneumonia and 
chronic obstructive pulmonary diseases (COPD) [3–5]. 
COPD is a highly prevalent disease, causing over 3 mil-
lion deaths worldwide each year; thereby, it is a chronic 
pulmonary disease with different complex underlying 
pathophysiological mechanisms [6]. A recent systematic 
review and meta-analysis revealed a relationship between 
periodontitis and COPD, whereby COPD patients had a 
1.78-fold increased risk of having periodontitis [3]. Gen-
erally, both diseases share risk factors, whereby cigarette 
smoking is related to both, periodontitis and COPD [7, 
8]. Furthermore, diabetes mellitus, obesity and the meta-
bolic syndrome are potentially related with these two 
diseases [9, 10]. Thereby, obesity directly influences lung 
function [11], while diabetes mellitus and the metabolic 
syndrome are common systemic manifestations of COPD 
[9]. A neutrophil-related inflammation and related 
increased activity of the immune response underline the 
similar pathophysiology between COPD and periodontal 
diseases [5]. The shared pathophysiology between peri-
odontitis and COPD might rely on an amplification of 
neutrophilic inflammation and altered neutrophil func-
tions [12]. Although the recent literature supports a 
shared pathophysiology, it is still questionable, whether 
the relationship between periodontitis and COPD would 
be causal or a coincidental occurrence of these two dis-
eases [3]. A potential causality might be supported by the 
hypothesis of COPD as a chronic systemic inflammatory 
syndrome, whereby COPD is not a disease restricted to 
the airways, but a complex chronic inflammatory condi-
tion [13]. Thereby, autoimmunity might play an impor-
tant role, which is relevant for disease progression in 
both, periodontitis and COPD [14, 15]. Furthermore, 
especially the role of neutrophils as a key effector cell in 
inflammation is supposed to be involved in the causal 
interrelationship between periodontitis and COPD [5]. 
Accordingly, a shared or at least similar pathophysiology 
between these two diseases appears conceivable; how-
ever, more research in the field is still needed to gain a 
deeper understanding of the potential interrelationships 
and biological processes [3].

Bioinformatics analysis recently was able to reveal 
several potential cross-talk genes and related pathways 
between oral and systemic diseases, e.g. periodontitis 

and Alzheimer´s disease or Rheumatoid arthritis [16, 
17]. Therefore, this current study used bioinformatics 
to examine the relationship between periodontitis and 
COPD. It was aimed to examine potential crosstalk genes, 
which are shared between the two diseases. Moreover, 
the interaction between those potential crosstalk genes 
and infiltrating immune cells should be assessed to gain 
a deeper insight into the pathophysiological processes, 
which may link periodontitis and COPD. Altogether, 
the main objective was to analyze the shared genetic 
mechanisms between COPD and periodontitis and their 
relation to immune cell infiltration. Therefore, publicly 
available data should be assessed and examined regard-
ing a genetic overlap between the two diseases. Further-
more, infiltrating immune cells, which were regulated 
by or related to the respective crosstalk genes, should be 
detected and analyzed regarding their correlation with 
the identified crosstalk genes. It was hypothesized that 
different crosstalk genes exist between periodontitis and 
COPD, which are related to infiltrating immune cells, 
mediating the pathophysiological interrelation between 
both diseases.

Materials and methods
This study was designed as a bioinformatics study and 
based on publicly available datasets. The analytic proce-
dure is described in the following.

Data download
The workflow of data analysis is shown in Fig.  1. First, 
gene expression of chronic periodontitis (CP) and 
chronic obstructive pulmonary disease (COPD) was 
downloaded from the GEO (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/) database [18]. For CP and COPD, the detailed 
information of samples was displayed in Table 1.

Data preprocessing
For the expression data, the probe ID to gene symbol 
was mapped and the gene expression level for the same 
gene was normalized with the average gene expression. 
To analyze COPD, the GSE42057 and GSE94916 gene 
expression matrices based on the common genes were 
combined, and the inter-batch difference was removed 
using the ComBat method of “sva” package of R project 
[19]. ComBat function allows users to adjust for batch 
effects in datasets where the batch covariate is known 
by using methodology described in Johnson et  al. [20]. 
It uses either parametric or non-parametric empirical 
Bayes frameworks for adjusting data for batch effects. 
Users receive an expression matrix that has been cor-
rected for batch effects. The input data are assumed to 
be cleaned and normalized before batch effect removal. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Moreover, the two-dimensional PCA cluster was applied 
to check whether the batch difference was removed.

Differentially expressed genes (DEGs) analysis
The “limma” package of R project [21] was applied to ana-
lyze the differentially expressed genes for CP and COPD 
merged data, respectively. The genes with p < 0.05 were 
considered as statistically significant. Among these sig-
nificantly differentially expressed genes, those genes with 
log2FC > 0 were up-regulated and genes with log2FC < 0 
were down-regulated, because the value of log2FC in the 
analyzed data was low. The overlapping genes between 
CP and COPD were interpreted as the potential crosstalk 
genes.

Functional enrichment analysis
The “clusterProfiler” package of R project [22] was used 
to perform the Gene Ontology (GO) biological process 
and KEGG pathway enrichment analyses for the potential 

crosstalk genes. The functions with p < 0.05 were consid-
ered significant enrichment.

Construction of protein–protein interaction network
The protein–protein interactions of the 22 potential 
crosstalk genes were downloaded from BIOGRID (Bio-
logical General Repository for Interaction Datasets) [23], 
HPRD (Human Protein Reference Database) [24], DIP 
(Database of Interacting Proteins) [25], MINT (Molecu-
lar INTeraction database) [26], PINA (Protein Interac-
tion Network Analysis) [27], InnateDB (A knowledge 
resource for innate immunity interactions & pathways) 
[28] and Instruct (3D protein interactome networks 
with structural resolution) [29]. The Cytoscape platform 
[30] was used to construct the protein–protein interac-
tion network and for analysis of the network topological 
characteristics.

Immune cell infiltration analysis
The gene expression of potential crosstalk genes was 
assessed in the CP (GSE156993) and COPD (merged data 
of GSE42057 and GSE94916) samples. Subsequently, the 
immune cell infiltration relationship between CP and 
COPD in the crosstalk process was evaluated by using the 
xCell method (https://​github.​com/​dvira​ran/​xCell) [31]. 
xCell is a gene signature-based method learned from 
thousands of pure cell types from various sources, which 
include 64 immune and stromal cell types. To analyze the 
differentially expressed cells between CP and COPD, the 

Fig. 1  The framework of the current study

Table 1  The data summary of chronic periodontitis (CP) and 
chronic obstructive pulmonary disease (COPD)

Disease Dataset Platform Case samples Control 
samples

COPD GSE42057 GPL570 94 42

GSE94916 GPL20844 6 6

CP GSE156993 GPL570 6 6

https://github.com/dviraran/xCell
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Fig. 2  Principal component analysis (PCA) cluster plot before (A) and after (B) sample merge between GSE42057 and GSE94916
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Fig. 3  (A) and (B) show the Volcano map of deregulated genes (DEGs) for periodontitis (CP) and chronic obstructive pulmonary disease (COPD), 
respectively. Red represents up-regulated differentially expressed genes, grey represents not significantly different genes, and blue represents 
down-regulated differentially expressed genes. C The overlapped DEGs between CP and COPD
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cell enrich score of immune cells in the disease samples 
was extracted and the difference was analyzed using Wil-
coxon test.

Identification of crosstalk markers
The expression values of the potential crosstalk genes 
were assessed from the CP and the merged COPD data, 
and the feature selection was performed by the conven-
tional Recursive Feature Elimination (RFE) algorithm in R 
project [32]. The screened feature genes were interpreted 

Table 2  DEG number of COPD and CP

COPD CP

DEG_up 263 448

DEG_down 641 315

Total 904 763

Fig. 4  The significant enriched biological processes (A) and pathways B of 22 potential crosstalk genes. C The protein–protein interaction network 
for 22 potential crosstalk genes. In the network, the size of node indicated the higher degree of node
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as crosstalk markers. Furthermore, the gene expression 
value of the crosstalk markers was extracted from the CP 
and the merged COPD gene expression profile, and then 
the prediction was assessed by receiver-operating char-
acteristic (ROC) curves with the pROC package [33] and 
displayed using the ggplot2 package in R [34].

Correlation analysis between crosstalk markers 
and infiltrating immune cells
A Pearson correlation analysis of crosstalk markers and 
infiltrating immune cells in CP and COPD was applied, 
respectively. The enrichment score of each type of 
immune cells in the samples was obtained by perform-
ing xCell analysis [31]. The enrichment scores in any two 
types of cells were obtained and used for the Pearson 
correlation coefficient analysis [35]. The Pearson corre-
lation coefficient (r) between any two types of immune 
cells was calculated, which ranged between − 1 and 1. If 
the r-value is greater than zero, the correlation between 
two cells was positive. This positive correlation means 
that, when the enrichment score of cell_A becomes 
larger, then its positively correlated cell_B’ enrichment 
score will also become larger. An r-value of less than zero 
indicates negative correlation, which means that, when 

the enrichment score of cell_A becomes larger, then its 
negatively correlated cell_B’s enrichment score becomes 
smaller. The greater the absolute value of r, the more sig-
nificant the correlation will be. When |r| is close to 1, it 
indicates a perfect correlation; and when |r| is close to 0, 
it indicates no correlation. Generally, a value of |r| greater 
than 0.9 is considered as an excellent correlation; a value 
of |r| greater than 0.7 is considered a strong correlation; a 
value of |r| between 0.5 and 0.7 is a moderate correlation, 
and a value of |r| less than 0.4 is considered a weak or no 
correlation. After performing the correlation analysis, the 
“ggplot2” package [34] was used to visualize the results.

Results
Data preprocessing
Before normalization, COPD datasets GSE42057 and 
GSE94916 were obviously different and thus divided into 
two parts (Fig. 2A). After normalization, the samples of 
GSE42057 and GSE94916 were merged together and the 
differences between the two samples had been signifi-
cantly reduced and thus were reliable for further analysis 
(Fig. 2B).

Table 3  the topological characteristic of top 20 nodes in the PPI network

Gene Label Degree Average shortest 
path length

Betweenness 
centrality

Closeness centrality Topological 
coefficient

SNCA COPD&CP 249 2.424574 0.476994 0.412444 0.017938

EEF1D COPD&CP 160 2.645985 0.303017 0.377931 0.027917

ANXA 1 COPD&CP 117 2.753041 0.222923 0.363235 0.034188

INSR COPD&CP 114 2.753041 0.22763 0.363235 0.025146

FTH1 COPD&CP 56 2.867397 0.126682 0.348748 0.038095

NCAP D3 COPD&CP 47 2.913625 0.088015 0.343215 0.045213

CDCA 7L COPD&CP 45 2.877129 0.122311 0.347569 0.028758

AP1S2 COPD&CP 31 2.957421 0.065846 0.338132 0.047312

FAM3 C COPD&CP 28 2.969586 0.062619 0.336747 0.038265

UBAS H3A COPD&CP 24 2.979319 0.041695 0.335647 0.068452

EAF2 COPD&CP 16 4.658151 0.031841 0.214677 0.083333

UBC 15 2.036496 0.322608 0.491039 0.074936

DCAF 12 COPD&CP 10 3.006083 0.017515 0.332659 0.13125

STMN 3 COPD&CP 6 3.023114 0.012136 0.330785 0.166667

NAP1L 3 COPD&CP 5 4.816302 0.009715 0.207628 0.2

EGFR 4 3.043796 0.020572 0.328537 0.261278

NRF1 4 3.50365 0.007751 0.285417 0.255981

HSPB 1 4 2.695864 0.028541 0.370939 0.273157

SQSTM 1 4 2.603406 0.029332 0.384112 0.273666

YWHA B 4 3.055961 0.022253 0.327229 0.259494
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Differentially expressed gene analysis
Figure 3A, B show the gene expression of CP and merged 
COPD data. Finally, 904 DEGs of COPD and 763 DEGs 
of CP were acquired (Table  2). Thereby, 22 overlapping 
genes between CP and COPD were found, which were 
the potential crosstalk genes between CP and COPD 
(Fig. 3C).

Function enrichment and PPI network for the potential 
crosstalk genes
With the clusterProfiler of R project [22], several biologi-
cal processes for the 22 potential crosstalk genes could be 
revealed (Fig. 4A). Besides, the potential crosstalk genes 
regulated nine biological pathways, including the Pan-
tothenate and CoA biosynthesis, Aldosterone-regulated 

Fig. 5  Cell type enrichment analysis in periodontitis (CP) and chronic obstructive pulmonary disease (COPD) for 22 potential crosstalk genes. (A) 
and (B) Heatmap of immune cell analysis for CP and COPD, respectively. The color legend represented the xCell scores. (C) and (D) the correlation 
among immune cells in CP and COPD, respectively. Both color and pie chart were corresponding to average Pearson coefficients
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sodium reabsorption, Ferroptosis, Regulation of lipolysis 
in adipocytes as well as type II diabetes mellitus (Fig. 4B). 
For the 22 potential crosstalk genes, a PPI network was 
constructed, which included 825 nodes and 923 edges 
(Fig.  4C). The network topological characteristics of 
PPI network were analyzed, and the top 20 nodes were 
extracted, which are displayed in Table 3.

Immune cell infiltration
The infiltration score of 68 immune cells was analyzed 
with x Cell for the 22 potential crosstalk genes in CP and 
COPD. Because of a small number of genes in the current 
analysis, the input parameter of raw Enrichment Analy-
sis [36] in x Cell packages [31] were adjusted. Thereby, 
the raw scores of immune cells for the 22 genes were 
acquired and corrected with transform Scores and spill 
Over method. Figure 5A, B show the plotted immune cell 
heat map, constructed with the pheatmap package of R 
project [37].

The closely related cell types of enriched immune cells 
based on the 22 crosstalk genes between CP and COPD 
are displayed in Fig.  5C, D. Thereby, Hepatocytes and 
Astrocytes were negatively correlated in CP (Fig.  5C). 
In COPD, CD4 + memory T-cells, CD4 + naive T-cells, 
CD4 + T-cells, CD4 + Tcm and CD4 + Tem were posi-
tively correlated to each other (Fig. 5D). Moreover, there 
were 8 cell pairs which were highly correlated to both CP 
and COPD (|correlation coefficients |> 0.5 and p < 0.05, 
Table 4).

The immune cell infiltration difference of CP showed 
that Hepatocytes and Smooth muscle infiltrated more, 
compared with the control samples (Fig. 6A). For COPD, 
the results showed that Hepatocytes infiltrated more 

compared with the control samples, while CD4 + mem-
ory T-cells, CD4 + naive T-cells, CD4 + T-cells, 
CD4 + Tcm, CD4 + Tem and Mast cells infiltrated less 
(Fig. 6B). The results for COPD and CP showed that most 
immune cells were differently expressed between COPD 
and CP (Fig. 6C).

Identification of crosstalk markers
By applying Recursive feature elimination (RFE) [32], 
12 features for CP (Fig.  7A) and 8 features for COPD 
(Fig.  7B) were acquired, which had the highest predic-
tion. Finally, the common features between CP and 
COPD were determined, whereby three genes were iden-
tified, i.e., EPB41L4A-AS1, INSR and R3HDM1. The pre-
diction results, i.e., area under the curve (AUC) values for 
genes in CP and COPD are shown in Fig. 7C, D.

Correlation analysis between crosstalk markers 
and infiltrating immune cells
Correlation analysis showed that EPB41L4A-AS1 was 
not correlated with any cells in CP (Fig.  8A). Further-
more, INSR was positively correlated with Hepatocytes 
in CP (r = 0.6714, p = 0.01679; Fig.  8B). R3HDM was 
positively correlated with Th1 cells in CP (r = 0.6783, 
p = 0.0153; Fig. 8C). In COPD, EPB41L4A-AS1 was posi-
tively correlated with Astrocytes (r = 0.330, p = 0.00004), 
and MSC (r = 0.2823, p = 0.0005) (Fig.  8D), and INSR 
was positively correlated with Hepatocytes in COPD 
(r = 0.5209, p < 0.001; Fig. 8E). Moreover, INSR was neg-
atively correlated with CD4 + T-cells, CD4 + memory 
T-cells, MSC, CD4 + Tem, CD4 + Tcm, CD4 + naive 
T-cells, CD8 + naive T-cells, Smooth muscle and Tgd 
cells in COPD. R3HDM1 was negatively correlated 
with CD4 + Tem, CD4 + Tcm, CD4 + naive T-cells, 
CD4 + T-cells and CD4 + memory T-cells in COPD 
(Fig. 8F).

Discussion
Main results: The current study revealed several potential 
crosstalk genes and correlated immune cell pairs between 
periodontitis and COPD. Three crosstalk genes were 
identified as the most relevant ones, i.e., EPB41L4A-AS1, 
INSR and R3HDM1. These three crosstalk markers cor-
related with different infiltrating immune cells. R3HDM 
was positively correlated with Th1 cells in both diseases, 
while INSR was positively correlated with Hepatocytes in 
periodontitis and COPD.

Table 4  The highly correlated cell pairs in both CP and COPD

Cell Cell CP COPD

cor pValue cor pValue

CD4 + T-cells cDC 0.755379 0.004497 − 0.61118 1.59E-16

CD4 + Tcm CD4 + Tem 0.865414 0.000276 0.999716 7.8E-239

CD4 + Tcm cDC 0.818692 0.001128 − 0.615 9.14E-17

cDC Mast cells 1 4.25E-78 0.548103 5.58E-13

cDC Preadipo-
cytes

1  < 0.001 0.547586 5.93E-13

Mast cells Preadipo-
cytes

1 1.33E-79 0.925831 1.43E-63

Mast cells Smooth 
muscle

1  < 0.001 0.659046 8.57E-20

Tgd cells Th1 cells 0.743636 0.005564 0.855541 1.4E-43
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Fig. 6  (A) and (B) different immune cell infiltration between disease and normal control samples for periodontitis (CP) and chronic obstructive 
pulmonary disease (COPD). C Different immune cell infiltration between CP disease and COPD disease samples
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Comparison with literature and interpretation: This 
is the first bioinformatics analysis of the crosstalk and 
potential biological pathways between COPD and peri-
odontitis. Accordingly, there is no directly comparable 
study available, which can be used for interpretation of 
the findings. Nevertheless, several results of the current 
study can support some pathophysiological links in the 
relationship between periodontitis and COPD, based 
on shared risk factors and inflammatory mechanisms. 
Considering the revealed biological processes and path-
ways (Fig. 3A, B), the presumption of shared risk factors 
appears supported; carbohydrate metabolism alongside 
with type II diabetes mellitus and the regulation of lipoly-
sis in adipocytes can support the role of diabetes, obesity 
and the metabolic syndrome in the interplay between 
periodontitis and COPD. The available literature shows 
a clinical association between diabetes and periodonti-
tis [38] as well as COPD [39], between obesity and peri-
odontitis [40] as well as COPD [41] and same results for 
metabolic syndrome [9, 10]. Furthermore, the shared risk 
factor cigarette smoking [7, 8] can be related to several 
findings of the current analysis. In assessment of infiltrat-
ing immune cells, CD4 + and CD8 + cells were conspicu-
ous (see Fig. 4). Cigarette smoking was reported to affect 
the innate and adaptive immunity, especially T helper 
cells, as well as CD4 + and CD8 + cells [42]. Accordingly, 
an influence of smoking on these cell types might lead to 
an autoimmunity resulting in pulmonal (COPD) and oral 
(periodontitis) inflammation. Therefore, the confound-
ing effect of smoking appears highly relevant. This effect 
might rely on an affection of immune cells due to ingredi-
ents of cigarettes, resulting in an increased inflammatory 
burden, which can foster both COPD and periodontitis.

For a deeper comprehension of potentially related pro-
cesses, the three crosstalk genes and related immune cells 
can be regarded. First, down-regulated EPB41L4A-AS1 
was found as a potential crosstalk gene, of which no infil-
trating immune cell was correlated to both, periodontitis 
and COPD. Regardless, this gene might play a potential 
role in the interrelation between the two diseases. Down 
regulation of EPB41L4A-AS1 was reported to activate 
nuclear factor kappa B (NF-κB) signaling pathway and 
to enhance inflammatory response in diabetes-related 
inflammation [43]. This might support an interaction via 
increase of systemic inflammation and could argue for 
the hypothesis of chronic systemic inflammatory syn-
drome [13]. Moreover, EPB41L4A-AS1 was identified as 

a potential biomarker for lung cancer [43]. Thereby, peri-
odontitis [44] as well as COPD [45] potentially increase 
the risk of cancer, indicating EPB41L4A-AS1 as poten-
tially relevant crosstalk marker in this context. INSR, 
i.e., insulin receptor was also a potential crosstalk gene. 
This gene has a high relevance in T cell immunity dur-
ing inflammation [46]. A previous bioinformatics study 
revealed INSR to be regulated by miR-146a-5p in COPD 
patients [47]. This miRNA species has already been 
described to be of relevance in periodontal inflamma-
tion, especially with regard to lipopolysaccharide driven 
inflammation [48]. As immune cell, hepatocytes were 
found to be correlated to INSR in both periodontitis and 
COPD in the current study. On the one hand, Prophy-
romonas gingivalis, a gram-negative, anaerobic bacterium 
with high periodontal pathogenic potential, was found to 
affect hepatocytes [49, 50]. On the other hand, hepato-
cyte growth factor was increased in saliva of smokers 
with periodontitis [51]. Similarly, smokers suffering from 
COPD showed higher levels of hepatocyte growth fac-
tor in bronchial lavage [52]. Therefore, INSR and related 
hepatocytes and/or hepatocyte growth factors might be 
a shared genetic and immunological marker, especially 
in smokers affected by periodontitis and COPD. Lastly, 
R3HDM1 was found to be a potentially relevant crosstalk 
gene, which was especially correlated to Th1-cells in both 
diseases. This would underline a shared pathophysiology 
on immunological level and might be one key element 
to understand the relation between periodontitis and 
COPD. T helper cells, alongside with CD4 + and CD8 + T 
cells play a crucial role in the immunology of COPD [53]. 
Similarly, these cells are of importance in periodontal 
inflammation [54]. Furthermore, a recent review article 
highlighted the relevance of Th cell driven immunity in 
the pathogenesis of periodontitis and immune-mediated 
inflammatory diseases [55]. A recent animal study in mice 
showed that periodontitis affects course of Th1 profile 
cells and related cytokines (especially interferon gamma), 
leading to pulmonary alterations [56]. In this context, the 
importance of innate immunity, primarily of neutrophils 
as a key effector cell in inflammation and involved fac-
tor in the causal interrelationship between periodontitis 
and COPD can be highlighted [5]. Altogether, the T-cell 
mediated inflammation appears highly relevant in the 
pathophysiological processes of periodontitis and COPD. 
This again may support the hypothesis of a chronic sys-
temic inflammatory syndrome [13]. Periodontitis and 

(See figure on next page.)
Fig. 7  Feature genes selected by using RFE algorithm for periodontitis (CP) (A) and chronic obstructive pulmonary disease (COPD) (B). The abscissa 
of the figure is the variable of the number of genes, and the ordinate is the exact value of the whole data set measured under this variable. The 
results show that when the minimum variable is 6, the score is high, which means that 6 features could map the entire dataset. (C) and (D) the 
receiver operation curve (ROC) of 3 crosstalk marker genes and the combination for the 3 genes based on the average expression value in CP and 
COPD, respectively
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COPD may be an inflammatory disease of oxidative stress 
[57] and may be directly related as part of an underlying 
chronic inflammatory syndrome. This is supported by the 
strong relationship between those two diseases, which 
has been extensively studied in recent systematic reviews 
[58, 59]. Altogether, different hypotheses of interaction 
between COPD and periodontal diseases can be derived 
from the results: first, potentially periodontal pathogenic 
bacteria and their related virulence factors could trigger 
both, periodontal and pulmonal inflammation. Second, 
shared risk factors, especially smoking appear of rele-
vance. Third, both diseases seem to be related to increase 
of T-cell mediated inflammation. Therefore, these might 
be the pathophysiological key points relating both con-
ditions within one chronic systemic inflammatory syn-
drome. Thus, it appears to be an interesting hypothesis 
that COPD and periodontitis would be symptoms of an 
underlying inflammatory disease, rather than two singular 
entities. However, this hypothesis remains speculative and 
cannot be confirmed by the current analysis. In clinical 
consequence, both diseases need a shared understanding, 
therapy and prevention in dental and general practice. 
Thereby, the control (and elimination) of shared risk fac-
tors and reduction of inflammation are joint therapeutic 
measures. Potentially, more comprehensive therapeutic 
strategies are needed, including an interdisciplinary care 
approach for those diseases.

Strengths and limitations: This is the first bioinformatics 
study on periodontitis and COPD. The analysis was com-
prehensive and included evaluation of pathways, processes 
and infiltrating immune cells. The results are of potential 
clinical relevance, as they can serve as a theoretical basis 
for future studies in the field and might help to under-
stand the shared pathophysiology of the two examined dis-
eases. Nevertheless, several limitations must be addressed. 
Firstly, all the results are only on transcriptomic level, what 
is caused by the analysis applied in this current study. No 

clinical experiments were performed to confirm the bio-
informatics results, making experimental validations of 
the findings as a subsequent study needed. The absence 
of a validation of the results either in-vitro or in a clinical 
setting makes all derived conclusions somewhat specula-
tive; however, the hypothesis of a chronic systemic inflam-
matory syndrome is still a theoretical construct, where 
the role of periodontal diseases remains unclear. Thus, 
the findings of the current study open a new approach 
in the understanding of those two diseases. In addition 
to the missing validation, this study is limited by several 
other weakening points of a bioinformatics analysis, i.e., 
the inclusion of different patients with periodontitis and 
COPD, no consideration of patient specific data (e.g., 
age, gender, smoking habits, medication, co-morbidities) 
and thus a potentially very heterogeneous sample. Alto-
gether, it must be stated that it is hardly possible to prove 
the shared mechanisms in a clinical setting, because each 
individual patient is unique and affected by a high variety 
of genetic, epigenetic, environmental and lifestyle factors. 
Therefore, although it appears a reasonable approach to 
foster a validation of the findings, it remains unclear if this 
will be unequivocally possible. As an additional limitation, 
the sample for periodontitis (CP) was quite small. This 
limits the ability to draw robust conclusions. Therefore, the 
findings must be seen as preliminary theoretical results.

Conclusion
EPB41L4A-AS1, INSR and R3HDM1 are potential 
crosstalk genes between periodontitis and COPD. Espe-
cially Th1 cells and Hepatocytes might be relevant in 
the pathophysiological relationship between the two 
diseases. It might be conceivable that periodontitis and 
COPD are related within a chronic systemic inflamma-
tory syndrome. These findings can serve as a basis for 
future studies and should be evaluated in experimental 
and/or clinical investigations.

Fig. 8  Correlation between EPB41L4A-AS1, INSR and R3HDM, and immune cells in periodontitis (CP) and chronic obstructive pulmonary disease 
(COPD). A Correlation between EPB41L4A-AS1 and infiltrating immune cells in CP. B Correlation between INSR and infiltrating immune cells in CP. 
C Correlation between R3HDM and infiltrating immune cells in CP. D Correlation between EPB41L4A-AS1 and infiltrating immune cells in COPD. E 
Correlation between INSR and infiltrating immune cells in COPD. F Correlation between R3HDM and infiltrating immune cells in COPD

(See figure on next page.)
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