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Abstract

Cholera toxin, an 84-kDa multimeric protein and a major virulence factor of Vibrio cholerae,

uses the ADP-ribosyltransferase activity of its A subunit to intoxicate host cells. ADP-ribosy-

lation is a posttranslational modification of proteins, in which the ADP-ribose moiety of NAD+

is transferred to an acceptor. In mammalian cells, ADP-ribosylation of acceptors appears to

be reversible. ADP-ribosyltransferases (ARTs) catalyze the modification of acceptor pro-

teins, and ADP-ribose-acceptor hydrolases (ARHs) cleave the ADP-ribose-acceptor bond.

ARH1 specifically cleaves the ADP-ribose-arginine bond. We previously demonstrated a

role for endogenous ARH1 in regulating the extent of cholera toxin-mediated fluid and elec-

trolyte abnormalities in a mouse model of intoxication. Murine ARH1-knockout (KO) cells

and ARH1-KO mice exhibited increased sensitivity to cholera toxin compared to their wild-

type (WT) counterparts. In the current report, we examined the sensitivity to cholera toxin of

male and female ARH1-KO and WT mice. Intestinal loops derived from female ARH1-KO

mice when injected with cholera toxin showed increased fluid accumulation compared to

male ARH1-KO mice. WT mice did not show gender differences in fluid accumulation, ADP-

ribosylarginine content, and ADP-ribosyl Gαs levels. Injection of 8-Bromo-cAMP into the

intestinal loops also increased fluid accumulation, however, there was no significant differ-

ence between female and male mice or in WT and KO mice. Female ARH1-KO mice

showed greater amounts of ADP-ribosylated Gαs protein and increased ADP-ribosylargi-

nine content both in whole intestine and in epithelial cells than did male ARH1-KO mice.

These results demonstrate that female ARH1-KO mice are more sensitive to cholera toxin

than male mice. Loss of ARH1 confers gender sensitivity to the effects of cholera toxin but

not of cyclic AMP. These observations may in part explain the finding noted in some clinical

reports of enhanced symptoms of cholera and/or diarrhea in women than men.
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Introduction

Vibrio cholerae infection is a significant health problem in many parts of the world. According

to the World Health Organization (WHO) annual report in 2016, 172,454 cases including

1,304 deaths were recorded in 42 countries [1]. Some areas still show high case fatality rates,

probably because of inadequate case management or delays in initiating treatment [1].

Cholera toxin, an 84-kDa multimeric protein, is a major virulence factor of Vibrio cholerae
[2, 3]. The toxin consists of a single enzymatically active A subunit (CTA) and five receptor-

binding B subunits (CTB) [3]. The CTB forms a pentametric ring that is associated with CTA.

Isolated CTA and CTB are nontoxic [2]. CTB has a strong affinity for its cell surface receptor,

ganglioside GM1, and facilitates CTA endocytosis into cells [4]. CTA is an ADP-ribosyltrans-

ferase that catalyzes the modification of the α subunit of the Gs protein (Gαs), which is respon-

sible for activation of adenylyl cyclase [5, 6]. ADP-ribosylation of Gαs stabilizes its active GTP-

bound form [6]. Active ADP-ribosylated Gαs increases the activity of the catalytic unit of ade-

nylyl cyclase, leading to accelerated cyclic AMP (cAMP) production [7]. As a consequence of

the increased intracellular cAMP concentration, an imbalance in electrolyte transport occurs

across the epithelial cell membrane [8]. Water flows in response to the ion gradient, resulting

in watery diarrhea and fluid loss [9, 10].

ADP-ribosylation is a posttranslational modification of proteins, in which the ADP-ribose

moiety of NAD is transferred to an acceptor (e.g., protein) [11]. Both mono- and poly- ADP-

ribosylation have been recognized based on the number and method of attachment of ADP-

ribose moieties to acceptors [11]. In poly-ADP-ribosylation, branching polymers of ADP-

ribose, are attached to target amino acid residues (e.g. poly-ADP-ribose-polymerase (PARP)-

1) [12]. Poly-ADP-ribosylation is induced in part by genomic stress and plays a role in chro-

mosomal stability, regulation of transcription, DNA repair, telomere homeostasis, and onco-

genesis [12]. In mono-ADP-ribosylation, a single ADP-ribose moiety of NAD+ is attached to

an amino acid in a target protein [13]. Mono-ADP-ribosylation was first discovered as a mech-

anism used by bacterial toxins such as cholera toxin, diphtheria toxin, and pertussis toxin to

disrupt biosynthetic and signal transduction pathways [5, 14–16]. Mammalian cells have

endogenous ADP-ribosyltranferases (ARTs) that catalyze the ADP-ribosylation of acceptor

proteins, reactions similar to those catalyzed by bacterial toxins [13, 17, 18]. In these cells, the

extent of ADP-ribosylation is regulated in part by ADP-ribosyl-acceptor hydrolases (ARHs)

that cleave the ADP-ribose-acceptor bond, regenerating the unmodified acceptor [19]. Thus,

in mammalian cells, ADP-ribosylation appears to be a reversible modification of proteins [20,

21].

Five ADP-ribosyl transferase family members (ART1-5) have been cloned from mamma-

lian cells with a related avian enzyme [13, 22]. ART1-4 are glycosylphosphatidylinositol (GPI)-

anchored to cell membranes, whereas ART5 is a secreted protein. Mouse and human ART1

and ART5, and mouse ART2 transfer an ADP-ribose from NAD+ to arginine residues of

acceptor proteins [22–24]. Substrates for ART3 and ART4 have not been identified [13, 24,

25]. In terms of ADP-ribose-acceptor hydrolases, three 39-kDa family members have been

identified (ARH1-3) that share similar amino acid sequences [19]. Among the ARH family

members, only ARH1 cleaves the ADP-ribose-arginine bond [26, 27].

In a prior study [28], we reported a role of ARH1 in a mouse model of intoxication of small

intestinal epithelial cells and mouse embryonic fibroblasts by cholera toxin. CT increased

ADP-ribose (arginine) protein content and ADP-ribosylated Gαs in murine ARH1-knockout

(ARH1-/-, ARH1-KO) cells more than in their wild-type (WT) counterparts. In addition,

ADP-ribose (arginine) protein content and ADP-ribosylated Gαs were significantly reduced

by overexpression of wild-type ADP-ribosyl-acceptor hydrolase proteins in ARH1-/- cells. We
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observed that, in response to CT treatment, ARH1-KO mice demonstrated a greater increase

in fluid accumulation, Gαs modification, and ADP-ribosylarginine content in intestinal loops

than their wild-type littermates. These data suggest that ADP-ribosylation is critical for cholera

toxin action and that ARH1 plays an important role in controlling the intoxication process.

Some infectious diseases show gender bias in outcomes that may be explained by the Physi-

ological Hypothesis (PH) and/or the Behavioral Hypothesis (BH) [29]. The PH postulates that

sex hormones affect the immune system to modify susceptibility to disease. The PH also postu-

lates a difference in immune status, resulting from the fact that some genes encoding immune-

related proteins are located on the X chromosome [30]. Alternatively, the BH postulates that

gender-specific or gender-biased behavior results in sex-biased infection rates, that is, gender

differences in treatment outcome. Differences of infection rates are supposed to result from

differences in societal norms such as domestic responsibility for caring for the sick, time spent

at home, and access to health care [31]. There is still a controversy over whether gender differ-

ences exist in incidence and mortality of diarrheal diseases including cholera [32–38]. How-

ever, some reports claim that female sex is an individual risk factor for cholera incidence or

death from diarrhea [35–38]. In this report, we focused on biological differences in reaction to

CT between genders in WT and ARH1-KO mice.

Materials and methods

Materials

Cholera toxin was purchased from List Biological Laboratory, Inc, California, USA; 8-Bromo-

cAMP and trichloroacetic acid (TCA) were purchased from Sigma-Aldrich Inc, St. Louis,

USA; boronate resin (Affi-Gel boronate) was purchased from Bio-Rad Laboratories, Inc; 12%

Tris-glycine or 12% bis-Tris gels were purchased from Invitrogen, California, USA; anti-rabbit

polyclonal secondary antibodies were purchased from Promega Corporation, Wisconsin,

USA; chemiluminescent substrate (Pierce SuperSignal West Pico and Femto) was purchased

from Thermo Fisher Scientific Inc, Massachusetts, USA. Rabbit anti-Gαs polyclonal antibodies

were provided by Dr. Lee Weinstein (NIDDK, NIH) and obtained from Sigma-Aldrich

(St. Louis, MO) (C-terminal 385–394, #371732).

Animal studies

Generation of ARH1-knockout mice was described previously [28]. Animal protocols (H-0127

and H-0172) were approved by the National Heart, Lung, and Blood Institute Animal Care

and Use Committee. Knockout (ARH1-/-) and wild-type (ARH1+/+) mice were all littermates

from heterozygous (ARH1+/-) breeding pairs. ARH1 mice were backcrossed 7 times using

C57BL/6J mice. Mouse genotypes were confirmed by PCR using genomic DNA extracted

from mouse tails using primers described in a previous report [28].

Induction of fluid accumulation by cholera toxin (CT)

Fluid accumulation in mouse intestinal loops in response to CT was performed in ARH1+/+

and ARH1-/- mice [28, 39]. After mice were anesthetized, intestine was exteriorized through a

midline incision. Two or three intestinal segments of about 4 cm length each were generated

by ligation with nylon suture, and 0.2 ml of PBS or PBS containing either 0.5 μg CT or 5 mM

8-Bromo-cAMP were injected into each loop [28]. Two to three drops of 0.5% bupivacaine

were applied for analgesia after abdominal closure. Mice recovered from anesthesia on a

warm-heated mat at 37˚C. Following the study, mice were euthanized with carbon dioxide gas

according to protocol [28]. Weight, length, and contents of each intestinal loop were recorded,
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and accumulated fluid was reported as weight per length (mg/cm) [28]. Data from six experi-

ments were summarized as means ± standard errors of means (SEMs).

ADP-ribosylarginine content

ADP-ribosylarginine content of mouse intestinal loops and luminal epithelial lining cells was

quantified using samples that had been precipitated with 20% (w/v) TCA [28]. TCA-precipi-

tated samples were centrifuged at 20,000 x g for 30 min, and supernatants were discarded; pel-

lets were washed once with ice-cold TCA and twice with ether; residual ether was removed

under vacuum, and samples were stored at -80˚C. TCA-precipitated proteins (4 mg) were dis-

solved in 2 ml of 6 M guanidinium chloride containing 50 mM morpholinepropanesulfonic

acid and 10 mM EDTA, pH 4.0, using a Dounce all-glass hand homogenizer (Kontes/Kimble

Chase, TN, USA) with 30 strokes on ice. A 0.5 ml aliquot was incubated in a column of Affi-

Gel boronate resin and was eluted with 5 ml of 0.1M glycine equilibrated at pH 9.0 containing

0.1M NaCl and 10 mM magnesium chloride to obtain fluorescent derivatives [40], which were

analyzed by High-Performance Liquid Chromatography (Agilent Technologies Inc., Califor-

nia, USA). Samples were assayed in triplicate, and data are reported as means of values from 6

experiments.

Western blot analysis

Collected intestinal loops or luminal epithelial lining cells from intestinal loops were excised

and immediately immersed in liquid nitrogen at -80˚C. After liquid nitrogen was evaporated,

2 ml of ice-cold 20% TCA were added to frozen tissues, which were homogenized on ice using

an all-glass hand homogenizer with 30 strokes. After homogenization, samples (20 μg of total

protein) were added to 4-fold SDS buffer and directly applied to SDS-PAGE in a 10% Tris-gly-

cine gel (Thermo Fisher Scientific, MA) or 10% polyacrylamide gels (200 x 200 x 1.5 mm, Hof-

fer SE600). Proteins were resolved and transferred to nitrocellulose membranes (Thermo

Fisher Scientific, MA), which were incubated with rabbit anti-Gαs polyclonal antibody at a

ratio of 1:1000. After incubation with anti-rabbit polyclonal secondary antibody (Promega,

WI) at a ratio of 1:2500, the protein bands were visualized with Chemiluminescent Substrate

(Thermo Fisher Scientific, MA) and visualized with X-ray film (Kodak, New York, USA). Blot-

ting images were scanned by Imaging scanner.

Pull-down of ADP-ribosylated Gαs using Af1521 macro-domain-GST

To detect ADP-ribosylation of Gαs following intestinal loop treatment with PBS or cholera

toxin, mouse intestinal loops without fluid were immediately frozen in liquid nitrogen and

ground in a mortar. After evaporation of liquid nitrogen, 8% (w/v) ice-cold TCA was added.

TCA-precipitated proteins were dissolved in 4 ml of ice-cold Tris-HCl buffer (20 mM Tris-

HCl, pH 7.5, 20 mM NaCl). Protein was quantified by spectrophotometer using Pierce BCA

Protein Assay Kit (Thermo Fisher Scientific, MA).

Af1521 macro-domain-GST (0.5 μmol/100 μl) or inactive Af1521 macro-domain-GST

(0.5 μmol/100 μl) was pre-incubated for 1 hour at 4˚C with β-NAD (1 μmol/100 μl), ADP-

ribose (1 μmol/100 μl) or PBS, and then incubated with TCA-treated mouse intestinal loops

(100 μg/reaction) overnight at 4˚C in a pull-down assay to concentrate ADP-ribosylated Gαs,

which then was identified by immunoreactivity. Also, the dissolved TCA-treated mouse intes-

tinal loop lysates in Tris-HCl buffer (100 μg/100 μl) with 5 mM MgCl2 were incubated with

mouse recombinant ARH1 proteins (0.5 μg/10 μl) for 1.5 hour at 37˚C, and then incubated

with Af1521 macro-domain-GST (0.5 μmol/100 μl) overnight at 4˚C in a pull-down assay.
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For pull-down of ADP-ribosylated Gαs with Af1521 macro-domain-GST resin (Tulip Bio-

Labs, Lansdale, PA), intestine lysates were incubated with 20 μg of Af1521 macro-domain-

GST resin with a rotator (20 reversals/min) overnight at 4˚C and washed three times. Proteins

were separated by SDS-PAGE using 4–12% bis-Tris NuPAGE gels (Thermo Fisher Scientific,

MA) and transferred to nitrocellulose membranes. Blotted membranes were blocked with

TBS-T (Tris-buffered saline, 0.1% Tween 20) with 5% skim milk (Bio-Rad) at room tempera-

ture (RT) for 1 h, then reacted with rabbit anti-Gαs antibody 1:1000 dilution (C-terminal 385–

394, Sigma, St. Louis, MO) overnight at 4˚C. After washing with TBS-T at RT for 10 min, 3

times, membranes were reacted with HRP-conjugated, anti-rabbit IgG (1:2500 dilution, Pro-

mega) at RT for 1 h. Washing was performed as above. Enhanced chemiluminescence sub-

strate, Pierce SuperSignal West Femto (Thermo Fisher Scientific, MA) was used for

visualization of immunocomplexes, which were detected with Fujifilm LAS-4000 (Fujifilm).

Statistics

Data were analyzed with a Student’s t-test and presented as means ± SEMs, with a P-value

of<0.05 considered to be significant.

Results

ADP-ribosylated Gαs is an ARH1 substrate

Cholera toxin A subunit is an ADP-ribosyltransferase that catalyzes the modification of the α
subunit of the Gs protein (Gαs), which is responsible for activation of adenylyl cyclase [5, 6].

To determine Gαs ADP-ribosylated by cholera toxin, Af1521, an ADP-ribose-binding macro

domain, was used in a pull-down assay with TCA-precipitated samples from CT-treated intes-

tinal loops in ARH1 KO mice. As expected, ADP-ribosylated Gαs from CT-treated intestinal

loops was bound by Af1521. In samples treated with recombinant ARH1 protein, modified

Gαs was not detected with Af1521. Further, ADP-ribosylated Gαs was bound by Af1521 in the

presence of β-NAD. However, as expected, binding was blocked by free ADP-ribose. The inac-

tive Af1521 macro domain mutant also did not bind ADP-ribosylated Gαs (Fig 1A and S1

Fig). On the same blot, a 52-kDa Gαs band from CT-treated intestinal loops was shifted up

and showed less electrophoretic mobility compared with the bands from PBS-treated loops

(Fig 1A and S1 Fig). Next, recombinant ARH1 hydrolyzed the ADP-ribose-arginine-Gαs

products of the CT-catalyzed reaction. These data suggested that Gαs bands from CT-treated

intestinal loops in ARH1 KO mice represent ADP-ribosylated Gαs.

Effects of ARH1 genotype and gender on fluid accumulation by cholera

toxin in intestinal loops

We quantified fluid accumulation in the mouse intestinal loop model and ADP-ribosylation of

Gαs proteins in response to cholera toxin (CT). Intestinal loops in each WT female, KO

female, WT male, and KO male mice were injected with PBS or cholera toxin, and fluid accu-

mulation was measured every 2 hours (hr) at the indicated time. Accumulated fluid in each

loop was recorded as weight (mg) and longitudinal length (cm). Quantified of CT treated fluid

accumulation was clearly increased with time in both ARH1 KO female and male (Fig 1B and

S2 Fig). Differences in volume of fluid accumulation were significant between CT-treated

groups and PBS-treated groups of either gender and of either genotype. Pairwise comparisons

showed significant differences between ARH1-KO females treated with CT (KO female CT)

and ARH1-KO males treated with CT (KO male CT), KO female CT and WT female CT, KO

male CT and WT male CT. No significant differences, however, were observed among PBS-
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Fig 1. Effects of ARH1 genotype and gender on fluid accumulation stimulated by cholera toxin (CT) in intestinal

loops. (A) Immunoblots using Gαs antibody show the ADP-ribosylated Gαs in ARH1 KO intestinal loops treated with

PBS or cholera toxin (CT) for 6 hours quantified by active (MacD) or inactive (IMD) Af1521 macro-domain GST pull-

down assay that was pre-treated with PBS, 0.1 mM ADP-ribose (ADPr) or 0.1 mM β-NAD (NAD) for 1 hr at 4˚C.

Recombinant ARH1 proteins (rArh1) (0.5 μg/10 μl) were incubated with TCA-treated intestinal loop lysates of CT-

treated loops for 1.5 hrs at 37˚C before assaying with Af1521 macro-domain GST pull-down. Ponceau S staining of same

blot membranes shows the amount of Af1521 macro-domain using GST pull-down assay. These data were repeated in

duplicate and in four experiments (n = 4) using TCA-precipitated ARH1 KO intestinal loops after exposure for 6 hours
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treated groups between KO female PBS and KO male PBS, KO female PBS and WT female

PBS, and KO male PBS and WT male PBS mice (Fig 1B and S2 Fig). Also, differences in the

behavior of Gαs from intestinal loops of female and male ARH1 KO mice after CT treatment

were significant (Fig 1B, upper blots and S2 Fig). Mobility of modified Gαs from female KO is

less than that from male KO mice (Fig 1B, upper blots and S2 Fig). Modification of Gαs corre-

lated with the volume of fluid accumulation in intestinal loops. These data suggested that intes-

tinal loops from female ARH1 KO mice were more sensitive to modification of Gαs and fluid

accumulation than those from male KO mice.

ADP-ribosylated Gαs proteins were extracted from epithelial cells from intestinal loops of

ARH1-KO and WT mice of both genders that were treated for 6 hrs with PBS, CT, or

8-Bromo-cAMP, and were quantified by Western blot (Fig 1C, upper blots and S3 Fig). The

cells of intestinal loops contained both 52-kDa and 45-kDa forms of Gαs. CT-catalyzed ADP-

ribosylation decreased the mobility of Gαs in ARH1-KO cells. Time course data of CT-expo-

sure from female ARH1 KO intestinal epithelial cells after 1 h of CT exposure and from male

ARH1 KO epithelial cells after 4 h of CT exposure, where the amount of 52-kDa Gαs was

reduced, are shown in Fig 1B, upper blot. Continued accumulation of ADP-ribosylated Gαs

was not seen because the modified proteins were degraded as reported previously [28]. The

loss of Gαs following CT exposure of epithelial cells in intestinal loops was dependent on time

of CT exposure.

As shown in Fig 1C upper blots, the 52-kDa and 45-kDa Gαs protein bands in epithelial

cells of intestinal loops in female ARH1-KO mice were diminished greatly in intensity while

ADP-ribosylated Gαs appeared on the blot, whereas, in male ARH1-KO mice, 52-kDa and

45-kDa Gαs protein bands were still visible while ADP-ribosylated Gαs appeared. These data

also suggested that the loss of 52-kDa and 45-kDa Gαs bands probably resulted from their

ADP-ribosylation and shift in mobility.

As shown of the quantified of CT treated fluid accumulation in Fig 1B and 1C, the effects of

genotype and gender on fluid accumulation were investigated. Accumulated fluid in the intes-

tinal loops was quantified in ARH1-KO and WT mice of both genders after they were exposed

for 6 hr to PBS, or PBS containing either 0.5 μg CT or 5mM 8-Bromo-cAMP. Differences in

volume of fluid accumulation were significant when compared between genotype, gender, or

to PBS, CT or non-treatment (NT) (Input 40 μg/lane, 100 μg protein was assayed with Af1521 pull-down). (B) Above

blots show Gαs in ARH1 KO female and male intestinal loops after exposure to cholera toxin (0.5 μg/0.2 ml) for 0 to 8

hours (hr) as indicated. Numbered arrowheads are indicated as follows: 1, ADP-ribosylated Gαs; 2, 52-kDa Gαs; and 3,

45-kDa Gαs band. Time course blot data were repeated in duplicate and in three experiments (n = 3) using TCA-

precipitated ARH1 KO intestinal loops treated with cholera toxin (CT) (40 μg/lane). Intestinal loops in each WT female

(5-PBS or �-CT), KO female (□-PBS or4-CT), WT male (▼-PBS or ●-CT) and KO male (■-PBS or ▲-CT) were injected

with PBS (0.2 ml) and cholera toxin (0.5 μg/0.2 ml) separately and were measured at the indicated time after injection.

Fluid accumulation were measured using the weight (mg) and length (cm) in each loop at indicated time. Data are

means ± SEM of values for fluid accumulation (n = 6). Effects of genotype (p< 0.001), gender (p< 0.001), treatment

(p< 0.001) or interaction between time and gender (p< 0.001) were significant for fluid accumulation (2-way ANOVA,

Tukey’s multiple comparison test). Pairwise comparisons were significantly different (p< 0.001) in KO female CT vs.

KO male CT, KO female CT vs. WT female CT, KO male CT vs. WT male CT, but not significant in KO female PBS vs.

KO male PBS, KO female PBS vs. WT female PBS, KO male PBS vs. WT male PBS. (C) Upper immunoblots using Gαs

antibody shows the modified Gαs in epithelial cell from intestinal loop treated with PBS, cholera toxin (CT) or 8-Bromo-

cAMP (8-Br-cAMP) in female KO and WT, and male KO and WT mice. Numbered arrowheads are indicated as follows:

1, ADP-ribosylated Gαs; 2, 52-kDa Gαs; and 3, 45-kDa Gαs band. Lower figure shows effects of ARH1 genotype and

gender on fluid accumulation by cholera toxin in intestinal loops of ARH1 WT and KO mice. Intestinal fluid

accumulation (mg/cm) in female or male ARH1 WT and KO mice was determined after exposure for 6 hours to PBS, or

PBS containing 0.5 μg cholera toxin (CT) or 5 mM 8-Br-cAMP. Data are means ± SEM of values for fluid accumulation

(mg/cm) from ten intestinal loops of ten mice in each treatment (n = 10). Effects of genotype (p < 0.001), gender

(p< 0.001) or treatment (p< 0.001) are significantly different for fluid accumulation (2-way ANOVA, Tukey’s multiple

comparison test). Pairwise comparisons were significant (p< 0.001) in KO female CT vs. KO male CT, and WT female

CT vs WT male (p = 0.012), but not significant in KO female 8-Br-cAMP vs KO male 8-Br-cAMP (p > 0.9999).

https://doi.org/10.1371/journal.pone.0207693.g001
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treatment. Significant differences were observed between KO female CT-treated and KO male

CT-treated, and between WT female CT-treated and WT male CT-treated mice, whereas no

significant differences were observed between KO female 8-Bromo-cAMP and KO male

8-Bromo-cAMP (Fig 1C and S3 Fig). These results showed that cholera toxin enhanced fluid

accumulation (6 hours) in intestinal loops of ARH1 KO mice more than in loops from WT

mice. Also, CT-treated fluid accumulation in female ARH1 KO and WT mice was greater than

that from male ARH1 KO and WT mice, respectively. However, the effects of 8-Bromo-cAMP

on fluid accumulation were similar in WT and KO, female and male mice (Fig 1C and S3 Fig).

As is known, CT increased adenylyl cyclase activity, leading to an increase in cellular cAMP

through ADP-ribosylation and activation of Gαs. cAMP affects on water and electrolyte trans-

port were shown in previous reports [8, 28]. These data suggested that responsiveness to the

downstream signaling pathway was unchanged. Thus, the effects of cAMP on fluid accumula-

tion in ARH1 KO and WT mice were independent of ARH1 activity.

Effects of ARH1 genotype and gender on ADP-ribosylarginine content

Next, we measured ADP-ribosylarginine content in whole intestine as well as in epithelial

cells. ADP-ribosylarginine content of proteins from whole intestine and intestinal epithelial

cells was measured after the tissue was incubated with PBS or 0.5 μg of CT for 6 hrs. Cholera

toxin appears to affect the epithelial cells on the inner surface of intestine, because epithelial

cells contain gangliosides GM1, which binds cholera toxin and then promotes the ability of

cholera toxin to ADP-ribosylate Gαs. Thus, the inner layer of cells was removed and analyzed

separately from the remaining intestinal tissues. Differences between ADP-ribosylarginine

content of proteins were significant when comparisons were made among genotype, gender,

or treatment with or without CT. In whole intestine, pairwise comparisons showed significant

differences between KO female (or male) CT-treated and KO female (or male) PBS-treated,

KO female CT-treated and KO male CT-treated, and KO female PBS-treated and KO male

PBS-treated. No significant differences were observed between WT female CT-treated and

WT male CT-treated, and WT female PBS-treated and WT male PBS-treated. In epithelial

cells, differences were significant between KO female (or male) CT-treated and KO female (or

male) PBS-treated, and KO female CT-treated and KO male CT-treated; no significant differ-

ences were observed between WT female CT-treated and WT male CT-treated, and WT

female PBS-treated and WT male PBS-treated (Fig 2). These results suggested that the ADP-

ribosylated Gαs with CT-treated intestinal loops in ARH1 KO mice had more ADP-ribose

(arginine)proteins compared with those in ARH1 WT mice. In summary, female ARH1-KO

mice showed increased ADP-ribosylation of Gαs proteins and increased ADP-ribosylarginine

content both in whole intestine and in intestinal epithelial cells than male ARH1-KO mice,

consistent with the greater amounts of fluid accumulation in small intestine as well as greater

extent of ADP-ribosylated Gαs.

Discussion

In a prior study, we demonstrated a critical role of endogenous ARH1 in controlling CT acti-

vation in a mouse model of intoxication of small intestinal epithelial cells [28]. ARH1- knock-

out (ARH1-/-, ARH1-KO) cells showed increased ADP-ribose (arginine) protein content and

ADP-ribosylated Gαs more than their wild-type (WT) counterparts when they were stimu-

lated by CT [28]. In addition, the ADP-ribosylarginine content and ADP-ribosylated Gαs

were significantly reduced by overexpression of wild-type ADP-ribosylarginine hydrolase pro-

teins in ARH1-/- cells. ARH1-KO mice demonstrated greater increase in fluid accumulation,

Gαs modification, and ADP-ribosylarginine content in intestinal loops than their wild-type
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littermates in response to CT treatment. In this study, female ARH1-KO mice showed

increased fluid accumulation in small intestine in response to cholera toxin than did male

ARH1-KO mice. Further, female ARH1-KO mice, compared to their male counterparts,

showed increased ADP-ribosylation of Gαs protein and greater ADP-ribosylarginine content

both in whole intestine and in epithelial cells. Of note, the response to cAMP, the second mes-

senger whose synthesis is stimulated by cholera toxin, did not differ between female and male

ARH1-KO mice. The results of this study appear to indicate that ARH1-KO females are more

prone to fluid loss resulting from watery diarrhea following intoxication by cholera toxin than

ARH1-KO males.

Our report demonstrated gender differences of outcomes caused by CT intoxication. In

agreement, recent meta-analysis revealed that women had a higher prevalence of cholera than

Fig 2. Effect of ARH1 genotype and gender on ADP-ribosylarginine content. ADP-ribosylarginine content of proteins from whole intestine (upper)

or epithelial cells (lower) of loops were incubated with PBS or 0.5 μg of CT for 6 h. Data are means ± SEM of values (n = 6) from two loops of two mice in

each of three experiments. Effects of genotype (p < 0.001), gender (p< 0.001) or treatment (p< 0.001) are significant for ADP-ribosylarginine content

of proteins (2-way ANOVA, Tukey’s multiple comparison test). In whole intestine, pairwise comparisons were significantly different in KO male or

female CT vs. KO male or female PBS (p< 0.001), KO female CT vs. KO male CT (p = 0.001) or KO female PBS vs KO male PBS (p = 0.0393), but

differences were not significant (ns) for WT female CT vs. WT male CT (p = 0.9625) or WT female PBS vs. WT male PBS mice (p = 0.8972). In epithelial

cells, differences were significant in KO male or female CT vs. KO male or female PBS (p < 0.001), KO female CT vs. KO male CT (p< 0.001), but not

significant (ns) in WT female CT vs. WT male CT (p = 0.5815) or WT female PBS vs. WT male PBS mice (p = 0.9996).

https://doi.org/10.1371/journal.pone.0207693.g002
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men [41]; in addition, some reports claim that female sex is an individual risk factor for chol-

era incidence or death from diarrhea [35–38].

Intestinal peristalsis might be a potent cause of gender difference in fluid accumulation. A

prior report revealed that CT on an isolated colon surface in C57BL/6 mice affected the neural

regulation of contractile movement via 5-HT3 receptor-dependent pathway [42]. Female mice

in estrus but not male mice or female mice in proestrus demonstrated reduced colon motility

by CT. These effects resulted from a change of the number of 5-HT containing cells with the

estrus cycle in female mice. Knockout of ARH1 might affect the status of 5-HT containing

cells in small intestine, resulting in the gender differences, however, it has not been proven yet.

Further, the intestine motility is limited by ligation of small intestine segments in small intes-

tine loop models, and might not have affected the results of this study.

Other factors that might cause a gender difference by influencing innate host defense sys-

tems include gut microbiome [43]. Gut microbiome consists of symbiotic microbes, which is

diverse among individuals and host-specific [44]. A prior study revealed that microbiota,

which is recognized by CD11c-positive phagocytes via nucleotide-binding oligomerization

domain containing 2 (Nod2), is a prerequisite for the antigen-specific IgG production

enhanced by CT [45]. Some studies show that the gut microbiota show sex-specific differences

in immunity in rodent models [46, 47]. It might be possible that ARH1-KO mice have an

altered gut microbiome, which could have caused the sex bias in this study.

Surface proteins of the Vibrio cholerae bacterium and cholera toxin are the main antigens

involved in mucosal immune reactions in small intestine [43]. Oral cholera vaccines are being

developed to strengthen the adaptive immunity against inactivated bacterial surface protein

and against cholera toxin B subunit, thus being protective against bacteria and cholera toxin.

Interestingly, in clinical settings, oral cholera vaccine shows a protective effect in women more

than men [48]. This result suggests that gender differences affect intestinal mucosal immunity.

Several studies have shown that immune cells are activated and present in intestinal mucosa in

diseased bowel [49, 50]. Nevertheless, the number of immune cells in the mucosa appear to be

influenced by host gender or sex hormones in intestinal diseases [50–53].

Since cholera toxin was directly administered into murine small intestine, the results of our

study do not necessarily reflect overall characteristics of Vibrio cholerae infection. Multiple

defense mechanisms work in the host against Vibrio cholerae infection, keeping many people

asymptomatic even when they are infected by toxin-producing cholera. Vibrio cholerae is

transmitted by drinking pathogen-containing water or is highly likely transmitted from

human to human through the fecal-oral route in endemic areas [54–56]. Most of the bacteria,

however, appear to be destroyed by gastric acid [2, 57, 58]. In addition, cholera toxin does not

activate adenylyl cyclase unless its A subunit is endocytosed into the epithelial cells [59]. To

date, there seems no report addressing the gender differences in terms of these innate immune

mechanisms.

Among over 200 types in Vibrio cholerae serotypes, cholera endemics are caused by either

O1 or O139 serotypes. Further, O1 serotype is classified into the classical and the El Tor bio-

types based on the biological factors and/or genetic markers of possessed toxin [60, 61]. It has

been demonstrated that immunological responses seem to last longer in individuals with a pre-

vious history of classical biotype cholera than in those with a prior history of El Tor biotype

cholera [62]. Thus, the response to Vibrio cholerae differs from person to person in the real

world. It remains uncertain what proportion of men and women have previously acquired

immunity to cholera based on prior exposure in endemic areas. The recurrent rates of cholera,

particularly both in adult men and women, are affected individually by the state of immunity.

However, in many societies, women seem to suffer from cholera more frequently than men

[35–38, 41]. Societal norms such as caring for the sick or time to spend at home have been
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used to explain the exposure to cholera [31, 41]. The results of our study, however, appear to

indicate that biological aspects may be responsible for some gender differences and outcomes

in cholera epidemics. An underlying assumption in comparing WT and ARH1-KO mice is the

possibility that the genetics of ARH1 differ between populations. Further investigation is

needed as to whether individuals who suffer from recurrent cholera infections, particularly

women, have dysfunctional regulation of ADP-ribose metabolism.

In summary, we reported biological differences in reaction to CT between male and female

ARH1-KO mice. Based on the ARH1-KO and WT differences, it is possible that the level of

ARH1 protein may affect the gender specificity of the response to cholera toxin. Expression

and enzymatic function of ARH1 may be determined at the molecular levels by genetic factors

such as polymorphisms. Considering that Vibrio cholerae infection is a significant health prob-

lem in many parts of the world, the results of this study may in part explain the reports of

increased symptomatology of cholera toxin in women than in men.

Supporting information

S1 Fig. Effects of cholera toxin (CT) on ADP-ribosylation of Gαs in intestinal loops of

ARH1 KO mice. S1 Fig presents the original Western blot (raw data) using rabbit anti-Gαs

antibody and shows the ADP-ribosylated Gαs from ARH1 KO intestinal loops treated with

PBS or cholera toxin (CT) for 6 hours. Lanes 2–14 in the original blot were shown in Fig 1A

Gαs blot. Lanes 1, 4, 7 and 13 show the protein molecular weight (kDa) markers (PageRuler

Plus Prestained Protein ladder, Thermofisher Scientific, MA).

(TIF)

S2 Fig. Effects of cholera toxin (CT) on ADP-ribosylation of Gαs in intestinal loops of

ARH1 KO female and male mice. S2 Fig presents the original Western blot (raw data) of Fig

1B Gαs blots. Left (female) and right (male) immunoblots using rabbit anti-Gαs antibody

show Gαs from intestinal loops of ARH1 KO mice after exposure to cholera toxin (0.5 μg/0.2

ml) for 0 to 8 hours (hr) as indicated. Lanes 2–7 in both blots are shown in Fig 1B Gαs blots.

Lane 1 shows the protein molecular weight (kDa) markers (PageRuler Plus Prestained Protein

ladder, Thermofisher Scientific, MA).

(TIF)

S3 Fig. Effect of ARH1 genotype and gender on modified Gαs in intestinal loop treated

with PBS, cholera toxin (CT) or 8-Bromo-cAMP (8-Br-cAMP). S3 Fig presents the original

blots (raw data) of Fig 1C Gαs blots.

Upper and Lower immunoblots using Gαs antibody show modified Gαs in intestinal loops

treated with PBS, cholera toxin (CT) or 8-Bromo-cAMP (8-Br-cAMP) in female ARH1 KO

and WT mice, and male ARH1 KO and WT mice, respectively. Lanes 2–7 in Western blots

using anti-Gαs antibody was shown in Fig 1C.

Lanes 1 and 10 show the protein molecular weight (kDa) using See Blue Plus Protein marker

(Invitrogen, CA). Lane 11: positive control, recombinant Gαs protein (50 ng) (Millipore

Sigma, MA). Lanes 2–7; Intestinal loops in female or male ARH1 WT and KO mice were

treated with PBS, PBS containing 0.5 μg cholera toxin (CT) or 5 mM 8-Br-cAMP for 6 hours.

Lane 2: ARH1 KO intestinal loops treated with PBS, Lane 3: ARH1 WT intestinal loops treated

with PBS, Lane 4: ARH1 KO intestinal loops treated with CT, Lane 5: ARH1 WT intestinal

loops treated with CT, Lane 6: ARH1 KO intestinal loops treated with 5 mM 8-Br-cAMP, Lane

7: ARH1 WT intestinal loops treated with 5 mM 8-Br-cAMP.

In upper blot of female ARH1 KO mice; Lane 8: CT-treated intestinal loops for 2 hours in

ARH1 KO mice, Lane 9: CT-treated intestinal loops for 4 hours in ARH1 KO.
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In lower blot of male ARH1 KO mice; Lane 8: CT-treated intestinal loops for 4 hours in ARH1

KO mice, Lane 9: CT-treated intestinal loops for 2 hours in ARH1 KO.

(TIF)

S1 File. NC3Rs ARRIVE guidelines checklist.

(PDF)
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