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Following the discovery of pluripotent stem (PS) cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells, there
has been a great hope that injured tissues can be repaired by transplantation of ES/iPS-derived various specific types of cells such
as neural stem cells (NSCs). Although PS cells can be induced by ectopic expression of Yamanaka’s factors, it is known that several
stimuli such as ischemia/hypoxia can increase the stemness of somatic cells via reprogramming. This suggests that endogenous
somatic cells acquire stemness during natural regenerative processes following injury. In this study, we describe whether somatic
cells are converted into pluripotent stem cells by pathological stimuli without ectopic expression of reprogramming factors based
on the findings of ischemia-induced multipotent stem cells in a mouse model of cerebral infarction.

1. Introduction

Reprogramming by ectopic expression of different transcrip-
tion factors can induce conversion of adult mammalian
somatic cells into various types of stem cells (e.g., induced
pluripotent stem (iPS) cells by c-myc, Klf4, Sox2, and Oct3/4
[1, 2]; neural stem cells (NSCs) by c-myc, Klf4, and Sox2 [3]).
However, increasing evidence has shown that reprogram-
ming occurs in various organs during natural regenerative
processes following injuries [4, 5]. Thus, it may be ideal if
endogenous somatic cells can be converted into pluripotent
stem (PS) cells under pathological conditions, thereby con-
tributing to regeneration of damaged tissues.

Brain injuries such as ischemia/hypoxia promote the
induction of endogenousNSCs [6]. Although themechanism
of NSC induction remains unknown, increasing evidence
has shown that ischemia/hypoxia can increase stemness via
reprogramming [7, 8]. In support of this idea, we recently
showed that brain somatic cells such as pericytes (PCs)within
ischemic regions developed stemness, thereby acquiringNSC

activity [9–11]. Brain-derived, ischemia-induced stem cells
(iSCs) exhibited several PS cell markers such as c-myc, Klf4,
Sox2, and Nanog and also showed their multipotency to dif-
ferentiate into both neural and nonneural cell lineages, pre-
sumably through reprogramming [12]. However, it remains
unclear whether iSCs can acquire traits similar to those of
embryonic stem (ES) and iPS cells.

Recently, Takahashi et al. discovered that somatic cells
such as fibroblast cells can be transformed into PS cells with
phenotypes similar to ES cells by exogenous expression of
Yamanaka’s four factors: c-myc, Klf4, Sox2, and Oct4 [1, 2].
Thus, if endogenous somatic cells can be successfully repro-
grammed into PS cells in response to stimuli, they must
express Yamanaka’s four factors. In this study, we described
whether stimulated somatic cells can indeed be converted
into ES/iPS-like pluripotent state without ectopic expression
of reprogramming factors. We focused on the expression of
Yamanaka’s four factors in iSCs extracted from poststroke
adult mouse brains subjected to cerebral infarction.

Hindawi Publishing Corporation
Stem Cells International
Volume 2015, Article ID 630693, 6 pages
http://dx.doi.org/10.1155/2015/630693

http://dx.doi.org/10.1155/2015/630693


2 Stem Cells International

2. What Is the Origin of iSCs?

In the adult mammalian brain, it is well known that NSCs are
present in specific brain regions such as the subventricular
zone and subgranular zone within the dentate gyrus of the
hippocampus and that ongoing neurogenesis is retained in
these two zones [13, 14]. Although precise phenotypes of
NSCs remain unclear, various types of glial cell lineages such
as radial glia [15], astrocytes in the subventricular zone [16],
reactive astrocytes [6], resident glia [17, 18], and oligodendro-
cyte precursor cells [19] have been considered to be possible
sources of NSCs.

NSCs are narrowly defined as stem cells that only give rise
to neural cell lineages. However, increasing evidence shows
that certain NSCs differentiate into both neural and nonneu-
ral lineages [20–22].Thus, in a broad sense, NSCs are defined
as multipotent stem cells that can differentiate into various
lineages, including neural cells. Although the precise origin,
identity, and subtype of such multipotent NSCs remain
unclear, we recently demonstrated the development of injury-
induced NSCs (iNSCs) within ischemic areas of poststroke
brain, with a model of focal cortical infarction in adult mice.
These iNSCs possessed self-renewal capacity, which was
confirmed by 5-bromo-2-deoxyuridine uptake. The iNSCs
formed neurosphere-like cell clusters in vitro and differen-
tiated into electrophysiologically functional neurons, astro-
cytes, and oligodendrocytes [23]. In addition, we have shown
that iNSCs originate, at least in part, from reactive PCswithin
ischemic regions [9, 10] and that such PCs extracted from
ischemic regions (iPCs) exhibited multipotency [12], consis-
tent with the traits of PCs that have multilineage differenti-
ation potential [24–31]. These findings indicate that, under
pathological conditions, iPCs may be the origin of iSCs that
give rise to iNSCs [9–12].

3. Are iSCs ES/iPS-Like Stem Cells?

iPC-derived iSCs expressed the NSCmarker nestin as well as
PC markers such as PDGFR𝛽, NG2, and 𝛼SMA. In addition,
iSCs formed cell clusters (Figure 1(a)) and displayed pluripo-
tency markers c-myc, Klf4, and Sox2 of Yamanaka’s four
factors (Figure 1(b)), as described previously [9, 12], which is
consistent with the phenotypes of developingNSCs [32]. Fur-
thermore, iSCs expressed the PS cell marker Nanog, although
expression of Nanog as well as Sox2 was weak compared with
that of control ES cells. However, our previous study showed
that iSCs isolated from adult mouse brain did not express
Oct4 by any method, including Western blot [9] and reverse
transcriptase-polymerase chain reaction (RT-PCR) analyses
[12]. In addition, Oct4 was not observed even after > 35
cycles of PCR amplification (Figure 1(b)), which should be
able to detect very low levels of Oct4 in tissue-committed
stem cells such as very small embryonic-like stem cells
(VSELs) [33]. The evidence that iSCs expressed c-myc, Klf4,
and Sox2, but not Oct4, indicates that iSCs have different
traits compared with that of PS cells such as ES/iPS cells.This
also suggests that somatic cells in adultmouse brain have lim-
ited reprogramming potential in response to stimuli, thereby

acquiring less stemness compared with that of ES/iPS cells
(Figure 2).

One critical question is whether PCs are indeed somatic
cells because other groups have suggested that PCs originally
possess stemness [24]. However, it is possible that such
“näıve” PCs acquire stemness during in vitro treatment (e.g.,
repeated passages and chemical stimulation) because our
studies showed that PCs in normal (nonischemic) areas rarely
express Yamanaka’s factors by immunohistochemistry and
Western blot [9, 12]. Furthermore, we have never obtained
PCs with stemness from nonischemic areas, which strongly
suggests that under normal conditions, PCs in adult mice are
initially somatic cells rather than tissue-committed stem cells.
Even if PCs originally have a certain degree of stemness, our
results still show that it is difficult for PCs in adult mouse
brain to become ES/iPS-like stem cells by stimuli alone.

4. Why Do iSCs Express Reprogramming
Factors following Ischemic Stroke?

iSCs could be easily isolated from ischemic areas but not
nonischemic areas [9, 10, 12, 34, 35], showing that ischemia
is essential for induction of iSCs. Ischemia is reported to acti-
vate the reprogramming factor c-myc following stroke [36].
Consistent with that study, using amousemodel of stroke, we
have shown that c-myc+ cells were present within ischemic
regions, including iSCs; however, they were rarely observed
within nonischemic regions [12]. In addition, we showed
that the reprogramming factors such as Klf4 and Sox2 were
also expressed in iSCs within ischemic regions, whereas they
were rarely expressed within nonischemic regions [12]. Fur-
thermore, our study using commercially available primary
human pericytes (hPCs) showed that under oxygen-glucose
deprivation (OGD) conditions, which mimic ischemia/hyp-
oxia in vivo [37], hPCs rapidly increased Klf4 expression [12].
This suggests that OGD is a positive factor for inducing Klf4
following ischemic stroke in vivo. However, OGD itself did
not affect expression of c-myc in hPCs, although ischemic
stroke increased expression of c-myc in vivo. In addition, we
found that Sox2 expression by OGD treatment was not as
remarkable as Klf4 expression, although Sox2 was activated
in iSCs following ischemic stroke [12].

These findings indicate thatOGD itself cannot completely
mimic ischemic events in vivo and that factors other than
OGD are also involved in the activation of reprogramming
factors in iSCs following ischemic stroke. In support of this
idea, we found that environmental factors such as leukemia
inhibitory factor [38] and basic fibroblast growth factor [39]
that are secreted from stimulated endothelial cells surround-
ing PCs also function as positive factors for activation of Sox2
[12]. These findings indicate that in vivo ischemia is a very
complex event, and likely multiple factors, including OGD,
are involved in the activation of reprogramming factors
in iSCs following ischemic stroke. Additional studies are
required to clarify which factors/signal pathways are critical
to induction of iSCs.
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Figure 1: iSCs were isolated from ischemic areas and formed cells clusters (a). iSCs as well as control ES cells expressed c-myc, Klf4, Sox2,
and Nanog. However, Oct4 was not observed even after > 35 cycles of PCR amplification. The cycle number of PCR amplification is shown
in the circles (b).

5. What Other Previously Reported Stem Cells
Express Oct4 Other than ES/iPS Cells?

Although we have never detected Oct4 expression in iSCs,
previous reports by other groups have shown Oct4 expres-
sion in several types of stem cells other than ES/iPS cells,
such as VSELs [33, 40–43] and multilineage-differentiating

stress-enduring cells (muse cells) [44, 45]. Ratajczak and
colleagues reported that VSELs are a population of develop-
mentally early and small stem cells residing in adult tissues of
both mice and humans [40, 42]. VSELs, defined by Lin−Sca-
1+CD45− markers, were reported to have phenotypes of PS
cells. VSELs express PS cell markers such as stage-specific
embryonic antigen (SSEA)-1, SSEA-4, Nanog, and even Oct4
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Figure 2: Evidence that iSCs lacking Oct4 have different traits
compared with those of ES/iPS cells, suggesting that somatic cells
in adult mouse brains have limited reprogramming potential in
response to stimuli.

[42, 46], although Oct4 expression in VSELs was very low
compared with that of ES cells [33]. The population of
quiescent VSELs expands in response to stimuli [43]. Until
now, VSELs were reported to be isolated from various
tissues, including bone marrow, testis, and ovary [33, 40, 41].
However, as far as we know, there has been no report of
VSELs being obtained from brain. Thus, it is possible that
Oct4 expression in stem cells is originally different among
organs (e.g., between brains and bone marrow). However,
recent studies by several independent researchers cast doubt
on the presence of VSELs because they could not find Oct4-
expressing PS cells in reported VSEL populations [47–49].
Therefore, the exact characteristics of VSELs should be
clarified in further studies.

Muse cells are PS cells which belong to mesenchymal lin-
eages and can be isolated from various tissues (e.g., bonemar-
rows and skin) as SSEA-3/CD105 double-positive cells [44,
45]. In addition, muse cells are reported to express various
PS cell markers, including Sox2, Nanog, and Oct4. However,
Oct4 expression of muse cells was quite low compared with
that of ES cells, andmuse cells did not contribute to formation
of teratoma-like tumorigenesis. Thus, it seems apparent that
muse cells do not have the pluripotency to the degree
observed in ES/iPS cells. Until now, muse cells expressing
Oct4 can be successfully isolated from humans but not from
other species. This also suggests that stemness is originally
different among species (e.g., between mice and humans),
although their precise traits remain unclear.

There have beenmany reports inwhich authors described
that various types of stem cells such as mesenchymal stem
cells [50, 51], adipose-derived stromal cells [52], and neural
crest-derived stem cells [53–55] expressed Oct4. However,
Bhartiya implied that some studies may have misinterpreted
Oct4 expression [33]. Takeda et al. showed that Oct4 has two
major isoforms, Oct4A and Oct4B, and only Oct4A is related
to pluripotency, whereas Oct4B has no biological function
[56]. Further, Warthemann et al. pointed out that it is
possible that a false-positive forOct4A expressionmay lead to
misinterpretation [57].Thus, stem cell biologists should care-
fully investigate Oct4 expression using appropriate positive
controls such as ES/iPS cells becauseOct4 is a key factorwhen
estimating the state of pluripotency [1, 2, 58].

6. Conclusion

Herein, we discussed in detail whether stimulated somatic
cells can acquire pluripotency. Our studies regarding iSCs
showed they expressed c-myc, Klf4, and Sox2, but not Oct4,
suggesting that even with severe stimuli, such as ischemia/
hypoxia, which promote reprogramming, it is not easy to
reprogram adult somatic cells into an ES/iPS-like state.
Although iSCs lacked Oct4, pluripotency of iSCs should be
carefully investigated because they certainly express various
pluripotent markers such as c-myc, Klf4, Sox2, andNanog, as
we previously demonstrated [9, 12]. We need further exami-
nation regarding teratoma formation capacity and germline
transmission ability. We also understand that further studies
are required using youngermice (e.g., neonatalmice), various
organs (e.g., bone marrow, liver, and lung), various stimuli
(e.g., sheer stress), and/or other species (e.g., rat and human).
We hope that stem cell biologists would provide convincing
answers for these fundamental questions in future investiga-
tions.

Abbreviations
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iNSCs: Ischemia-induced neural stem cells
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