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The close relations between dogs (Canis lupus familiaris) and humans lay a foundation for

cross species transmissions of viruses. The co-existence of multiplex viruses in the host

accelerate viral variations. For effective prediction and prevention of potential epidemic or

even pandemic, themetagenomicsmethod was used to investigate the gut virome status

of 45 domestic healthy dogs which have extensive contact with human beings. A total of

248.6 GB data (505, 203, 006 valid reads, 150 bp in length) were generated and 325, 339

contigs, which were best matched with viral genes, were assembled from 46, 832, 838

reads. In the aggregate, 9,834 contigs (3.02%) were confirmed for viruses. The top 30

contigs with the most reads abundance were mapped to DNA virus families Circoviridae,

Parvoviridae and Herpesviridae; and RNA virus families Astroviridae, Coronaviridae and

Picornaviridae, respectively. Numerous sequences were assigned to animal virus families

of Astroviridae, Coronaviridae, Circoviridae, etc.; and phage families of Microviridae,

Siphoviridae, Ackermannviridae, Podoviridae, Myoviridae and the unclassified phages.

Further, several sequences were homologous with the insect and plant viruses, which

reflects the diet and habitation of dogs. Significantly, canine coronavirus was uniquely

identified in all the samples with high abundance, and the phylogenetic analysis therefore

showed close relationship with the human coronavirus strain 229E and NL63, indicating

the potential risk of canine coronavirus to infect humans by obtaining the ability of

cross-species transmission. This study emphasizes the high detection frequency of virus

harbored in the enteric tract of healthy contacted animal, and expands the knowledge

of the viral diversity and the spectrum for further disease-association studies, which is

meaningful for elucidating the epidemiological and biological role of companion animals

in public health.
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INTRODUCTION

Dogs (Canis lupus familiaris), one of the most popular
companion animals, have extensive interactions with humans
through sharing spaces, occasionally biting and scratching,
playing, and producing fecal waste. Besides, dogs also frequently
hunt or scavenge wildlife, increasing the potential transmission
risk of zoonosis, as exemplified by rotavirus and rabies virus
(1–3).

Domestic dogs are the potential source of zoonosis for human
during the direct contact with infected dogs or indirect contact
via dog feces (4). The infectious or zoonotic pathogens in
infected dogs might transfer to human and cause infection after
inadvertent ingestion. This kind of infection caused by canine
fecal zoonoses is always ignored or misdiagnosed due to the
non-specific clinical signs or the unaware of the presence of
the zoonotic pathogens. Even though dogs are getting popular
as pets in the city and the potential zoonotic risk from the
close contact between human and dogs, few contemporary
studies were carried out to characterize the viral content of
canine feces. Till now, there are several viral infections identified
affecting the health of dogs (5–7). Canine distemper virus
(8) and canine parvovirus2 (CPV2) (9, 10) are distributed
globally and highly contagious. Other viruses such as canine
rotavirus (11), adenovirus, herpesvirus (12), influenza virus
(13), papillomavirus (14) and parainfluenza virus (15) have also
been reported as potential dog pathogens. Canine coronavirus
(CCoV) including enteric CCoVs, canine respiratory coronavirus
and canine pantrophic coronavirus were identified in previous
research (16–18). A better understood of the zoonotic pathogens
and the health risk posed by domestic dogs would prompt to
institute effective strategies more efficiently in the prevention of
human infections.

Thanks to the development and application of next generation
sequencing (NGS) technology in viral metagenomics, it has
been practical for large-scale detection of known and unknown
viruses in the reservoir hosts (19, 20), including human,
turkey, pig, cow, bat, cat, horse, chicken, rodents, pigeon, duck,
ferrets and other animals (21–32). Several novel or uncommon
virus strains were identified and isolated successfully with this
approach. A clear virome status in the reservoir hosts is also
necessary to control the outbreaks of viral diseases and to
prevent the transmission (33). However, for domestic dogs
in the city, more information and research were in need for
the viral diversity in the enteric tract to achieve knowledge
of potential enteric pathogen risk and a better diagnose of
the diseases.

In this research, metagenome was applied to obtain an
unbiased measure of the viral diversity in the guts of domestic
dogs. The fecal viruses in specimens from sheltered and pet dogs
were characterized, suggesting a wide range of viral sequences
related to plant, animal, insect, and phages. This viral genome
information from the enteric tract of healthy domestic dogs
presented a baseline for fecal virome and is a good reference for
future identification of composition changes, which may indicate
the potential risk for public health security.

MATERIALS AND METHODS

Ethics Statement
All animal experiments followed the recommendations in the
Guide for the Care andUse of Laboratory Animals of theMinistry
of Science and Technology of the People’s Republic of China.
The Animal Care and Use Committee of Shanghai Academy
of Agricultural Science reviewed protocols, including operation
details as well as approaches to ameliorate animal suffering
and euthanasia.

Specimens and Pretreatment
A total of 45 fecal specimens of domestic dogs were collected
from five pet hospitals located in four urban districts (Jiading,
Minhang, Songjiang and Jing’an), in which the communities have
large populations more than 10,000. Aiming to better reflect the
conventional status of gut virome in domestic dogs, the dogs
were randomly selected with the criteria of being healthy and
behaving normally, and the vaccination situation was recorded.
The fecal specimen was placed in the sterile-tipped eppendorf
tube and frozen at −80 ◦C within 4–8 h of collection. One g of
the fecal specimen was washed with 10 volumes of precooled
sterile SB buffer (0.2M NaCl, 5mM CaCl2, 50mM Tris-HCl,
5mMMgCl2, pH 7.5) after three rounds of freezing-thawing. The
samples were centrifuged at 4◦C for 5min at 1,000 ×g, 3,000
×g, 5,000 ×g, 8,000 ×g, 10,000 ×g and 12,000 ×g separately
to remove the precipitate. After precooling on ice for10min, the
cell fragments were removed by 0.22µm ultrafiltration tube and
the supernatant was transferred to the ultracentrifugation tube
containing 28% (w/W) sucrose to centrifuge at 300,000 ×g for
2 h using HIMAC CP 100 wx ultracentrifuge (Hitachi, Tokyo,
Japan). The precipitate was suspended in buffer solution (90
uL 10× DNase I Buffer, 90 uL 1 U/uL DNase I, 0.9 uL 100
mg/mL RNaseA, 720 uL sterile water) and shook for 60min at
37◦C to digest non-particle-protected nucleic acids, then stored
at 4◦C overnight.

Extraction of Viral Nucleic Acids
DNA and RNA were co-extracted from the pretreatment samples
with MagPure Viral DNA/RNA Mini LQ Kit (Magen kitR6662-
02), while the equivalent SB buffer was used as a blank
control. The viral RNA was reverse transcribed according to the
specification of SuperScript III reverse transcriptase (Invitrogen)
with random hexamer primer. Afterwords, SMARTer Ultra Low
input RNA kit was used to synthesize double strand cDNA.
The double-stranded DNA fragments comprising of 3′ or 5′

overhangs were generated and end-repaired followed by A-tail
adapter ligation. The whole genome was amplified with Qiagen
kit according to manufacturer’s instructions. The viral nucleic
acids were quantified by the NanoDrop spectrophotometer
(Thermo Fisher Scientific) and 1.5% agarose electrophoresis.

Library Generation and Sequencing
Following manufacturer’s instructions, the Next R© UltraTMDNA
Library Prep Kit for Illumina R© (New England Biolabs) was
used to generate the sequencing libraries and add the index
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FIGURE 1 | Heatmap of contigs with the top 30 abundance of sequence reads in each sample. (A) The heatmap of DNA virus contigs. (B) The heatmap of RNA virus

contigs. Information of contigs and the virus families was provided in the right text column. The samples were listed below the heatmap. The boxes colored from blue

to red represent the abundance of virus reads aligned to each contig.
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codes. The library quality was assessed by the Qubit R©

dsDNA HS Assay Kit (Life Technologies) and Agilent 4,200
system (Agilent, Santa Clara). High-throughput sequencing
was conducted on an Illumina Novaseq 6,000 and 150 bp
paired-end reads were generated by the Magigene Company
(Guangzhou, China). Eighteen libraries were then constructed
(Supplementary Table 1).

Data Analysis
The raw sequencing reads were processed to acquire the clean
data using Soapnuke (v2.0.5) (34) for further analysis. The
sliding-window algorithm was used to trim the reads with
low quality after removing the adapters from sequencing reads
using Cutadapt (v1.2.1). All clean reads were mapped to the
host reference genome of Canis lupus familiaris (dog) and
the ribosomal database (silva.132) (35) utilizing BWA (v0.7.17)
(36) to avoid the confusion caused by host sequences and
ribosomes. The obtained quality-filtered reads were then de
novo assembled to generate the metagenome for each sample.
Clean reads without host sequences and ribosomes were mapped
to the GenBank non-redundant nucleotide (NT) database to
identify virus reads primarily. Different virus families were
classified according to the annotation information from NCBI
taxonomy database.

Phylogenetic Analysis
Nucleotide sequences (https://www.ncbi.nlm.nih.gov/sra/
PRJNA734701) were firstly assembled from contigs and then
aligned using CLUSTALWwith the default settings (37). Aligned
sequences were trimmed to match the genomic regions of the
viral sequences obtained in the study. The reference sequences,
including dog viral sequences, related viral species or genera and
the best BLASTp hits, were obtained from the GenBank database.
Phylogenetic trees were constructed using the neighbor joining
method by MEGA 6.06 (38) with 1,000 bootstrap replicates.

RESULTS

Viral Metagenomics
A total of 45 fecal specimens of domestic dogs from five pet
hospitals were used to reveal viral diversity of urban domestic
dogs. Five samples were mixed to nominate a same ID for deep
sequence of both DNA and RNA database, therefore; a total of
18 data IDs were generated (Supplementary Table 1). A total of
248.6 GB NGS data related to viral nucleic acids sequences were
obtained from platform Illumina containing 505,203,006 valid
reads (150 bp in length). Hereinto, there were 46,832,838 reads
(∼0.09% of the total sequence reads) were best matched with
viral proteins available in the NCBI database. In each sample,

FIGURE 2 | Host wise distribution of eukaryotic viruses cataloged in the dog gut virome. Summary of the sequence classification at different taxonomic ranks by their

assigned homology results of host information.
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the number of reads associated to virus varied from 16,907 to
16,859,924 (Supplementary Table 1). In the aggregate, 31 DNA
and 32 RNA families of viruses were parsed. MEGAHIT (version
1.0) (39) was utilized to generate 325,339 unique contigs with a
max length of 643,829 bp. A total of 9,834 contigs (3.02%) were
assigned for virus species, in taxonomic assignment on the basis
of BLAST analysis (Supplementary Table 2).

Different types of viral genomes were identified, including
87.63% DNA viruses and 12.37% RNA viruses. And 78.35% of
the RNA viruses were assigned to be Phages. There were also
42,359 contigs suspected to virus species, 91.45% accounting for
DNA viruses, 8.55% for RNA viruses, and 76.12% for Phages
(Supplementary Tables 3, 4). The top 30 unique contigs with the
most reads abundance of DNA virus were assigned to families
Circoviridae, Parvoviridae and Herpesviridae, meanwhile RNA
virus were assigned to families Astroviridae, Coronaviridae, and
Picornaviridae (Figure 1).

Insect, Plant and Phage Viruses
The sequences mapping to insect and plant viruses comprised
a proportion within the eukaryotic family viruses in the dog.
Several dog virome sequences were homologous with the

insect virus families of Polydnaviridae, Iridoviridae, Nimaviridae
and Dicistroviridae, and plant virus families of Virgaviridae,
Solemoviridae, Alphaflexiviridae and Bromoviridae, reflecting
the diet and habitation of domestic dogs. The phages of
the Microviridae, Siphoviridae, Ackermannviridae, Podoviridae,
Myoviridae families, and unclassified phages (Figure 2).

Vertebrate Viruses
Numerous dog virome sequences had homology with the
animal virus of the Astroviridae, Coronaviridae, Circoviridae,
Picornaviridae, Caliciviridae, Herpesviridae, Parvoviridae,
Genomoviridae, Retroviridae and Flaviviridae families
(Figure 3). The shared viruses of all the nine databases
were analyzed to investigate the frequency of different viruses.
A total of 11 DNA viruses (Figure 4A) and one RNA virus
(Figure 4B) were discovered in all samples. The 11 DNA shared
viruses were phages except for the CRESS viruses. Significantly,
the unique shared RNA virus was coronavirus. What’s more,
further abundance analysis of the animal virus in all the samples
indicated that Alphacoronavirus was discovered in all the nine
databases and with the secondary proportion. Although the
canine astrovirus occupied the most proportion, only seven

FIGURE 3 | Taxonomic distributions of the eukaryotic virus-related sequences from dog gut virome. The number of sequences with identities to eukaryotic viruses

was shown.
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FIGURE 4 | The shared virus distributions of the nine databases. (A) The shared virus distributions of DNA virome. (B) The shared virus distributions of RNA virome.

of nine databases were detected (Figure 5). Therefore, the
relationship of different coronaviruses was further analyzed.

Coronavirus
The unique virus family confirmed in all the nine databases was
Coronaviridae. Since none of the sampled dogs was vaccinated
with coronavirus, the results could reflect the real Coronaviridae
presence in the gut. Larger contigs were produced to assemble
several coronavirus sequences. Whole genome sequences of
strains belonging to Alphacoronavirus and Betacoronavirus
genera were downloaded from the NCBI database. Together
with the 6 sequences confirmed as Coronavirus in the study, all
the reference sequences were aligned utilizing MEGA version
6.06 (38). CLUSTALW was used to align the sequence with
the default settings (37). Further, the aligned sequences were
trimmed to match the whole viral genomic obtained in the
study. By means of MEGA version 6.06 (38), a phylogenetic tree
was generated using the neighbor-joining method with 1,000
bootstrap resamples of the alignment data sets. As a result, the
phylogenetic analysis showed Coronavirus contigs in the study
clustered in Alphacoronavirus genera and these strains were
divided into three sublineages (Figure 6). They showed a close
relationship with canine coronavirus circulating in China, USA

and Italy. C1.R and C2.R were clustered in the same sublineage,
while C4.R, C7.R and C9.R were grouped into a group, which
was closely related to canine coronavirus strain CB/05 circulating
in Italy. C3.R showed a relatively distinct relationship with other
viruses (Figure 6). The host range is largely determined by the
coronaviral spike protein, which initiates cellular infection by
promoting fusion of the viral and host cell membranes (40, 41).
Although the viruses in the study clustered in different lineage
with the human pandemic viruses, such as MERS and SARS-
Cov, it is possible that they might eventually gain efficient
transmissibility through the accumulation of mutations and
reassortment especially within the spike gene. Significantly,
the canine coronavirus B203 and B363 strains had a close
relationship with the human coronavirus 229E and NL63 strains,
indicating the potential risk of canine coronavirus to infect
humans by obtaining the ability of cross-species transmission.

DISCUSSION

This research described the virome in fecal samples from 45
healthy dogs in metagenomics analysis by using next generation
sequencing (NGS) technique. Except for the current research,
there were only two previous shotgun metagenomic studies
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FIGURE 5 | The composition of eukaryotic RNA viruses detected in dog gut virome. The center pie chart indicated the approximate percentages of the ten virus

groups detected in all nine databases. The circumjacent smaller pie charts showed the approximate percentage of virus sequence from different databases. The

databases are shown in different colors.

similarly investigating the fecal virome of dogs with diarrhea
(42, 43). Comparing to the various investigations of the virome in
numerous animal species and in different sites of the host body,
the fecal virome of healthy domestic dogs has not been separately
investigated, which will be more persuasive for the safety
precaution. Our study successfully identified various viruses
from 45 fecal samples from healthy domestic dogs. The identified
viral sequences ranged from RNA and DNA families to known
pathogens which were implicated in enteric disease. A total of 31
DNA and 32 RNA families of viruses were identified. Numerous
dog virome sequences were homologous to the animal virus of
the Astroviridae, Coronaviridae, Circoviridae, Picornaviridae,
Caliciviridae, Herpesviridae, Parvoviridae, Genomoviridae,
Retroviridae and Flaviviridae families; and phages of the
Microviridae, Siphoviridae, Ackermannviridae, Podoviridae,
Myoviridae families and unclassified phages. Further, several dog

virome sequences had homologous with the insect viruses of the
Polydnaviridae, Iridoviridae, Nimaviridae and Dicistroviridae
families; and plant viruses of the Virgaviridae, Solemoviridae,
Alphaflexiviridae and Bromoviridae families, which reflects the
diet and habitation of dogs. These results show a high detection
frequency of virus in extensively contacted animals and provide
the associated viral genomes for further study or diagnose of
corresponding diseases. In detail, the 63.95% of canine feces
containing vertebrate viruses was consistent with the previous
report (43).

The bacteriophages were the most common viral contigs
identified from human and other animals fecal virome, especially
from the samples with diarrhea (22, 44–47). Bacteriophages
modify the diversity of bacterial populations due to their lytic
life cycle (48). This conferred an advantage over bacterial species
in the environmental niche (49). For example, a higher amount
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FIGURE 6 | The phylogenetic tree of Coronavirus. The phylogenetic tree was generated by using the MEGA6 software version 6.06 with neighbor-joining method and

bootstrapped with 1000 replicates. The assembled sequences in the study are labeled in red triangle. The labeled blue circle represents the Coronavirus from human,

and the labeled blue diamond represents the Coronavirus from human resulting in pandemic.

of bacteriophages that identified in the dogs with acute diarrhea
to healthy dogs, might contribute to the bacterial dysbiosis (43).
However, the identified bacteriophages in our study occupied
18.48%, following with the vertebrate viruses. The virome was
analyzed based on healthy domestic dogs, which might possess
a moderate amount of bacteriophages. Bacteriophages belonging
to families Siphoviridae, Ackermannviridae, Podoviridae,
Myoviridae and ssDNA family Microviridae were identified.
However, this study did not assess the bacterial microbiome
and yet analyzed contigs matching specific bacteriophages,
therefore, a cross analysis of microbiome/virome is further
necessary to elucidate interactions of bacteria and bacteriophages
in dogs.

Among the viruses identified in this study, astrovirus was
detected mainly in puppies with diarrhea and occasionally in
healthy dogs in previous research (50–54). And the complete
genome of two canine astroviruses was firstly described in
the UK in 2015 (53). To date, canine astrovirus has been
reported in Australia (43), USA (6), China (51), Italy (50, 55,
56), UK (53), France (52), Brazil (57), Korea (58) and Japan
(54). Our metagenomic sequence data indicated that the most
frequent vertebrate viral family in healthy dog samples was
Astroviridae (70.88%), indicating Astroviridae has emerged with
more frequency as time goes by.

To investigate the frequency of different viruses, the shared
viruses of all the nine databases were analyzed. Significantly,
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Alphacoronavirus was identified in all the nine databases.
Coronavirus is responsible for a variety of severe diseases
including gastroenteritis and respiratory tract diseases. This
virus has a wide range of hosts, such as horses, mice, rats,
turkeys, chickens, swine, rabbits, cattle, dogs, cats and humans
(59). Infections caused by coronavirus were identified in both
animals and humans (60). The coronavirus can be shed
in feces for up to 156 days in dogs (16, 17), which will
increase the risk to infect other animals and even humans.
The first human coronaviruses were identified in the 1960s
from patients with the common cold. Since then, more and
more viruses from this family were discovered. For example,
the two pathogens causing severe acute respiratory syndrome
(SARS) and the Middle East respiratory syndrome (MERS) (61),
fatal respiratory disease in humans (62), were all from the
Coronaviridae family. The severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) pandemic occurred in Wuhan in
December 2019 represents a global threat (63). The primary
entry receptor for SARS-CoV-2 is the Angiotensin-converting
enzyme 2 (ACE2). A recent study indicated that the ACE2 of
dogs facilitated SARS-CoV-2 entry into nonsusceptible cells (64).
Significantly, SARS-CoV-2 was detected from two dogs which
lived with the diagnosed humans, while the dogs remained
asymptomatic during quarantine (65). All the evidence suggests
that these are transmissions of SARS-CoV-2 across species (41).
Classically, CCoV was considered to cause only self-limiting
enteritis with mild diarrheal disease (66). However, the increase
in disease severity in dogs and the emergence of novel CCoVs
can be attributed to the high level of recombination within
the spike gene that can occur during infection by more than
one CCoV type in the same host (67). Therefore, there is
the likelihood of continued emergence of novel CCoVs with
distinct pathogenic properties in the future. Although the viruses
in the study clustered in different lineage with the human
pandemic viruses, such asMERS and SARS-Cov, it is possible that
they might eventually gain efficient transmissibility through the
accumulation of mutations and reassortment especially within

the spike gene. Significantly, the canine coronavirus B203 and
B363 strains in the phylogenetic tree had a close relationship

with the human coronavirus 229E and NL63 strains, indicating
the potential risk of canine coronavirus to infect humans by
obtaining the ability of cross-species transmission. Therefore,
it is urgent to further investigate the mechanism of mutation
and reassortment of canine coronavirus in order to prepare for
potential pandemic.

The viral metagenomic analyses are useful for the
investigation of viral populations in the feces of healthy domestic
dogs, which is significant in elucidating the epidemiological and
biological role of companion animals in public health.
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