
microLife, 2, 2021, uqab011

https://doi.org/10.1093/femsml/uqab011
Advance Access Publication Date: 9 September 2021
Research Article

RESEARCH ARTICLE

Simulating the impact of non-pharmaceutical
interventions limiting transmission in COVID-19
epidemics using a membrane computing model
M. Campos1,2,3, J. M. Sempere3, J. C. Galán1,2, A. Moya2,4,5, C. Llorens6,
C. de-los-Angeles7, F. Baquero-Artigao8, R. Cantón1,† and F. Baquero1,2,*,‡

1Department of Microbiology, Ramón y Cajal University Hospital, M-607, km 9,1 28034 Madrid, Spain, 2Centro
de Investigación Biomédica en Red de Epidemiologı́a y Salud Pública, M-607, km 9,1. 28034 Madrid, Spain,
3Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de Valencia, Camı́ de
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ABSTRACT

Epidemics caused by microbial organisms are part of the natural phenomena of increasing biological complexity. The
heterogeneity and constant variability of hosts, in terms of age, immunological status, family structure, lifestyle, work
activities, social and leisure habits, daily division of time and other demographic characteristics make it extremely difficult
to predict the evolution of epidemics. Such prediction is, however, critical for implementing intervention measures in due
time and with appropriate intensity. General conclusions should be precluded, given that local parameters dominate the
flow of local epidemics. Membrane computing models allows us to reproduce the objects (viruses and hosts) and their
interactions (stochastic but also with defined probabilities) with an unprecedented level of detail. Our LOIMOS model helps
reproduce the demographics and social aspects of a hypothetical town of 10 320 inhabitants in an average European
country where COVID-19 is imported from the outside. The above-mentioned characteristics of hosts and their lifestyle are
minutely considered. For the data in the Hospital and the ICU we took advantage of the observations at the Nursery
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Intensive Care Unit of the Consortium University General Hospital, Valencia, Spain (included as author). The dynamics of
the epidemics are reproduced and include the effects on viral transmission of innate and acquired immunity at various
ages. The model predicts the consequences of delaying the adoption of non-pharmaceutical interventions (between 15 and
45 days after the first reported cases) and the effect of those interventions on infection and mortality rates (reducing
transmission by 20, 50 and 80%) in immunological response groups. The lockdown for the elderly population as a single
intervention appears to be effective. This modeling exercise exemplifies the application of membrane computing for
designing appropriate multilateral interventions in epidemic situations.
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INTRODUCTION

Epidemics are based on an ensemble of transmission events
among heterogeneous hosts; in fact, epidemics are determined
by the density and intensity of natural biological fluxes among
biological entities connected by complex networks that respond
to a highly variable ensemble of causes and forces (Baquero 2017;
Baquero et al. 2018a). Membrane-computing differs from con-
ventional mathematical models and most computational mod-
els in representing the actors of complex biological scenarios
and their multi-hierarchical dynamics and nested interactions
as particular computational entities (objects and membranes)
(Păun et al. 2010; Pérez-Jiménez et al. 2003). In practical terms,
cellular membrane computing mimics reality, facilitating the
evaluation of possible interventions and decisions to be adopted
when facing multilayer challenges, as is the case in complex epi-
demics.

In the computational model presented in this article, an epi-
demic process caused by a particular entity (the virus) occurs
among computational entities simulating a community with
a particular populational structure, contacts and behaviors
resembling those that occur in the real world. This ‘virtual com-
munity approach’ has been recently applied to simulate the
infective spread of extrachromosomal genetic elements (plas-
mids) among bacteria and to predict various interventions to
limit the spread of antibiotic resistance genes, bacterial species
and their clones in the hospital and community settings (Cam-
pos et al. 2015, 2019, 2020; Baquero et al. 2018b, 2021; Gil-Gil et al.
2021).

The suitability of this approach for studying the effects of
potential interventions aimed at limiting the spread of or per-
petuation of COVID-19 epidemics is clear. For this purpose,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) is considered a particular object that interacts with other
objects (hosts, represented by membranes) in particular scenar-
ios, according to a set of rules and having sensitivity to the fre-
quencies of interacting objects.

Changes in the scenarios, rules and frequencies, resulting
from varying interventions, will influence the density of viral–
host interactions. These changes are easy to modify in the
model, thereby helping to predict the success of each partic-
ular intervention or different simultaneous intervention. This
task is extremely difficult to test in practice (Soltesz et al. 2020)
and requires advanced modeling tools. The model applied in this
study has significant plasticity; the data entered into this model
can be derived from observations of particular settings, such as
hospitals, the community, long-term care centers and schools.
The model can be developed also to consider multiple commu-
nities, or even the implication of multiple species (i.e. animals
and humans).

Our simulator (which is also applicable to other viral dis-
eases) is named LOIMOS, from the Ancient Greek λιμός , mean-
ing plague or pestilence but can refer to any deadly infectious

disorder. A user-friendly interface is being developed for LOIMOS
and will be freely available. Interested readers should contact
our first author, Marcelino Campos (mcampos@dsic.upv.es).

The basic scenario

First, we start by modeling the dynamics of the epidemic in an
isolated COVID-19-free population composed of 10 320 healthy
individuals (a number resulting from demographic adjustments)
not previously exposed to the causal agent of the infection. After
introducing an infected person from another community, three
cases were detected in this community. To reflect the natural
dynamics of epidemics, our parameters refer to a ‘wild’ model
population where no protective measures are considered.

Next, we explored the effect of adopting transmission-
decreasing interventions of varying intensity and adopting dif-
ferent times from the onset of the epidemic to evaluate their
influence on the epidemiological dynamics. For simplicity’s
sake, this article does not detail the particular interventions for
reducing transmission; however, the model allows each one of
them to be considered, either alone or in combination. These
interventions might include (1) the use of surgical masks by the
general population, (2) use of FFP2 masks by the general popula-
tion, (3) the use of facial masks, (4) the use of autonomous respi-
rators in highly exposed health workers, (5) hand washing and
disinfection, (6) reduction of sputum formation in the elderly,
(7) isolation of COVID-negative elderly individuals at home and
nursing care facilities (considered in the study), (8) complete
lockdown, i.e. significant limitation in leaving the house, travel-
ing abroad or allowing foreigners to enter the region, (9) partial
lockdown, limiting group activities and requiring physical dis-
tancing in shops, restaurants and leisure activities, telework for
a portion of the population and (10) early detection of individu-
als and contact surveillance for the presence of COVID-19. Given
that each of these interventions’ accounts for a percentage of the
total reduction in transmission and that their application varies
significantly among sites, we decided for this first article to use
a global percentage representing the sum of such interventions
when applied at different intensities.

Parametric structure of the model

The numerical data should correspond to the local data (at
any hierarchical level, such as hospitals, towns, regions, and
nations). Occasionally, the exact quantitative data are not avail-
able; therefore, the types of parameters applied can be catego-
rized as (1) assumed parameters, representing choices made a
priori based on existing knowledge and scientific literature; (2)
measured parameters that will be directly determined from the
data and (3) inferred parameters, which are the quantities of
interest that are unavailable and can only be inferred by their
similarity with the parameters of other viral illnesses and basic
biological processes.
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The model’s demographics
Most demographic data reflect those available from the INE-
Base ‘Population figures and Demographic Census’ data from
the National Institute of Statistics of Spain (National Institute
of Statistics of Spain 2020).

Age groups

The basic model considers four age groups of healthy hosts: (1)
0–12 years of age; (2) 13–19 years of age; (3) 20–59 years of age
and (4) 60 years of age or older. The healthcare practitioners who
work as doctors, nurses and nurse assistants and the healthcare
practitioners who work in retirement homes belong to the 20–
59-year age range.

Living spaces

(1) Home, where a family is living; (2) working place, where
adults meet in working hours; (3) children’s school, where the
hosts in the 0–12 years old range meet in school hours; (4)
teenagers school, where the hosts in the 13–19 years old range
meet in school hours; (5) public spaces, as streets, shops and
public transportation where hosts move from one to other
place; (6) leisure areas, including week-end massive uncon-
trolled street drinking meetings, involving adolescents and a
proportion of adults; (7) elderly day centre, where a 40% of
elderly host meet daily; (8) elderly nursing home, where a group
of elderly hosts have a permanent stay); (9) hospital wards,
attended by patients with severe symptoms, or by patients with
critical symptoms waiting for a bed in the intensive care unit;
(10) intensive care unit, the place in Hospital where critical
patients are admitted until reaching the carrying capacity and
(11) post-ICU setting, where patients that have been discharged
from ICU because good prognostic stay for a week before coming
back home, although as patients with a length of stay of app. 10
days are unfrequently transmitters (Kampen et al. 2020).

Population structure at home

We model the following compositions (the number of fami-
lies is indicated in parenthesis): (a) one external adult worker,
one internal adult worker, two children less than 12-years-old
(175 families); (b) one external adult worker, one internal adult
worker, one child less than 12-years-old and one adolescent
(30); (c) one external adult worker, one internal adult worker,
two adolescents (105); (d) one hospital or elderly nursing home
worker, one adult home worker, two small children (30); (e)
two home-working elderly people (1190); (f) one adult exter-
nal worker, one adult internal worker (496); (g) one adult exter-
nal worker, one adult internal worker, one small child (276);
(h) one adult external worker, one adult internal worker, one
teenager (184); (i) two external adult workers, two children less
than 12-years-old (175); (j) two external adult workers onw child
less than 12-years-old and one adolescent (30); (k) two external
adult workers, two adolescents (105); (l) two external adult work-
ers, one small child (276); (m) two external adult workers, one
teenager (184) and (n) two external workers (744).

Division of time for the various hosts

The model has the following divisions of time: (1) For exter-
nal adult workers—Monday–Friday 07:00–08:00 travel in public
spaces, 08:00–16:00 working at the workplace, 16:00–17:00 travel
in public spaces and 17:00–07:00 at home. (2) Internal home
workers start working at 08:00, 09:00, 10:00, 16:00, 17:00 or 18:00
(with 10% assigned to at each of these times). They have a option

of outside activity (e.g. shopping) for 1 (40%), 2 (24%) or 3 h (36%)
every day except Saturday and Sunday. (3) For children and ado-
lescents: 08:00–09:00 travel in public spaces and 09:00–16:00 at
school. The time at which they return home can range from
17:00 to 18:00 (20%), 18:00 to 19:00 (48%) and 19:00 to 20:00 (32%).
From then until 08:00, they stay at home, all day except Sat-
urday and Sunday. (4) For hospital workers, the model distin-
guishes between day shift workers (07:00–08:00 travel in pub-
lic spaces, 08:00–16:00 in hospital wards/ICU, 17:00–19:00 travel
in public spaces and 19:00–7:00 at home) and night shift work-
ers (18:00–20:00 travel in public spaces, 20:00–06:00 in hospital
wards/ICU, 06:00–07:00 travel in public spaces and 07:00–18:00 at
home. (5) Care homes are attended by 20–40% of retired work-
ers over 60 years of age, with the following division of time:
08:00–09:00 travel in public spaces, 09:00–18:00 in the care home,
18:00–19:00 travel in public spaces and 19:00–08:00 at home. (6)
Retired older adults not living in care homes have a division of
time identical to that of internal home workers. (7) In care homes
for the elderly, elderly people live together permanently within
a common space, with five adult external healthcare workers
having a division of time similar to that of hospital healthcare
workers. For the divisions of hours, note that we are considering
that epidemics occur in the winter–spring, but these data can be
adapted to the summer-autumn if necessary.

The model considers other activities. External and internal
workers, children and adolescents might go out to enjoy public
spaces during the weekend, starting at 10:00 (30%), 17:00 (35%)
or 18:00 (32.5%) for 1 (40%), 2 (24%) or 3 h (36%). During the dawn
and early morning and on Friday nights, a high proportion of
adolescents (50%) and a small proportion of adults (15%) are
located in leisure areas. On Saturday night, the relative propor-
tions of adolescents and adults are 80% and 30%, respectively.
These groups are in public spaces from 0:00 to 1:00, in leisure
areas from 01:00 to 06:00 and once again in public spaces from
06:00 to 07:00. A total of 40 families (with four members) have
one or more relatives in care homes for the elderly; each of these
family members has a 25% probability of visiting the care home
on Saturday and a 25% probability on Sunday. These members
are therefore in public spaces from 09:00 to 10:00, in the care
home from 10:00 to 16:00 and back in the public spaces on their
way home from 16:00 to 17:00.

Population numbers

In the model, we consider a representative original sample, con-
sisting of an isolated community (we do not consider the intro-
duction of foreigners, but this will be presented in a forthcom-
ing study) of 10 320 healthy individuals (a number that reflects
the demographic adjustments and limitations of the computer
workload), consisting of 1372 children attending school, 848 ado-
lescents attending school, 4324 external workers, 1266 adult
home workers, 2380 elderly home workers, 20 hospital-based
professionals (five in wards and five in the ICU, on day and
night shifts), 100 elderly individuals living permanently in nurs-
ing homes, served by 10 adult external health workers (five per
shift). Overall, we have 1372 young children, 848 adolescents,
5620 hosts aged 20–59 years and 2480 hosts aged more than 59
years.

System rules on the population dynamics of infected
hosts

(1) Asymptomatic hosts do not modify their habits. (2) When
symptomatic patients perceive their first symptoms, they might
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have a maximal viral load of approximately 70% (see follow-
ing paragraph). They might initially consider the infection as
mild and remain at home until their clinical cure (again asymp-
tomatic), for an average of 7 days since the first symptoms. (3) A
host in an elderly nursing home with mild infection remains in
the nursing home. (4) For each hour that elapses, there is a 0.0015
probability that the host with mild infection progresses to severe
infection, in which case there are admitted to a hospital. There-
fore, the possibility that a host with mild infection who has not
recovered after the first week will progress to a severe infection
is 22.29% after 1 week and 39.61% after 2 weeks. (5) Patients with
severe infection have a mortality risk of 0.0005/h, 8.05% the first
week and 15.7% the second week; (6) Patients with severe infec-
tion admitted to a hospital become critical at a rate of 0.002/h,
which is 28.56% in 1 week and 48.97% in 2 weeks. In this case,
the patients are admitted to the ICU or remaining at the hospital
waiting for ICU admission. (7) Critical patients have a mortality
risk of 0.002/h in the ICU (28.56 in 1 week and 48.97 in 2 weeks)
and 0.004/h if they could not be admitted to the ICU (49% in 1
week and 73.99 in 2 weeks). (8) Patients who are cured in the
hospital (with either severe or critical infection) stay an average
of 1 week longer in the hospital, after which they are discharged
home. ICU mortality risks were estimated in accordance to the
nursery evaluations at the ICU of Consortium University General
Hospital, Valencia, Spain.

Conceptual and parametric framework of the basic
model

Viral load
Viral load refers to the number of infectious viral particles in the
respiratory secretions of an individual who has interacted with
the virus. This number should correlate with the tissue culture
infectious dose (TCD50), the quantity of viral particles able to
infect 50% of inoculated tissue cultures (Bordia et al. 2020), which
can be estimated at approximately 400 particles/mL in vivo, this
number is highly variable and difficult to measure but has been
estimated at 10E+7/mL of respiratory secretions (Pujadas et al.
2020). In this study, we considered the viral load in an indi-
vidual as a fraction of the maximal viral load. For instance, a
viral load of 0.001 means that the load is a thousand times
lower than the maximal viral load. Infected children do not dif-
fer from adults in terms of viral load (Colson et al. 2020). Patients
with bronchopulmonary damage or pneumonia have remark-
ably high viral loads. In reverse transcription polymerase chain
reaction (RT-PCR) assays, the cycle threshold (Ct) is based on the
number of cycles required for the fluorescent signal to exceed
the background level and can be inferred as a surrogate for viral
load. If the Ct is more than 24 cycles (fewer than 20 000 viral
copies/mL), the tested individual has a significant reduction in
their ability to transfer the virus, and the transfer does not occur
with a Ct >30–34 (La Scola et al. 2020). However, this does not
mean that these patients (particularly ones with severe infec-
tion) do not carry viable viruses (Singanayagam et al. 2020). Of
course, protective measures (e.g. masks) reduce the acquiring
and spreading of viral loads and consequently transmission.

Mode of transmission
The virus is transmitted to another individual through contact
with the respiratory secretions of an infected individual (with
or without symptoms), directly reaching the respiratory tract
or indirectly through hand-respiratory tract (nose, mouth) con-
tact. There should be a ‘minimal propagulum’ for viral loads, a
threshold below which no significant (permanent) transmission

takes place (estimated at fewer than 20 000 copies/mL; Bullard
et al. 2020). When crossing this threshold, there is a certain
probability for contagion, the rate at which an infected patient
can transmit the virus to non-infected individuals. This rate
is influenced by the donor’s viral load. Given that the samples
are frequently heterogeneous, the viral load should be deter-
mined as the delta Ct (the difference between the viral target
Ct and a Ct marker of human cells) but more importantly by
the transmission mode (rhinorrhoea, sneezing, frequent cough-
ing and, in particular, sputum formation, which produce large
airborne droplets, multiplying the risk of transmission by 4–5-
fold), thereby correlating with clinical severity (Guan et al. 2020),
previous respiratory disease, age and habits. For instance, chil-
dren can have remarkably high viral loads with low contagion
efficiency. These factors could explain the phenomenon of so-
called ‘superspreaders’. There are apparently numerous differ-
ences in viral loads when comparing asymptomatic and non-
severe symptomatic patients (Lee et al. 2020).

Infectious period
This period refers to the duration of infectiveness, the time dura-
tion which a person harboring the virus is able to transmit that
infection to another human. In our model, we consider that on
average a colonized individual can transmit viruses 48 h before
symptom onset. In a given individual, the maximal transmis-
sion rate occurs from the second to fourth day after symptom
onset. In previously healthy patients (children and adults), the
danger of transmission is minimal 1 day after symptom onset.
In patients with bronchopulmonary damage or pneumonia, the
infectious period is longer (15–20 days).

The contagion index
Infected hosts who exceed a viral density threshold have a cer-
tain possibility of infecting an infection-naı̈ve host, a possibility
that obviously depends on the contact rate, which refers to the
number of non-infected individuals a person harboring the virus
can be expected to meet. This number depends on numerous
factors, including population density, number of contacts within
100 cm/h, amount of time spent in closed areas and climatic fac-
tors. Entering parameters reflecting these factors into the model
is difficult, given the heterogeneity and highly variable nature of
these situations. Existing models of COVID-19 contagion rely on
parameters such as the basic reproduction number (R0), which
represents the number of secondary infections originating from
a primary infected individual in a fully susceptible population
and is difficult to measure in real time (which is one of our
objectives with this model). These models employ static statis-
tical methods that do not capture all of the relevant dynamics
(Oehmke et al. 2020). Note that the major aim of this work is not
to forecast the COVID-19 endemics, but just to create a virtual
frame (a local epidemics) to assess the possible effects of the
application of non-pharmaceutical interventions.

In our model, we dissect the contagion dynamics by consid-
ering the population dynamics of the infected hosts according to
age, work and leisure activities, living spaces and public spaces,
which requires the consideration of an estimated contagionind-
experperson/h. For instance, a basic contagion index of 0.125/h
for hosts with a viral load of over 20 000 copies/mL (0.2% of
the maximal virus load, 10E+7/mL) means that in a given set-
ting an infected host in contact with other hosts for 8 h pro-
duces on average 1 contagion (8 h × 0.125/h). Lower contagion
indexes (effective daily contagions per host) have been proposed
(Casares and Khan 2020) but have proven to be unrealistic in pre-
liminary test runs of our model (data not shown). In fact, we
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used parametric ranges selected by testing different values of
these parameters and running the model to reach epidemic pro-
files ‘within the range’ of observed epidemics in Spain (Centro de
Coordinación de Alertas y Emergencias Sanitarias 2020, 2021).

To mimic the contagion window, our model includes a spe-
cific time-counter for each type of host to adjust for the time
when the host starts to spread the virus.

Natural immune response and receptivity to contagion
Some of the individuals exposed to the virus do not develop
symptoms, even when lacking acquired immunity. This lack of
symptoms could be due to the rapid elimination of most if not
all arriving viral particles by a highly efficient innate immunity
(mostly mediated by interferons and resident macrophages, see
below; Dogra et al. 2020), eventually eliminating the propagule,
particularly in children and young adults, thereby having a sig-
nificant effect on contagion.

Contagion is highly influenced by the infected host’s immune
response. The correlation between antibody-mediated immu-
nity to the coronavirus and protection and severity has been
documented (Huang et al. 2020) but less documentation exists
for the natural (innate) immune response. In general, there is
scarce information on the relationship between the immuno-
logical status and the transmission rate. For the purposes of this
model (which does not necessarily fully reflect reality), we dif-
ferentiated four types of host populations accordingly to their
natural immune response.

First, there are those who acquired the virus, which can
replicate until reaching 20% of the maximal viral load. Dur-
ing this process, the innate immunity is triggered, causing the
viral load to decrease. An acquired immune response does not
occur. These cases are either asymptomatic or have very mild
symptoms. This type is here designed as the ‘efficient innate
immunity/lacking acquired immunity/mild to no symptoms’ (E-
inn/L-acq/N) type. Second, there are those in whom the viruses
are efficiently cleared by their innate immunity but that cross
the viral load threshold for triggering acquired immunity. In
most cases, these hosts remain asymptomatic or have mild
symptoms. This type is designed as the ‘efficient innate immu-
nity/normal acquired immunity/mild to no symptoms’ (E-inn/N-
acq/N) type. Third, there are the hosts whose innate immu-
nity is insufficient for reducing the viral load, which increases
accordingly and crosses the threshold after which symptomatic
infection occurs and acquired immunity is developed. This
type is designed as the ‘inefficient innate immunity/normal
acquired immunity/symptomatic’ (I-inn/N-acq/S) type. Fourth,
there are the hosts whose innate immunity is insufficient to
clear the virus, resulting in a symptomatic infection; how-
ever, their acquired immune response is weak or slow. This
type is designed here as the ‘inefficient innate immunity/weak
acquired immunity/symptomatic’ (I-inn/W-acq/S) type. The E-
inn/L-acq/N and I-inn/W-acq/S types can be reinfected after
exposure with a contagious host but will respond to the new
challenge according to their specific response pattern. Table 1
lists the estimated frequency of these populations per age group
that were used in our model.

Contagions per age, severity and location
In practice, contagions essentially occur when hosts of the I-
inn/N-acq/S and I-inn/W-acq/S types interact with infection-
naı̈ve hosts. Non-symptomatic hosts are low transmitters, in
general those who, after being exposed to the virus, were able
to clear the infection by innate immunity and are expected to
have a low or non-existent viral load. We considered that these

hosts have an average transmission rate of <0.01/person/h. Non-
symptomatic hosts that progress to a more severe status have
a transmission rate of 0.02/person/h. Table 2 presents the esti-
mated contagion index per contact person and hour, considering
the spaces where the hosts are located, their age and the sever-
ity of the infection.

Reinfections
In our model, a particular infected patient who progressed to
a healthy stage re-assumed their daily routine, where they
might interact with other infected hosts, exposing the patient
to a potential new viral contagion, which might progress to a
new infection. Reinfection of a cured patient depends on their
immunological status. If they are an E-inn/N-acq/N or I-inn/N-
acq/S type, reinfection does not occur. If they belong to the
E-inn/L-acq/N type, the second viral challenge will be aborted
because it occurred in their first infection. Acquired immunity is
in fact critical for preventing reinfection (Kim et al. 2021). Accord-
ingly, if the recovered and now healthy patient were of the I-
inn/W-acq/S type, the probability of reinfection in the model
depends on the intensity of the immune response, which can
be weak (such as the during the first contagion) or more effec-
tive than during the first contact. We consider both probabilities
equivalent (50%-50%).

Elderly lockdown
The ‘elderly lockdown’ intervention involves canceling all exter-
nal visits to nursing homes, closing elderly day centers and
reducing by 80% the external activities of the elderly.

Representation of the temporal progression of the
epidemic load

Frequency of infected hosts
Only a fraction of individuals who acquire the virus are con-
sidered ‘cases’; the rest are able to clear the first viral infec-
tion through their innate immunity. We represent the progres-
sion of the total number of cases by age group but differentiate
those who are infected but remain asymptomatic or have short
mild symptoms thanks to the innate immunity from those who
are clearly symptomatic but clear the infection through their
acquired immunity. We include representations of the frequency
of infected hosts with various levels of severity who are admit-
ted to hospitals or ICUs.

Frequency of susceptible or immune hosts
Susceptible hosts are those who have not been exposed to the
virus and lack sufficient innate or acquired immunity to clear
the virus infection. Immune hosts are those who have cleared
the virus and have recovered from the infection, either through
innate or acquired immunity. A small percentage of individuals
who are cured by their innate immunity could become suscep-
tible.

Frequency of contagions
We represent the absolute number of contagions in the vari-
ous types of hosts, behaviors and compartments. In our model,
a contagion is a ‘rule’ applied with a certain probability when
each of computational entities representing the various types of
infected hosts comes into contact with another host, leading to
the acquisition of the virus. The frequency of contagions does
not exclude the virus transmission events to already infected
hosts. The interest in estimating the frequency of contagions
lies in determining the general evolution of the risks associated
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Table 1. Estimated frequency of immunological response types per age group.

Age groups, years

0–12 12–19 20–60 >60

E-inn/L-acq/N 0.1979 0.1956 0.12 0.1562
E-inn/N-acq/N 0.7421 0.6844 0.52 0.2437
I-inn/N-acq/S 0.03 0.06 0.18 0.3
I-inn/W-acq/S 0.03 0.06 0.18 0.3

Table 2. Estimated contagion index per contact person and hour, considering the spaces where the hosts are located and the age, immunological
and clinical groups to which they belong. The ‘x’ symbol represents impossible situations (e.g. individuals with severe or critical symptoms
cannot attend their workplace).

Public spaces Homes Workplaces
Elementary

schools
Secondary

schools
Leisure

locations
Nursing
homes Hospitals

E-inn/N-acq/N or
E-inn/L-acq/NAsymptomatic

0.02 0.02 0.02 0.03 0.03 0.06 0.04 0.05

I-inn/W-acq/S or
I-inn/N-acq/SIncubation for
disease

0.1 0.1 0.1 0.15 0.15 0.3 0.2 0.25

I-inn/W-acq/S or
I-inn/N-acq/SWeak
symptoms (0–60 years)

0.1 0.1 0.1 0.15 0.15 0.3 0.2 0.25

I-inn/W-acq/S or
I-inn/N-acq/SWeak
symptoms (>60 years)

0.2 0.2 x x x x 0.4 0.5

I-inn/N-acq/SSevere or
critical symptoms

x x x x x x 0.4 0.3

with particular types of hosts, behaviors or compartments. The
frequency of contagion is represented globally but also differ-
entiates the contagions originating from cases that progress to
healthy due to innate or acquired immunity.

Mortality rate
This representation illustrates the cumulative number of deaths
caused by the COVID-19 infection over time, according to age. In
the text, we also express the global number as the mortality rate
(deaths per 1000 inhabitants per year).

RESULTS

Influence of time until the implementation of
interventions of varying intensity on the number of the
individuals in the COVID-19 response groups

Figure 1 presents the basic epidemiological dynamics of the
modeled epidemics. The epidemic starts with the spread of
asymptomatic cases that have an efficient innate immunity but
have a viral load sufficient for triggering an acquired immunity
response. These cases reach a prevalence of 29.07 at 42 days
(1000 h) after the onset of the epidemic but decreases to less
than 2.5 at 84 days (pink line in Fig. 1). This initial pulling wave
is followed by the contamination of asymptomatic individuals
(mostly children and adolescents) who aborted the infection due
to a powerful innate immunity without developing protective
acquired immunity. Combined with re-exposures to the virus,
the curve drops slowly with time but with no significant trans-
mission to other populations. Symptomatic patients, with insuf-
ficient innate immunity to prevent high viral loads, reach max-
imum prevalence at approximately 4.0–5.0 at 52 days from the

onset of the epidemic. In these symptomatic patients, the num-
ber able to develop a normal acquired immunity (green line)
decreases more rapidly but not excessively compared with those
with weak immunity (mostly elderly patients). A residual num-
ber of symptomatic individuals are maintained even at 200 days
from the onset of the epidemic.

Reduction in the maximum prevalence in the COVID-19
response groups: influence of time until
implementation of interventions of varying intensities

In this section, we model the effect of time from the start of
the epidemic to the application of a counteractive intervention.
We expect these interventions to reduce the disease contagion
by 20, 50 or 80%. The effects on four populations with differing
immunological responses are shown in Fig. 2. The detailed data
are provided in the Table S1 (Supporting Information) in Supple-
mentary Material.

The early implementation of interventions that can decrease
transmission 15 days after the start of the epidemic reduces the
maximum prevalence percentage for all groups. However, if the
intensity of the reduction is low (20%), the reduction in the max-
imum prevalence is modest: 7–13% for non-symptomatic cases
(E-inn/N-acq and E-inn/L-acq) and 10–18% for symptomatic
cases (I-inn/N-acq and I-inn/W-acq). With a medium intensity
of reduction in transmission (50%), the reduction in the maxi-
mum prevalence is 42–45% for non-symptomatic cases and 50–
58% for symptomatic cases. Combining the early implemen-
tation of interventions and high intensity, 80% of the reduc-
tion in transmission, the maximum prevalence values strongly
decrease below 90% (90–95% for non-symptomatic cases and 92–
95% for symptomatic cases).
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Figure 1. Influence of interventions (time of adoption and intensity of reduction in transmission) on the number of individuals in the host populations with vary-

ing response to the COVID-19 infection. I-inn/N-acq/S (symptomatic): insufficient innate immunity, normal acquired immunity (green line); E-inn/N-acq/N (non-
symptomatic): efficient innate immunity, with normal acquired immunity (pink); E-inn/L-acq/N (non-symptomatic): efficient innate immunity, lacking or with very
weak acquired immunity due to poor antigenic challenge, violet and I-inn/N-acq (S, symptomatic): insufficient innate immunity, weak acquired immunity (dark blue).
Steps in the time scale represent hours after the onset of the epidemics (approximately 1000 h, 42 days, approximately 5000 h, 7 months).

The differences between the initial implementations to
decrease transmission at 15 or 23 days, for any level of intensity,
are relatively minor. If these actions are promoted after 30 days,
the effects in reducing maximal prevalence are maintained and
remain modest at 20% intensity. At a 50% intensity of reduction,
we achieve lower reductions in maximum prevalence after 30
days in transmission for non-symptomatic cases (32–35%) and
symptomatic cases (38–40%). Even at an 80% intensity of reduc-
tion, there is a clear drop in the reduction of maximum preva-
lence (65–79% for asymptomatic cases and 79–81% for symp-
tomatic cases). If interventions are adopted at 37 days after
the onset of the epidemic, the reductions in maximum preva-
lence rates are relatively modest compared with these obtained
at 30 days for transmission reductions of 20% and 50%. How-
ever, even with an intensity of 80% in transmission reduction, a
strong decline in maximum prevalence occurs for symptomatic

patients (from 79–81% at 30 days to 52–57% at 37 days). Inter-
ventions adopted at 45 days from the onset have an extremely
limited effect in reduced the maximum prevalence for the vari-
ous groups. The numerically important E-inn/N-acq/S group has
no reduction at all. Even with a high intensity in reducing trans-
mission (80%), the prevalence of symptomatic cases (E-inn/N-
acq and E-inn/W-acq) was reduced by only 12% and 19%, respec-
tively.

Influence of time until the implementation of
interventions of varying intensity on the populations at
given clinical stages

Figure 3 (upper row) represents the influence on the popula-
tions in different clinical stages of the interventions for reduc-
ing transmission with varying intensities (20, 50 and 80%) and
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Figure 2. Percentage reduction in maximum prevalence (RMP) in the various COVID-19 immunological response populations (see text of Fig. 1) according to the time

interventions were adopted and according to the intensity of the reduction in transmission.

Figure 3. Upper row: percentage reduction in maximum prevalence (RMP, in the number of cases) according to the time of adoption and intensity of interventions (20%

blue; 50% red and 80% grey) in the various clinical progression groups: asymptomatic, WS-RW (weak symptomatic rarely progressing to worsening), WS-EW (weak
symptomatic progressing to worsening), SS-EW (symptomatic progressing to worsening) and SS-SW (symptomatic progressing to severe or critical worsening). Lower
row: delay in maximal prevalence (DMP, in days) of the various clinical progression groups. Black dots represent the days from the onset of the epidemic where the
maximum prevalence occurs in the event of no-intervention.

adopted at different time periods from the onset of the epidemic.
In general, the early adoption of interventions to decrease trans-
mission increases the reduction of the maximum prevalence
(RMP, represented in ordinates) for all populations. RMP also
steadily increased due to more intense transmission reductions.

An apparently paradoxical trend is apparent when a 20% reduc-
tion in transmission (blue bars) increases the RMP to a higher
degree in the patients progressing to higher severity. Conversely,
an 80% reduction (grey bars) increases the RMP slightly more
in asymptomatic and weak symptomatic patients. In general,
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no relevant RMP differences are found if the implementation of
transmission reduction occurs after 15 or 23 days after the onset
of the epidemic, but the RMP decreases significantly with longer
delays. The detailed values are represented in Table S2 (Support-
ing Information) in the Supplementary material.

Figure 3 (lower row) shows the influence of the implementa-
tion time and the intensity of interventions for reducing trans-
mission on the delay in maximum prevalence (DMP, expressed
in days) of the populations at different clinical stages. The
black dots represent the expected DMP if no interventions were
adopted. There is a sequential process, where infected but
asymptomatic patients can progress to WS-RW or WS-EW, WS-
EW can progress to SS-EW and these can progress to SS-SW (see
definitions in the legend of Fig. 3). The DMPs therefore steadily
increase over time in balance with the severity and the maxi-
mum prevalence of the more severely ill patients occurring at
later stages. Therefore, the early adoption of interventions (e.g.
15 days after the onset of the epidemic) ensures that the effect is
extended in time, influencing all stages in which patients poten-
tially worsen. This explains why an 80% reduction in transmis-
sion (grey line) adopted at 15 days pushes the maximum preva-
lence peak of asymptomatic patients from less than 50 days
in the case of non-intervention to more than 100 days. How-
ever, the same 80% reduction adopted at 45 days has much
less effect on symptomatic patients, because this late inter-
vention has arrived too late to decrease the number of asymp-
tomatic patients and thus their potential progression to severity.
Moreover, as the emergence of severely ill patients is naturally
delayed, the late adoption of interventions results in insufficient
time to significantly act on the process. An intervention with
only a 50% reduction in transmission (red line) adopted before
30 days results in a clear delay in maximum prevalence in all
stages of severity, including the more severely ill patients.

The influence of adoption times of interventions of vary-
ing intensity for preventing transmission on the extent of
the time period (ETP) where the different clinical severity
groups are maintained at different prevalences is shown in
Fig. 4. A decrease in asymptomatic cases is associated with
a longer maintenance (purple and green lines), particularly if
the transmission-reducing interventions are implemented very
early (a comparison of the adoption of interventions at 37 and
15 days is shown in the red boxes of Fig. 4). In general, the early
adoption of transmission-reducing interventions reduces the
prevalence; however, the emergence of new cases is extended in
time and applies to symptomatic and critical patients (compare
the blue and black lines in the red boxes), which should influ-
ence the prolongation of the epidemic, likely by maintaining the
sources of contagion for successive waves (not considered in this
manuscript) while favoring the dynamics of hospital and ICU
admission by reducing the risk of exceeding bed capacity.

Influence of time until the implementation of
interventions of differing intensities on the mortality
rate per age group

We estimated the age-related mortality in the absence of inter-
ventions in our model as follows: <0.1% for the 0–12-year group,
0.29% for the 13–19-year group, 1.64% for the 20–59-year group
and 17.58% for >60-year group. Figure 5 shows the progression
of mortality for these age groups when varying intensities (%)
of transmission reduction are adopted at different times. The
curves corresponding to the 0–12 and 13–19-year groups are not
noticeable given the very low mortality rate. The mortality for

the 20–59-year group is scarcely influenced by the 20 and 50%
reductions in transmission and by the 80% reduction only if it
occurs during the first 30 days after the onset of the epidemic.
As expected, most deaths occurred in the elderly (older than 60
years, green line). In general, the mortality rates did not increase
significantly after 3000 steps (approximately 125 days after the
onset). An 80% reduction in transmission significantly decreases
the mortality in the elderly patients, even if the intervention
is applied at 45 or 37 days after the onset of the epidemic; if
adopted earlier (e.g. 23 or 15 days), deaths can be almost com-
pletely prevented.

Elderly lockdown

Considering the above results, we tested the effect of an ‘elderly
lockdown’ in the absence of other general interventions. The
‘elderly lockdown’ intervention implies suspending all external
visits to nursing homes, the closure of elderly day centers and
an 80% reduction in external activities for the elderly (>60 years).
In nursing homes and hospitals, we tested the effect of supple-
mentary measures for reducing transmission by 80, 90 and 95%.

We first modeled the effect of this elderly lockdown interven-
tion in the absence of any other intervention (including general
measures to reduce transmission in the general population) on
the general dynamics of the epidemic. As shown in Fig. 6 (top
row), the intervention reduced the prevalence non-symptomatic
cases by approximately 25–30% in the general population, and
the reduction of transmission, even of 95%, in elderly areas add
very few extra reductions in prevalence.

The effect of the lockdown on the prevalence of infection in
the elderly population (Fig. 6, upper and lower panels) is cer-
tainly impressive. The prevalence of infection dropped by 90%
in the elderly non-symptomatic cases and 85–90% in the elderly
symptomatic cases. The extra addition of transmission reduc-
ing interventions by 95% has a negligible effect in further drops
in prevalence but shorten the time where symptomatic cases
occur. The elderly lockdown also had a major effect on the avail-
ability of ICU beds (lower panel of Fig. 6). Without restrictions,
the ICU is fully occupied most of the time, and, except at the
start of the epidemic (approximately 40 days, 1000 hourly steps
in Fig. 6), where a substantial number of severely ill patients in
the 20–59-year age range are admitted (violet bars), the elderly
patients (green bars) were predominant for an extended period
(at least 6 months), and even scattered cases occurred later.
The number of cases in the hospital was high (red line), and
many critical cases deserving intensive care were waiting for
ICU admission (blue line). With the elderly lockdown as a sin-
gle intervention, more people in the 20–59-year age range can
be treated, with much less pressure from elderly patients and
for a shorter period.

DISCUSSION

Epidemic processes occur within complex and stratified land-
scapes, where the possibility of quantitatively ascertaining the
different combinations of factors is frequently far beyond the
technical capabilities. We present here two examples. The first,
which is particularly relevant for the epidemiology of COVID-
19, is how to measure the number of individuals who have
been exposed to the virus without developing any symptoms of
the infection (or very mild symptoms) and do not develop any
detectable humoral response. Such a visible response to expo-
sure relates to the innate protective response, which is under-
stood here as the ensemble of factors preventing the virus from
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Figure 4. Influence of adoption times for interventions of varying intensity on the extent of the time period (ETP) during which individuals belonging to the different

clinical severity groups are maintained. In ordinates, the number of individuals across time.

producing an infection, from innate immunity to the scarcity of
suitable viral receptors in the cell, (Cox and Brokstad 2020), or
perhaps the interference of the virus by Bifidobacterium, frequent
in children and young people (Ali, Kim and Sun-Yoon 2021). In
those patients who have been infected but do not develop ill-
ness, the viruses probably have a lower transmission rate to sus-
ceptible individuals; however, this cannot be measured. A sec-
ond case in point is our inability to predict the epidemic dynam-
ics in a susceptible human population when the first COVID-19
cases emerge, when various measures are adopted within differ-
ent time frames. How do we ascertain the effect of a single inter-
vention? How do we to establish an identical control population
where the intervention has not been implemented? Modeling is
the only way to approach a rational management of epidemic
situations (Sridhar and Majunder 2020; Gibney 2020). Of course,
our predictions only apply for a local population, not at all for
the COVID-19 pandemic.

Membrane computing, derived from natural and cellular
computing, creates a virtual community of hosts, a community
of computable objects in the model, composed of immunolog-
ically different individuals of varying ages and social activities,
able to stochastically interact at particular times and to react dif-
ferentially with the infective objects, i.e. the virus (see Introduc-
tion). The model is in fact a fine-grain recreation or virtual repre-
sentation of reality. With our agent-based model, we attempted
to meet the challenge posed by Kathleen O’Reilly at the Lon-
don School of Hygiene and Tropical Medicine: ‘You need to col-
lect information on households, how individuals travel to work
and what they do at the weekend’ (Adam 2020). Of course, the
interactive parameters are unknown or known imprecisely, but
they can be established as ranges obtained from a meta-analysis
(Fonfrı́a et al. 2020).

This study’s consideration of the effect of transmission inter-
ventions on various populations with varying immunologically
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Figure 5. Influence of time until the implementation of interventions of varying intensity on the mortality rate per age group: 0–12 years (pink), 13–19 years (red), 20–59
years (violet) and > 60 years (green). In this representation, the lower age groups are not visible due to the low mortality rate.

associated responses to viral exposure, the different associated
risks of virus transmission and the progression of the clinical
prognosis, occasionally leading to death, was scarcely explored
in previous modeling approaches. The definition of these popu-
lations and their risks was based on a relatively scarce amount of
objective data and implied certain simplifications. For instance,
young children have an immature immune system and are fre-
quently infected by viral organisms; however, COVID-19 symp-
tomatic cases in children are uncommon (Calvo et al. 2020; Kloc
et al. 2020; O’Driscoll et al. 2021). As stated above, we attribute
this fact to an ‘effective innate immunity’, understanding as
effective innate protection the ensemble of factors that pre-
vents COVID-19 growth and infection, unrelated to the immune
acquired response (see above). In fact, children acquire COVID-
19 from adults, but the transmission rate from children to adults
is low, perhaps due to low viral loads in asymptomatic children,
combined with weak, infrequent coughing (Fretheim 2020; Lee

and Raszka 2020; Posfay-Barbe et al. 2020). We also included in
the model the reasonable assumptions that high viral load cor-
relates with transmission, severity and mortality (Pujadas et al.
2021, Van Damme et al. 2021). Older ages are related to higher
viral loads and viral shedding (To et al. 2020).

Our results on non-pharmaceutical interventions (essen-
tially targeting transmission) complement the novel aspects
previously published in observational studies and in the math-
ematical modeling of COVID-19 epidemics, including classi-
cal (SIR -Susceptible-Infected-Recovered) and others, such as
GitHub tools that analyse epidemiological scenarios (Bhatt 2020;
Flaxman et al. 2020; Stokes et al. 2020). Our computational model
mimics the dynamics of a single community with a limited
number or inhabitants (approximately 10 000) and isolated from
other sources of infection. This precludes us from predicting
the ‘global dynamics’ of the infection and makes it difficult to
compare some of our results with other modeling estimates, but
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Figure 6. Effect of the elderly lockdown (older than 60 years) in the absence of any other general intervention on the number of individuals of the various immunity
response groups (upper two rows, logarithmic scale at the right). In the lower two figures, hospitalized severely ill (red line) and critical (blue line) patients; in the boxes

below, the percentage of hospital ICU use by patients aged 20–59 years (violet) and older than 60 years (green).

in general the differences are weak. For instance, our predicted
‘mortality peak’ in the absence of interventions occurs earlier (a
little more than 2 months) than in other model estimates (Fer-
guson et al. 2020). However, the model allows for a realistic pre-
diction of the consequences of applying interventions.

The main results of this study (many other results can
be obtained with the same model by varying the parameters)
include the key influence of the adoption time of transmission-
reducing interventions; ‘time is of the essence’ (Kretzschmar
et al. 2020; Poland 2020). The earlier, the better; however, our
model showed no clear differences when adopting interventions
at 15 or 21 days from the onset of the epidemic. Interventions
adopted at 37 days and particularly after 45 days have, how-
ever, a weak effect, except in reducing the more severe cases
in the elderly groups, particularly with a transmission reduc-
tion of 80%. If this strong reduction is applied at 15 or 23 days,

deaths can be prevented almost totally. Our detailed analysis of
the clinical progression groups indicates that this occurs due to
an early intervention reducing the number of individuals who
might progress to worse outcomes, including asymptomatic or
mild symptomatic patients. Interestingly, the early adoption of
transmission-reducing interventions reduces the prevalence of
infected patients; that certainly applies to particular policies, as
early contact tracing and early school locking (Kretzschmar et al.
2020; Rozhnova et al. 2021).

On the other hand, however, the emergence of new cases is
extended in time, an effect that produces the desirable trend of
‘flattening the curve’, ensuring the availability of ICU care for
severely ill patients, at the risk of prolonging the scattered emer-
gence of infected patients, eventually giving rise to new waves.

The positive effect of an early lockdown for elderly patients
as a single intervention on the evolution of epidemics is clearly
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visible in our modeling. The role of the elderly in epidemiologi-
cal dynamics is recognized as the most important factor behind
the major COVID-19 outbreak (Melin et al. 2020). A number of
countries, such as Sweden, adopted a de-facto herd immunity
approach, without imposing severe limitations to viral propaga-
tion in the community, with controversial results (Bjorklund and
Ewing 2020; Claeson and Hanson 2021). The goal of the Swedish
Public Health Agency was to assure the intensive care for elderly
patients with the highest mortality risk (Chew et al. 2021). This
approach could probably have been accompanied by an early,
strict lockdown for the elderly. Considering the European inci-
dence of COVID-19 deaths in May 2021, Sweden had a lower
per capita incidence of COVID-19 mortality than France, Spain,
United Kingdom, Italy, Belgium or Hungary (Steward 2021), and
elderly lockdown is probably one of the most effective interven-
tions to be considered (Soltesz et al. 2020). Certainly, the model
will allow to test other types of lockdowns, as closing schools
and day cares, but these and many other aspects have not been
tested in this work; however, they can be freely investigated
by epidemiologists by themselves using the free access to the
LOIMOS model (see before).

We should accept that the multifactorial and variable land-
scape of viral epidemics, where the infection process itself mod-
ifies the transmission parameters, is also influenced by the
geography, demography and lifestyles of the population, which
makes it difficult to establish general fixed parameters, to a
certain extent leading to a ‘parametric scepticism’. Therefore,
the use of flexible models, such as those applied in this study,
can mimic differing conditions (that can be adjusted to the
locally observed conditions). Integrating parametric ranges and
stochastic dynamics is simply a necessity in predicting the pol-
icy of corrective interventions in a particular local landscape. In
fact, this type of modeling could be applied to the retrospec-
tive analysis of real epidemics (‘prediction of the past’). Using
artificial intelligence tools, it should be possible to tune, one by
one, the parameter values to reach epidemiological data fitting
the observed ones; in that sense, those explanatory parameter
values could be considered as forming part of the ‘past’, help-
ing to understand how (and why?) the epidemics has moved in
this specific way. In conclusion, we are providing in this work an
innovative cellular computing tool that we consider might be of
interest in analytic epidemiology of viral epidemics.
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