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Abstract

Introduction: We evaluated for two novel automated biomarker assays how cere-

brospinal fluid (CSF) amyloid beta (Aβ)1– 42-ratios improved the concordancewith amy-

loid positron emission tomography (PET) positivity compared to Aβ1– 42 alone.
Methods:We selected 288 individuals from the Amsterdam Dementia Cohort across

the Alzheimer’s disease clinical spectrum when they had both CSF and amyloid PET

visual read available, regardless of diagnosis. CSF Aβ1– 42, phosphorylated tau (p-tau),

and total tau (t-tau)weremeasuredwith Elecsys and Lumipulse assays, andAβ1–40 with
Lumipulse. CSF cut-points were defined using receiver operating characteristic (ROC)

for amyloid PET positivity.

Results: For both Elecsys and Lumipulse the p-tau/Aβ1– 42, Aβ1– 42/Aβ1– 40, and t-

tau/Aβ1– 42 ratios showed similarly good concordance with amyloid PET (Elecsys:

93,90,90%; Lumipulse: 94,92,90%) and were higher than Aβ1– 42 alone (Elecsys 85%;

Lumipulse 84%).

Discussion: Biomarker ratios p-tau/Aβ1– 42, Aβ1– 42/Aβ1– 40, t-tau/Aβ1– 42 on two auto-

mated platforms show similar optimal concordance with amyloid PET in a memory

clinic cohort.
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1 INTRODUCTION

Cerebrospinal fluid (CSF) biomarkers for amyloid beta(1-42) (Aβ1-42),
phosphorylated tau (p-tau), and total tau (t-tau) are part of recent

research criteria to support a diagnosis of Alzheimer’s disease (AD).1

CSF Aβ1-42 concentrations decrease in the disease process when

Aβ aggregates into plaques, while CSF p-tau concentrations increase

along the formation of AD-specific tangle pathology and increases

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2021 The Authors. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring published byWiley Periodicals, LLC on behalf of Alzheimer’s Association

in CSF t-tau concentrations may in addition reflect other aspects of

neurodegeneration.1,2 These biomarkers are altered in very early, pre-

clinical stages of AD, when cognition is still normal.1 Therefore, CSF

biomarkers have been proven to be useful tools for AD diagnostics.

Still, their implementation in clinical practice has been a difficult trajec-

torymarked by obstacles such as inter-laboratory and intra-laboratory

variation.3,4 Efforts of collaborative initiatives such as BIOMARK-

ADP,5 together with technological innovations, have led to the
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development of standardized operating procedures for CSF collec-

tion and storage,6,7 a certified reference measurement procedure for

Aβ1-42,8 and fully automated assays for the CSF biomarkers that have

been calibrated against this reference method.9–12 These achieve-

ments greatly reduced the variation in CSF biomarker results across

andwithin laboratories.13 The final goal of successful biomarker imple-

mentation is to establish global cut-off values that are independent of

assay platform, cohort, or laboratory.

Because next generation automated assays seem to detect Aβ1-42
more accurately than the oldermanual immunoassays, that is, with less

interferenceofAβ1-40, and showdifferent concentration ranges,9,14 re-

establishment of biomarker cut-offs is essential. The current gold stan-

dard for cut-off determination of CSF biomarkers is amyloid positron

emission tomography (PET), which is approved by the Food and Drug

Administration (FDA) for in vivo amyloid pathology, or clinical diagno-

sis, because a definite diagnosis of AD can only be made at autopsy.

Previous studies using either Elecsys or Lumipulse assays showed

that CSF biomarker ratios improved the agreement with amyloid PET

compared to single biomarker cut-points.15–20 For example, using the

Aβ1-42/Aβ1-40 ratio compared to Aβ1-42 alone improved the concor-

dance, which is hypothesized to be due to Aβ1-40 correcting for inter-
individual biological variation in amyloid production and/or clearance,

and/or Aβ1-40 correcting for artificial decrease of Aβ1-42 concentra-

tions during the pre-analytical phase.21–23 Ratios of Aβ1-42 with p-tau

or t-tau also improved the concordance with amyloid PET in research

cohorts using either Elecsys or Lumipulse biomarkers.15–20 These find-

ings call for a head-to-head validation of the performance of the dif-

ferent biomarker interpretation modalities on the different platforms

in the clinical setting, such as the memory clinic. Also, it remains to be

addressed whether similar cut-offs for the automated assays can be

applied. Introduction of these automated biomarker assays in diagnos-

tic practice calls for a re-evaluation of the use of application and opti-

mal interpretation of biomarker results in a clinical setting.

We aimed to determine how the ratios of biomarkers,

Aβ1– 42/Aβ1– 40, p-tau/Aβ1– 42, and t-tau/Aβ1– 42 improved dis-

crimination of amyloid PET positivity compared to Aβ1-42 alone in

a retrospective memory clinic cohort including AD and other types of

dementia, to evaluate whether the improved performance was depen-

dent on the automated platform used, and to define cut-off values for

all biomarker combinations. Last, we compared our biomarker cut-offs

to previously published cut-offs defined on the same platforms to

evaluate the feasibility of a future universal cut-off.

2 METHODS

2.1 Study population

We selected CSF samples from patients from the Amsterdam Demen-

tia Cohort24 that visited the memory clinic between 2006 and 2016

when they had an amyloid PET scan within one year of CSF collec-

tion available. All subjects underwent extensive neurological exami-

nation, neuropsychological testing, neuroimaging, and CSF biomarker

RESEARCH INCONTEXT

1. Systematic review: Literature was reviewed using

PubMed and meeting abstracts or presentations.

The cerebrospinal fluid (CSF) Elecsys and Lumipulse

biomarkers have separately been studied in a few recent

publications, which are cited, but were not previously

compared in a head-to-head comparison.

2. Interpretation: Our findings show that for both Elec-

sys and Lumipulse assays phosphorylated tau/amyloid

beta (Aβ)1– 42 ratios outperformed CSF Aβ1-42 alone in

detecting positive amyloid positron emission tomogra-

phy (PET) in a clinical diagnostic setting. Of note, concor-

dance improved similarly for both the Aβ1-42/Aβ1-40 and

total tau/Aβ1-42 ratios. Cut-offs were platform specific,

but biomarker concordance with amyloid PET positivity

did not depend on the platform used in this head-to-head

comparison.

3. Future directions: For clinical implementation, future

studies should perform multicenter comparisons to fur-

ther address the feasibility of determining universal cut-

points for these ratios, independent of assay platform.

testing as part of the diagnostic work-up. Clinical diagnoses were

established by consensus during a multidisciplinary meeting according

to consensus criteria.25–28 Diagnostic groups included in the current

study were subjects presenting with subjective cognitive decline (SCD,

n= 58), mild cognitive impairment (MCI, n= 42), possible/probable AD

(n= 145), frontotemporal dementia (FTD, n= 23), dementia with Lewy

bodies (DLB, n = 6), vascular dementia (VaD, n = 5), or other demen-

tia (n = 9). All patients signed written informed consent to use med-

ical data and biomaterials for research purposes and the study was

approved by the local ethical committee in accordance with the Dec-

laration of Helsinki.

2.2 CSF biomarker measurements

2.2.1 CSF collection and processing

CSF samples were obtained by lumbar puncture using a 25-gauge nee-

dle and syringe between the L3/L4, L4/L5, or L5/S1 intervertebral

space, collected in polypropylene tubes and processed as previously

described.29

2.2.2 Elecsys assays

Aβ1– 42, p-tau (181P), and t-tau (Roche Diagnostics GmbH) were ana-

lyzed in CSF samples by board-certified technicians using the fully
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automatedElecsys biomarker assays.14 CSFof 17 samples (6%) needed

transfer to a 0.5mL Sarstedt tube as the original 2.0 mL Sarstedt tubes

evoked an error on the Cobas e601 analyzer due to low sample vol-

ume (< 0.5 mL). No systematic effect in Aβ1– 42 results was observed

between the transferred and the non-transferred samples (data not

shown). The Elecsys Aβ1-42 concentration exceeded the upper limit of

detection of the assay at 1700 pg/mL in 42 cases (15%); these con-

centrations were included in all further analyses and graphs as 1700

pg/mL.

2.2.3 Lumipulse assays

Next, pristine aliquots of the same samples weremeasured for Aβ1– 42,
Aβ1– 40, p-tau (181P), and t-tau on the Lumipulse G 1200 system

(Fujirebio Diagnostics, Inc.)19,20,30,31 by board-certified technicians

according to manufacturer’s instructions. CSF of 16 samples (6%)

needed transfer to a 1.7 mL polystyrene Hitachi tube as the original

2.0 mL Sarstedt tubes evoked an error on the Lumipulse analyzer. No

systematic effect in Aβ1– 42 results was observed between the trans-

ferred and the non-transferred samples (data not shown).

2.3 PET amyloid imaging

Amyloid PET imaging was conducted using 11C-PiB (n = 86), 18F-

florbetaben (n = 133), 18F-flutemetamol (n = 64), and 18F-florbetapir

(n= 5) tracers.32–35 PET scans were evaluated based on visual reading

according to the manufacturers’ guidelines by an experienced nuclear

medicinephysician (BvB) and includedasdichotomized scores (i.e., pos-

itive and negative).

2.4 Statistical analyses

Groups were dichotomized for amyloid PET status, and pair-wise com-

parisons of demographic characteristics and biomarker concentrations

were performed with chi-square (for categorical variables), Student’s

t (for continuous variables with normal distribution), and Mann Whit-

ney U (for continuous variables with non-normal distribution) tests.

Biomarker cut-pointswere calculated based on optimal Youden’s index

in receiver operating curve (ROC) analyses with amyloid PET result

as gold standard. Areas under the curve (AUCs) were compared pair-

wise across Aβ1– 42, Aβ1– 42/Aβ1– 40, p-tau/Aβ1– 42, and t-tau/Aβ1– 42
and were statistically compared per platform using 2000 bootstrap-

ping iterations in the “roc.test” function of the “pROC” package (ver-

sion 1.16.2) with D-statistic indicating the difference between the two

AUCs.36 As the Elecsys assays did not include Aβ1– 40, the Elecsys

Aβ1– 42/Aβ1– 40 ratio was calculated with the Lumipulse Aβ1– 40 result.
The AUC comparisons were corrected for multiple testing using Bon-

ferroni correction: per assay six ratios were pair-wise compared, P-

value threshold was 0.00833 (= 0.05/6); between assays (Elecsys ver-

sus Lumipulse) four ratios were pair-wise compared, P-value thresh-

old was 0.0125 (= 0.05/4). Sensitivity, specificity, and overall per-

centage agreements (OPAs) were calculated for all biomarkers and

biomarker ratios to detect positive amyloid PET status. Spearman cor-

relations and Passing-Bablok regression analyses for direct compar-

ison between Elecsys and Lumipulse biomarker concentrations were

performed using the “mcr” package in R (version 1.2.1).37 Data analysis

was performed using R statistical programming (version 3.6.1)38 and if

not mentioned otherwise, P-values below 0.05were considered statis-

tically significant.

2.5 Comparison of cut-points across global
cohorts

We searched the literature for publications of CSF Aβ cut-points

to determine amyloid PET positivity in other cohorts using Elec-

sys or Lumipulse assays to evaluate the comparability of cut-points

across these different settings and cohorts. We excluded the Elecsys

Aβ1– 42/Aβ1– 40 cut-point from our cohort in the comparison, because

this ratio was calculated using the Lumipulse Aβ1– 40 result and no

previous literature was available. Literature was selected by search-

ing the PubMed database with combinations of terms “Elecsys” OR

“Lumipulse,” AND “amyloid imaging” AND “concordance.” Papers that

established cut-off values for Elecsys or Lumipulse assays to determine

amyloid PET positivity, assessed by title and abstract screening, were

included. We chose to report only one cut-point per cohort with pref-

erence for cut-points based on Youden’s index and preference for amy-

loid PET outcomes based on visual reads to align with the approach of

the current study.

3 RESULTS

3.1 Cohort characteristics

We included 288 individuals in the present study, who were on aver-

age 63 ± 7 years old; 131 (45%) were female and 179 (62%) had

a positive amyloid PET read (Table 1). Compared to negative, amy-

loid PET–positive subjects had lower Mini-Mental State Examination

(MMSE) scores, more often carried one or two apolipoprotein E (APOE)

ε4 allele(s), and most often had AD-type dementia. Median time delay

between CSF collection and PET imaging was 29 days and did not

differ between the amyloid PET–positive and -negative groups. Com-

pared to those with normal amyloid PET, patients with abnormal amy-

loid PET showed decreased CSF Aβ1-42, increased CSF t-tau and p-

tau concentrations (Table 1; Figure 1), but no significant difference in

CSF Aβ1-40 concentrations. In 42 cases (15%), the Elecsys Aβ1-42 con-
centration exceeded the upper limit of detection of the assay at 1700

pg/mL, resulting in artificially skeweddistributions. CSFAβ1-42 concen-
trations and the ratios of Aβ1-42/Aβ1-40, p-tau/Aβ1-42, and t-tau/Aβ1-42
for both Elecsys and Lumipulse assays all showed different values for

amyloid PET–positive cases compared to amyloid PET–negative cases

(P< 0.001; Figure 1).
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TABLE 1 Cohort characteristics, stratified for amyloid PET visual read status

Total Amyloid PET – Amyloid PET+

P-value of
pair-wise

comparison

N 288 109 179

Sex= f (%) 131 (45%) 43 (39) 88 (49) 0.114

Age (mean [SD]) 63 (7) 62 (8) 63 (6) 0.086

MMSE (mean [SD)) 24 (4) 26 (3) 23 (4) <0.001

APOE ε4 carrier (%) <0.001

Unknown 8 (3) 0 (0) 8 (5)

Non-carrier 122 (42) 67 (62) 55 (31)

Carrier 158 (55) 42 (39) 116 (65)

Days between CSF collection and PET

imaging (median [IQR])

29 [15, 57] 24 [14, 62] 30 [16, 52] 0.435

Diagnosis (%) 2.044

SCD 58 (20) 44 (40) 14 (8)

MCI 42 (15) 17 (16) 25 (14)

AD 145 (50) 10 (9) 135 (75)

FTD 23 (8) 22 (20) 1 (1)

DLB 6 (2) 4 (4) 2 (1)

VaD 5 (2) 5 (5) 0 (0)

Dementia other 9 (3) 7 (6) 2 (1)

Elecsys CSF Aβ1-42 (pg/mL, median [IQR]) 852 [681, 1230] 1522 [1097, 1700] 742 [608, 872] <0.001

Elecsys CSF p-tau (pg/mL, median [IQR]) 27 [17, 39] 15 [12, 20] 35 [26, 44] <0.001

Elecsys CSF t-tau (pg/mL, median [IQR]) 282 [196, 368] 195 [145, 262] 336 [268, 405] <0.001

Lumipulse CSF Aβ1-42 (pg/mL, median [IQR]) 606 [478, 838] 983 [692, 1312] 529 [438, 616] <0.001

Lumipulse CSF Aβ1-40 (pg/mL, median [IQR]) 11770 [9874, 14064] 11853 [8739, 14106] 11744 [10090, 14048] 0.247

Lumipulse CSF p-tau (pg/mL, median [IQR]) 70 [38, 115] 33 [25, 46] 101 [74, 129] <0.001

Lumipulse CSF t-tau (pg/mL, median [IQR]) 520 [355, 755] 355 [290, 442] 656 [502, 852] <0.001

Pair-wise comparisons were performed using chi-square tests for categorical variables, T-tests for continuous normally distributed variables and Mann-

Whitney U test for non-normally distributed variables.

Abbreviations: Aβ, amyloid beta; AD,Alzheimer’s disease;APOE, apolipoprotein E; CSF, cerebrospinal fluid;DLB, dementiawith Lewbodies; FTLD, frontotem-

poral lobar dementia; IQR, interquartile ratio; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; PET, positron emission tomography;

p-tau, phosphorylated tau; SCD, subjective cognitive decline; SD, standard deviation; t-tau, total tau; VaD, vascular dementia.

3.2 Biomarker ratios are better predictors of PET
amyloid positivity than Aβ1-42 alone

We performed ROC analyses per assay with amyloid PET as refer-

ence and compared AUCs of single CSF biomarker Aβ1-42, with ratios

of Aβ1-42 with Aβ1-40, p-tau, or t-tau (Figure 2, Tables 2 and 3). For

both platforms, the p-tau/Aβ1-42 ratio resulted in the highest AUCs

(95% confidence interval [CI]) and overall percentage agreements

(95% CI): 0.95 (0.89–0.96) and 93 (90–96)% for Elecsys, 0.96 (0.93–

0.99) and 94 (92–97)% for Lumipulse. AUCs and overall percent-

age agreements were also high for both Aβ1-42/Aβ1-40 (0.93 [0.89–

0.96] and 90 [86–93]% for Elecsys; 0.94 [0.91–0.98] and 92 [89–96]%

for Lumipulse) and t-tau/Aβ1-42 (0.94 [0.91–0.98] and 90 [86–94]%

for Elecsys; 0.94 [0.90–0.97] and 90 [87–94]% for Lumipulse). For

both Elecsys and Lumipulse assays, ratios with p-tau, t-tau, or Aβ1-40

performed better than Aβ1-42 alone (P < 0.01). Sensitivity, speci-

ficity, and OPA percentages were largely overlapping across Aβ1-42
and the Aβ1-42 ratios, except for p-tau/Aβ1-42 versus Aβ1-42, for
which the 95% CI of the OPA was higher and not overlapping

with that of Aβ1-42 for either Elecsys or Lumipulse. For Lumipulse,

additionally, the 95% CI of the OPA for the Aβ1-42/Aβ1-40 ratio

(upper limit at 89%) did not overlap with that of Aβ1-42 (lower limit

at 89%).

Sensitivity analyses including only patients with SCD, MCI, or AD-

type dementia showed essentially similar results (Table S1 in support-

ing information). Biomarker cut-points and overall percentage agree-

ments, and their 95% CIs, for Aβ1-42 and ratios were nearly identi-

cal. Again, for both Elecsys and Lumipulse, the p-tau:Aβ1-42 ratio had

the highest overall percentage agreementwith 95%CI not overlapping

with that of Aβ1-42.
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F IGURE 1 Distribution of biomarkers and biomarker ratios between the amyloid positron emission tomography (PET)-positive and -negative
groups. Boxplot with beeswarm52 for Elecsys (upper row) and Lumipulse (bottom row) biomarkers amyloid beta (Aβ)1-42 (A), Aβ1-42/Aβ1-42 ratio
(B), phosphorylated tau/Aβ1-42 ratio (C), and total tau/Aβ1-42 ratio (D) in relation to an amyloid PET-negative or -positive result. Dotted lines
represent the cut-point obtained through receiver operating characteristic analysis (Table 2)
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F IGURE 2 Receiver operating characteristic curves of amyloid beta (Aβ)1-42 alone and as ratio of Aβ1-40, phosphorylated tau, or total tau to
predict positron emission positron emission tomography (PET) amyloid positivity for the Elecsys (A) and Lumipulse (B) assays. See Table 2 for areas
under the curves and concordance percentages. The gray line represents the identity line
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TABLE 2 Concordance of Elecsys and Lumipulse biomarker concentrations and ratios with amyloid PET result

Biomarker Method AUC [95%CI] Cut-point [95%CI]

Sensitivity

[95%CI]

Specificity

[95%CI] OPA [95%CI]

Aβ1-42 Elecsys 0.88 [0.83–0.92] 1089 [864–1120] pg/mL 91 [77–95] % 75 [69–89] % 85 [80–89] %

Lumipulse 0.88 [0.84–0.93] 714 [606–798] pg/mL 91 [75–98] % 73 [65–91] % 84 [79–89] %

Aβ1-42/Aβ1-40 Elecsys Aβ1-42;
Lumipulse Aβ1-40

0.93 [0.89–0.96] 0.091 [0.080–0.10] 96 [86–99] % 80 [73–91] % 90 [86–93] %

Lumipulse 0.94 [0.91–0.98] 0.071 [0.056–0.073] 99 [89–100] % 83 [79–94] % 92 [89–96] %

p-tau/Aβ1-42 Elecsys 0.95 [0.92–0.98] 0.020 [0.020–0.027] 96 [90–98] % 89 [84–96] % 93 [90–96] %

Lumipulse 0.96 [0.93–0.99] 0.072 [0.052–0.095] 97 [91–100] % 91 [85–97] % 94 [92–97] %

t-tau/Aβ1-42 Elecsys 0.94 [0.91–0.98] 0.277 [0.194–0.313] 89 [83–98] % 90 [81–97] % 90 [86–94] %

Lumipulse 0.94 [0.90–0.97] 0.688 [0.54–0.83] 91 [83–96] % 90 [84–97] % 90 [87–94] %

Abbreviations: Aβ, amyloid beta; AUC, area under the curve; CI, confidence interval; OPA, overall percentage agreement; PET, positron emission tomography;

p-tau, phosphorylated tau; t-tau, total tau.

TABLE 3 Pair-wise statistical comparisons of AUCs fromROC
analyses across biomarker concentrations and ratios

Biomarker (ratio) comparison

Biomarker

platform D statistic P-value

Aβ1-42 vs. Aβ1-42/Aβ1-40 Elecsys 3 0.005

Aβ1-42 vs. p-tau/Aβ1-42 Elecsys 4.27 0.00002

Aβ1-42 vs. t-tau/Aβ1-42 Elecsys 4 0.00006

Aβ1-42/Aβ1-40 vs. p-tau/Aβ1-42 Elecsys 2.42 0.02

Aβ1-42/Aβ1-40 vs. t-tau/Aβ1-42 Elecsys 2 0.1

p-tau/Aβ1-42 vs. t-tau/Aβ1-42 Elecsys 2.25 0.02

Aβ1-42 vs. Aβ1-42/Aβ1-40 Lumipulse 3 0.001

Aβ1-42 vs. p-tau/Aβ1-42 Lumipulse 4 0.00002

Aβ1-42 vs. t-tau/Aβ1-42 Lumipulse 3 0.002

Aβ1-42/Aβ1-40 vs. p-tau/Aβ1-42 Lumipulse 1 0.2

Aβ1-42/Aβ1-40 vs. t-tau/Aβ1-42 Lumipulse –0.6 0.6

p-tau/Aβ1-42 vs. t-tau/Aβ1-42 Lumipulse 2 0.02

Aβ1-42 Elecsys vs.

Lumipulse

–0.9 0.4

Aβ1-42/Aβ1-40 Elecsys vs.

Lumipulse

–2.0 0.02

p-tau/Aβ1-42 Elecsys vs.

Lumipulse

–1.4 0.2

t-tau/Aβ1-42 Elecsys vs.

Lumipulse

0.9 0.4

Note: AUC distributions were compared using 2000 bootstrapping itera-

tions. Bonferroni correction for multiple testing was applied; p-values that

were below threshold are indicated in bold.

Abbreviations: Aβ, amyloid beta; AUC, area under the curve; p-tau, phos-

phorylated tau; ROC, receiver operating characteristic; t-tau, total tau.

3.3 Direct comparison Aβ1-42, p-tau, and t-tau
between Elecsys and Lumipulse

Biomarkers Aβ1-42, p-tau, and t-tau correlated well between Elecsys

and Lumipulse assays, with Spearman correlations of 0.97, 0.96, and

0.89, respectively (all P < 0.001). Conversion formulas to translate

Elecsys to Lumipulse biomarker results obtained by Passing-Bablok

regression analyses are presented in Figure S1 in supporting informa-

tion.

3.4 Comparison of cut-points with literature

Finally, Table 4 shows our cut-points listed together with those of pre-

vious studies. Five cohorts other than the current study reported cut-

points for Elecsys biomarkers and three cohorts did so for Lumipulse

biomarkers (Table 4). The majority of studies (four out of six stud-

ies; including in total 1392 patients from five independent cohorts)

have used Elecsys, and only two other studies used Lumipulse (two out

of six studies, including in total 411 patients from three independent

cohorts). Previous determined cut-points used the optimized Youden’s

index, except for the BioFinder and Alzheimer’s Disease Neuroimag-

ing Initiative cohorts, which were calculated based on optimized per-

formance (positive predictive agreement [PPA] and negative predictive

agreement [NPA]) and stability of PPA and NPA when varying cut-offs

slightly. For Elecsys, cut-offs showed comparable values for different

markers, except for Aβ1-42 in the Expedition cohorts that had a much

higher cut-point. For Lumipulse, cut-offs for biomarker ratioswerevery

comparable, but that of Aβ1-42 was similar to Knight’s Alzheimer’s Dis-

ease Research Center cohort, but lower than the Sant Pau Initiative on

Neurodegeneration (SPIN) and Eisai cohorts, probably due to differ-

ences in cohort composition.

4 DISCUSSION

In this large clinical sample setwithCSF andPETmeasures for amyloid,

we found that next generation fully automated Elecsys and Lumipulse

assays showed similar high concordancewith amyloid PET (OPA: 90%–

94%) when using biomarker ratios with either Aβ1– 40 or t-tau or p-tau,
and improved concordance compared toCSFAβ1– 42 alone (OPA: 84%–

85%). Cut-points for Elecsys and Lumipulse biomarkers were largely
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comparable within each assay, but not across the two assays in a cross-

cohort literature comparison.

Our finding that CSF biomarker ratios of Aβ1– 42 show better con-

cordance with the amyloid PET outcome than Aβ1– 42 alone for Elec-

sys and Lumipulse assays is in line with previous findings.9,15–19,39,40

This suggests that method calibration of the next-generation assays

has indeed increased the consistency in biomarker results reported

across studies. It is supposed that decreases in CSF Aβ1– 42 reflect

aggregation of soluble Aβ1– 42 into plaques. Our, and other, results sug-

gest that apparently the improved measurements of the soluble part

of Aβ1– 42 makes it more difficult to measure aggregation. The con-

cordance of CSF Aβ1– 42 with amyloid PET results was ±93% with

the older generation Innotest assay, but decreased to ±85% using the

next-generation assays (current study and Janelidze et al.9 andDoecke

et al.41). Direct comparison studies of soluble Aβ1– 42 measured with

older versus newer generation assays showed an r2 of 0.8 to 0.9, which

was lower than Aβ1– 42 correlations between next-generation assays

only,9,14,42 suggesting that older and newer assays may not identi-

cally reflect Aβ1– 42. We and others collectively show that ratios with

Aβ1– 42 for the next-generation assays strongly improve concordance

with amyloid PET to 90% to 95%.15–20 For Aβ1– 42/Aβ1– 40 an expla-

nation might be that this ratio better reflects the rate of amyloid pre-

cursor proteinmetabolism and as such correct for physiological Aβ1–42
effects. Aβ1– 42 as ratio of p-tau or t-tau might give a better reflection

of aggregation likely due to the correlation of high p-tau and t-tau lev-

els with amyloid plaques.43 It might seem less intuitive to combine CSF

p-tau with Aβ1-42 for prediction of amyloid PET, although for clinical

use combining two hallmark pathologies instead of only the amyloid

pathology contributes to amore accurate risk prediction of developing

AD in preclinical stages.44

We achieved a concordance of 90% to 94% for CSF Aβ1-42 biomark-

ers and ratios compared to PET. The small number of cases with dis-

cordant CSF and PET results could be explained by either changes in

CSF Aβ1-42 preceding those in amyloid PET45 or amyloid PET changes

preceding those in CSF.46 Longitudinal studies showed that patients

with CSF+/PET– amyloid status seem to be in the earliest stages of

AD development, as they turned amyloid positive on PET within the

next years.45,47,48 Patients with CSF–/PET+ discordant amyloid status

did not develop amyloid or tau accumulation on PET in the next five

years,48 but did deteriorate on cognition,47 suggesting that CSF and

PET amyloid reflect different aspects of amyloid pathology.

Comparison of biomarker cut-points across assays and cohorts

(Table4) suggests similar performanceofElecsys andLumipulse assays;

these assays can thus be used interchangeably to detect amyloid pos-

itivity, provided that assay-specific cut-offs are used. For multicenter

studies, we recommend using one type of assay or using dichotomized

biomarker results based on assay-specific cut-points. It is important to

mention that cut-points and corresponding sensitivity and specificity

percentages when based on Youden’s index will naturally show varia-

tion across cohorts that is inherent to differences in cohort composi-

tions (i.e., diagnoses, disease severity, and age). For Lumipulse in par-

ticular, larger cohorts are required to assess the across-cohort stability

of biomarker cut-points. Also, cut-points will depend on pre-analytical

conditions. Pre-analyticswere the same for theanalyseswithin the cur-

rent study, but not completely similar compared to the other studies

presented in Table 4 nor to the situation deemed ideal in routine diag-

nostics,which is direct biomarker analysiswithout sample freezing. The

latterwould, however, be hard to implement in viewof analyses of sam-

ples that are shipped, for example, from smaller memory clinics with-

out biomarker lab facilities or for centralized biomarker analyses per-

formed in clinical trials. Lumipulse assay standards were recalibrated

against the certified reference material at time of biomarker analysis

in this study,49 but the Elecsys assays were not. Recent recalibration of

the Elecsys assay standards compared to Lumipulse and another assay

showed the promising result of < 9% between-assay bias in Aβ1-42
concentrations measured in the certified reference materials.50 Assay

comparison studies in clinical cohorts should further examine the fea-

sibility of using global cut-points forCSFbiomarker interpretationwith

these recalibrated assays.

Our study was performed in a real-world memory clinic setting as

we did not only include patients in the AD dementia spectrum, but

also other dementias such as FTD, DLB, and VaD, which do not typi-

cally show amyloid pathology. The agreement of the CSF amyloid and

amyloid PET results was however not different in our cohort when we

excluded diagnoses other than AD, MCI, or SCD (15% of the original

cohort), suggesting that CSF biomarkers perform well for amyloid PET

positivity regardless of clinical diagnosis. This supports the use of CSF

biomarkers in clinical diagnostic settings.

Because the Aβ1-40 assay is not commercially available for Elecsys

for use in clinical practice, we here combined the Lumipulse Aβ1-40
result with the Aβ1-42 result from Elecsys. This resulted in an AUC of

0.93, similar to AUCs reported in studies that measured the amyloid

peptides on the same platform.15,17 Potential noise due to differences

in reagents and protocols between platforms was thus not reflected in

the performance of this combined ratio. To enable use of amyloid ratios

in clinical practice, we therefore suggest that the Elecsys biomarkers

can be combined with the Aβ1-40 result from another platform, such as

Lumipulse, to obtain a ratio of Aβ1-42/Aβ1-40.
Themajor strength of this study is thatwe comparedCSFbiomarker

results between two next-generation (Elecsys and Lumipulse) assays in

the same dataset. As both assays are applied in a clinical setting and

for clinical trial analyses, such head-to-head comparison is important

for future alignment of biomarker results interpretation. Our results

show a strong agreement between biomarker ratios and amyloid PET

for both platforms,meaning that biomarker outcomes fromeither plat-

form reliably reflect the presence of amyloid pathology, as long as the

platform-specific cut-points are applied.

A limitation of the current study is that the Elecsys Aβ1-42 assay has
its upper limit of detection at 1700 pg/mL. Although for diagnostic pur-

poses (when biomarker status is determined for dichotomized values)

this is not an issue, it hampers research on better understanding con-

tinuous CSF concentrations.51 The performance of the Elecsys ratios

might be slightly underestimated by including these values as 1700

pg/mL, instead of their actual, higher concentration, because for two

to five cases the resulting biomarker ratio was classified as pathologi-

cal (which was not the case when entering a hypothetical higher value,
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e.g., 2500 pg/mL). Another limitation could be that quantitative analy-

ses for thePET scanswerenot available in this study.Visual reads, how-

ever, are the FDA-approved method of identifying amyloid positivity;

moreover, scanswere read by one experienced nuclearmedicine physi-

cian (BvB) and according to standardized procedures, which increases

robustness of the reading results. Furthermore, different tracers were

used for amyloid PET scoring, but any potential variation was mini-

mized by using visual reads of PET results and the intra-rater reliability

of different tracers applied within one subject was 100% (BvB).

Altogether, based on the data here presented we recommend using

the p-tau/Aβ1-42, Aβ1-42/Aβ1-40, or t-tau/Aβ1-42 ratio for AD pathology

when using the automated assays Elecsys or Lumipulse, as these most

accurately reflect the amyloid PET result. These ratios can be used for

CSF biomarker interpretation in routine clinical settings or for clinical

trial evaluation.
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