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ABSTRACT

In recent years, human cancer genome projects provide
unprecedented opportunities for the discovery of cancer
genes and signaling pathways that contribute to tumor
development. While numerous gene mutations can be
identified from each cancer genome, what these muta-
tions mean for cancer is a challenging question to
address, especially for those from less understood
putative new cancer genes. As a powerful approach, in
silico bioinformatics analysis could efficiently sort out
mutations that are predicted to damage gene function.
Such an analysis of human large tumor suppressor
genes, LATS1 and LATS2, has been carried out and the
results support a role of hLATS1//2 as negative growth
regulators and tumor suppressors.

KEYWORDS LATS1 & LATS2, hippo signaling, cancer
genome, human cancer

INTRODUCTION

Hippo signaling plays a crucial role in animal development
and tumorigenesis (Harvey et al., 2013; Yu and Guan,
2013). As a key regulator of this growth-inhibitory pathway,
the large tumor suppressor (Lats)/warts (wts) gene

encodes a Ser/Thr protein kinase and somatic mutations in
human LATS1 and LATS2 have been identified in primary
tumors (e.g. Murakami et al., 2011; Visser and Yang, 2010).
To systematically evaluate how LATS1/2 genes play a
critical role in human cancer, a mutation analysis has been
carried out. In the Catalogue of Somatic Mutation in Cancer
(COSMIC) database, 101 non-synonymous LATS1 somatic
mutations have been identified from 9183 unique human
tumor samples (Fig. 1A). Similarly, there are 80 LATS2
non-synonymous mutations out of 9516 samples (Fig. 1B).
Therefore, an overall mutation rate is 1.10% for LATS1 and
0.84% for LATS2. In the cBioPortal database, LATS1 and
LATS2 exhibited similar overall mutation rates, 1.83% (135/
7390) and 1.50% (111/7390), respectively. The top three
highest mutation rates with relative larger total sample
size for LATS1 occurred in stomach adenocarcinoma (5.91%,
n = 220), uterine corpus endometrial carcinoma (4%, n =
248), and bladder urothelial carcinoma (3.1%, n = 130).
Meanwhile, the highest LATS2 non-synonymous mutation
rate occurred in uterine corpus endometrial carcinoma
(5.2%, n = 248), stomach adenocarcinoma (4.1%, n = 220),
and lung adenocarcinoma (3.9%, n = 229) (Table S1).

To determine the mutation distribution across different
domains, analysis through Fisher’s exact test shows that
both the kinase domain (P = 0.01075) and proline-rich (P =
0.0312) of LATS1 displayed the highest mutation frequency
among all the LATS1 domains. The proline-rich domain had
7 mutations in a 31-amino acid (aa) region (2.2 mutations/10
aa), and the kinase domain had 43 mutations in a 306-aa
region (1.41 mutations/10 aa) (Fig. 1A). In LATS2, the kinase
domain (P = 5.66 × 10−5) and insertion domain (P = 0.03121)
had the highest mutation frequency. LATS2 kinase domain
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had 44 mutations in a 306-aa region (1.48 mutation/10 aa)
and LATS2 insertion domain had 9 in 45 aa (2 mutation/10
aa) (Fig. 1B). These data support that selections have

occurred to enrich mutations in functionally significant
regions such as the kinase domain to facilitate
tumorigenesis.
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Among all the mutations, nonsense and frame-shift
mutations clearly disrupt LATS1/2 gene function. Thirteen
and 10 unique nonsense mutations were found in LATS1
and LATS2, respectively. Moreover, 12 and 7 unique frame-
shift mutations were detected in LATS1 and LATS2,
respectively (Fig. 1). The pattern of equal distribution of
LATS1/2 nonsense or frame-shift mutations is consistent
with the idea that LATS1 and LATS2 are tumor suppressor
genes. The percentage of either nonsense or frame-shift
mutations among all the mutations for LATS1 and LATS2,
was 17.43% and 10.69%, respectively.

To predict the functional relevance of other non-synony-
mous mutations in LATS1/2, we performed analyses of
evolutionary conservation and protein structure through four
different mutation-assessing methods: SIFT, PROVEAN,
PolyPhen-2, and Mutation Assessor (Ng and Henikoff, 2003;
Adzhubei et al., 2010; Reva et al., 2011; Choi et al., 2012).
We found that 73.85% (161/218) of missense mutations from
LATS1 and 77.98% (124/159) from LATS2 are predicted to
be damaging by at least one method (Fig. 1). In regards to
mutations that were considered severe as determined by all
four methods, LATS1 had a percentage of 25.69% (56/218)
and LATS2 had 31.44% (50/159).

LCD1 AND LCD2

LATS1/2 proteins share LATS conserved domain 1 (LCD1)
and LATS conserved domain 2 (LCD2), which are con-
served in all vertebrate LATS1/2 homologues. LCD1 and
LCD2 are critical for LATS1/2 function and regulation. The
deletions of either LCD1 or LCD2 in mouse Lats2 abol-
ished its tumor suppressor activity in immortalized mouse

cell line (Visser and Yang, 2010). Lats1 LCD1 knockout
mice were born with a low birth rate, from which the
mouse embryonic fibroblasts displayed chromosomal
instability and tumorigenesis (Yabuta et al., 2011). Within
LCD1, a short segment called Conserved N-terminal Motif
(CNM) (aa 72–89 for LATS1 and 71–88 for LATS2) is
important for membrane recruitment and activation of
LATS1/2 by Merlin/NF2. The alterations of three highly
conserved residues in LATS1/2-A77/76P-I81/80T-L85/84P
prevented its interaction with Merlin/NF2, membrane
localization and activation (Yin et al., 2013). Therefore,
LATS1-I81M, LATS1-R82Q, and LATS2-P72L mutations
may fail to interact with Merlin/NF2 and consequently
cannot be activated (Fig. 1). The truncated products of
LATS1 such as L78fs, R82*, E100*, W178*, and G231*
may compete with wild-type LATS proteins for the binding
partners of LCD1. Interestingly, LATS2-S83 within CNM is
phosphorylated by Aurora-A to regulate the centrosomal
localization and mitotic activity of LATS2 (Visser and Yang,
2010). Finally, the conserved residues in LCD1 could be
critical for function. Mutations were found at certain con-
served sites in LCD1 which include LATS1/2-R28/R16,
S45/S33, L78/L77, and I81/I80. Moreover, N463S, P468S,
H475Y, A483T, P493S, R502C, P506R/L, and W519C in
LCD2 for LATS1 are predicted to be damaging. P468S is
close to the phosphorylation site LATS1-S464 by NUAK,
which promotes LATS1 degradation. Additionally, CDC2
phosphorylates S613 of LATS1. CDC2 forms a complex
with LATS1 in the centrosome and phosphorylation of
S613 occurs during mitosis (Visser and Yang, 2010).
Mutations near S613, such as K607N and I615T, may
interfere with phosphorylation at this site. Four lesser
deleterious LATS2 mutations were found in LCD2, which
contains the phosphorylation sites S408 and S446 by
Chk1/2 in response to UV damage (Okada et al., 2011).
Next to LCD2, LATS2-S380 is phosphorylated by Aurora A
during mitosis, which is critical for Aurora A-LATS-Aurora
B axis to regulate mitotic progression (Yabuta et al., 2011).
Moreover, LATS2 S380 is located within an Ajuba-binding
region of LATS2 (aa 376–396), which regulates the spindle
apparatus formation (Visser and Yang, 2010). Mutations
like R391H may affect the interactions and cell cycle
control.

PROLINE-RICH REGION

LATS1 has a unique proline-rich region (Fig. 1A). Previous
studies detected phosphorylation of T246 and T255 in
P-stretch, as well as S336 located downstream (Hornbeck
et al., 2012). T255A/N and S336G mutations in LATS1
would prevent phosphorylation of these residues, and the
R252I/G mutations nearby may affect these phosphoryla-
tion events. Moreover, Y277 and S278 located within the
LIMK-binding site of LATS1 were also found to be phos-
phorylated (Visser and Yang, 2010). While the functional
significance of these phosphorylations is unknown, Y277C

Figure 1. Human cancer mutations in LATS1 (A) and LATS2

(B) are mapped to their corresponding open reading

frames. Human LATS1 and LATS2 mutation data was collected

from Catalogue of Somatic Mutations in Cancer (COSMIC) (top

portions) and cBioPortal (bottom portions) databases. (A

complete list of all mutations can be found in Table S1). All

non-synonymous mutations are analyzed, using Uniprot iden-

tifier O95835 for LATS1 and Q9NRM7 for LATS2. Synonymous

mutations were not included in this analysis. To evaluate

potential impact of individual mutations on LATS1/2 structure

and function, the following bioinformatics resources were used:

1) SIFT; 2) PROVEAN; 3) PolyPhen-2; and 4) Mutation

Assessor. A color code was used to distinguish mutations that

are predicted to be damaging by various numbers of the

methods described above (zero in dark green, one in light

green, two in orange yellow, three in brown, and four in red). “*”

indicates nonsense mutation and “‡” for ones found in dbSNP.

“fs” is for frame-shift. Blue bars indicate regions involved in

protein-protein interactions as indicated. Blue triangles identify

phosphorylation sites by corresponding protein kinases. Each

small block square indicates one unique mutation sample for

LATS1/2 from human cancer.
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and S278C mutations clearly prevent phosphorylation of
these two residues.

BINDING WITH YAP AND KIBRA

The interaction between the Proline-Proline-x-Tyrosine
(PPxY) motif and the hydrophobic pocket of WW domain
is critical for the LATS1/2 binding with either their substrate
YAP or their activator KIBRA. It has been reported that
LATS1-Y559F and Y376A abrogated the binding with YAP
(Visser and Yang, 2010), while LATS2-Y518A partially
abolish the binding with KIBRA (Xiao et al., 2011). These
interactions may be affected by the third proline mutation
P375S in the first PPxY motif of LATS1 and the second
proline mutation P516L in the only PPxY motif of LATS2.

BINDING WITH MOB, AJUBA AND AMOTL2

The N-terminal regulatory domain (NTR) adjacent to the
kinase domain is required for LATS1/2 activation by MOB,
AJUBA, and AMOTL2 (Visser and Yang, 2010; Paramasi-
vam et al., 2011; Xiao et al., 2011). Positively charged resi-
dues such as LATS1-R657/LATS2-K620, R660/R623, R682/
R645, R694/R657, and R697/R660 in LATS1/2 NTR are
conserved in the NDR subfamily from yeast to human.
Previous studies have shown that LATS1 mutations (e.g.
R657A, R660A and R694A) abolish their interaction with the
negatively charged surface of MOB1A/B and kinase activity
(Hergovich et al., 2006). Therefore, LATS1 mutants (R657C,
R694C and R697G) and LATS2 mutants (R623W and
R645L), are expected to become inactive in human cancer
due to loss of interactions with LATS activators such as
MOB. The Drosophila Wts-R702 residue is equivalent to
LATS1/2-R694/R657 and critical for Mob-binding, kinase
activity, and inhibition of tissue growth in development (Ho
et al., 2010).

THE KINASE DOMAIN

LATS1 and LATS2 are members of the AGC (named after
PKA, PKG, and PKC) protein kinase family. Although crystal
structures of some AGC proteins have been deciphered,
there is no structure information available for LATS1/2 kinase
domains. To estimate mutation-induced structural changes,
we performed structure remodeling for LATS1/2 based on
two AGC family proteins, ROCK and PKC. Conserved in
most eukaryotic protein kinases, the N-terminal catalytic
domain of LATS1/2 interacts with the phosphate donor ATP
through a crucial network, composited by GxGxxGxV loop
(LATS1: 712–719/ LATS2: 675–682), K734/697, E753/716,
DxKxxN (828–833/791–795) and DFG motif (846–848/809–
811) (“x” represents any aa) (Endicott et al., 2012; Hanks
and Hunter, 1995). In addition, previous studies also have
verified that mutants LATS1-K734M/LATS2-K697A/mLats2-
K655M are all kinase-dead (Zhao et al., 2007; Wei et al.,
2007; Visser and Yang, 2010). Mutated within or close to

these conserved catalytic elements, LATS1 V719I/A,
R744Q/L, A748T, R827T, R837H, L844M and LATS2
G675W, A678S, V682L, L693M, L699V, D800Y, G803C are
most likely to disrupt ATP binding and catalysis. LATS1-
R995C/L/H and LATS2-G909R also change highly con-
served residues. Therefore, these cancer mutants may affect
their kinase activity. Moreover, conserved residues in the
kinase domain of LATS1/2 are expected to be important for
their kinase activity. Mutations occurring in these residues
included LATS1-N762/LATS2-N725, R806/R769, A810/
A773, R827/R790, D837/D800, R854/R817, and R995/R958
(Fig. 1).

Unlike other AGC family members, LATS1/2 and the
NDR subfamily members have an insert between the
kinase subdomain VII and the activation segment (AS) in
the subdomain VIII. Basic residues in the insert inhibit the
activity of AS likely through an auto-inhibitory mechanism
(Hergovich et al., 2006). Missense mutations in this region
(e.g. LATS1-D871Y) may have an impact on the kinase
activity (Fig. 1).

PHOSPHORYLATION AND ACTIVATION BY MST1/2
KINASES

The phospho-S909/S872 and other residues in AS organize
interaction between ATP and substrates of LATS1/2. Previ-
ous study has shown that LATS1 mutant S909A/D/E cannot
be activated by the MST2 kinase. Therefore, LATS2-S872L
would abolish the kinase activity, and LATS1-T913I and
LATS2-T876N, A881Valso likely damage catalytic activity. In
the C-terminal of kinase IX and XI subdomains, the LATS2-
G909 and LATS1-R995 are highly conserved among
eukaryotic kinases (Endicott et al., 2012). LATS1-R995C/L/H
and LATS2-G909R would probably damage kinase activity.
LATS2-G909R and C953* has been experimentally shown to
be defective for kinase activity and YAP regulation (Yu et al.,
2013).

In the C-terminal domain (CTD) of AGC family kinase,
the conserved NFD (Asn-Phe-Asp) motif interacts with
hydrophobic pocket in the N-terminus of kinase domain to
facilitate kinase activation (e.g. PKC, Leonard et al., 2011).
In LATS1 NFD, N1038H may disrupt the kinase activity. In
addition, LATS1-R1020T, P1028A/T, S1023C and LATS2-
P996L, D998G may also affect this activation. LATS1/2
activation also requires phosphorylation of T1079/T1041
by MST1/2 in hydrophobic motif (HM), which has a con-
sensus sequence F-x-x-Y/F-T-Y/F-K/R in the NDR protein
subfamily (Hergovich et al., 2006). Thus, LATS2-T1041I/P
mutations clearly abolish phosphorylation at this site to
cause kinase inactivation. LATS1-R1082K, D1086Y and
LATS2-E1039K, R1043L, D1048N may disrupt kinase
activity as well. Mutations at conserved sites between
LATS1/2 such as LATS1-F1015/LATS2-F978, R1020/R983,
F1039/F1001, and D1086/D1048 may affect function of the
C-terminus.
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CONCLUDING REMARKS

Genetic analysis of Lats/Wts family genes using Drosophila
and mice models has revealed their role as negative growth
regulators and tumor suppressors in animal (Visser and
Yang, 2010; Harvey et al., 2013; Yu and Guan, 2013). The
fact that human LATS1 can functionally replace Wts in
Drosophila supports that LATS may function as a tumor
suppressor in human cells. From human cancer genome
projects, an increasing number of mutations in LATS1/2 are
detected. Compared to some well-established cancer genes
such as TP53 and Rb, LATS1 and LATS2 are not frequently
mutated. However, our in silico analysis provides supporting
evidence that LATS1/2 mutations drive human tumor
development based on the following observations: 1) Cancer
mutations in hLATS1/2 do not appear to be random muta-
tions. Damaging mutations have been accumulated more
preferentially in important protein domains such as the
kinase domain. Majority of the mutations including nonsense
and frame-shift mutations clearly disrupt LATS1/2 function;
2) Some mutations occurred in regions and residues
important for LATS1/2 activation. Examples include MST1/2
phosphorylation sites, MOB-binding domain, and the region
critical for NF2 interaction; 3) In certain cancer types like
stomach adenocarcinoma and uterine corpus endometrial
carcinoma, mutation rates can be reasonably high (5.2%–

5.9%). On the other hand, mechanisms other than gene
mutation could also be effective to alter gene activity. In this
regard, LATS1/2 genes are known to be down-regulated by
promoter methylation. Mutations in other Hippo pathway
genes such asMST1/2 are also expected to reduce LATS1/2
function. While the functional significance of some of these
mutations have been experimentally tested in vivo (Yu et al.,
2013), results reported here further support that LATS1/2 act
normally as tumor suppressors and loss of their functions
contributes to human cancer development.
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