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Abstract

Student Dropout Prediction (SDP) is pivotal in mitigating withdrawals in Massive Open

Online Courses. Previous studies generally modeled the SDP problem as a binary classifi-

cation task, providing a single prediction outcome. Accordingly, some attempts introduce

survival analysis methods to achieve continuous and consistent predictions over time. How-

ever, the volatility and sparsity of data always weaken the models’ performance. Prevailing

solutions rely heavily on data pre-processing independent of predictive models, which are

labor-intensive and may contaminate authentic data. This paper proposes a Survival Analy-

sis based Volatility and Sparsity Modeling Network (SAVSNet) to address these issues in an

end-to-end deep learning framework. Specifically, SAVSNet smooths the volatile time

series by convolution network while preserving the original data information using Long-

Short Term Memory Network (LSTM). Furthermore, we propose a Time-Missing-Aware

LSTM unit to mitigate the impact of data sparsity by integrating informative missingness pat-

terns into the model. A survival analysis loss function is adopted for parameter estimation,

and the model outputs monotonically decreasing survival probabilities. In the experiments,

we compare the proposed method with state-of-the-art methods in two real-world MOOC

datasets, and the experiment results show the effectiveness of our proposed model.

Introduction

The spread of Covid-19 has brought new opportunities for e-learning, especially for the online

education platforms represented by Massive Open Online Courses (MOOCs), which attract

people’s attention once again. However, due to the scarcity of adequate supervision and neces-

sary restrictions for e-learners, online students have a much higher chance of dropping out

than those attending conventional classrooms [1]. To address the issue, researchers have pro-

posed Student Dropout Prediction (SDP), which utilizes students’ demographics and engage-

ment data to automatically predict whether a specific student will drop out of the MOOC
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platform [2]. The accurate and timely prediction can help institutions, students, and faculty

members to find more efficient methodologies to mitigate withdrawals.

Traditional approaches for modeling SDP are generally based on machine learning algo-

rithms such as Logistic Regression(LR) [3] and Support Vector Machines (SVM) [4] to fit time-

independent features. Unfortunately, these methods often lose the ability to capture complex

temporal dependency between students’ interactive activities. Recently deep learning architec-

tures such as Convolutional Neural Network (CNN) [2] and Recurrent Neural Network (RNN)

[5] have shown the promising capability of modeling students’ dynamic activity sequences

(time-varying covariates). While exhibiting performance improvements, most current methods

treated SDP as a binary classification task, facing limitations in providing a single prediction

outcome. However, student dropout is not a sudden event but a long process affected by time.

It can be handled most effectively by survival analysis techniques, which could estimate survival

(failure) as a function of time. For example, Ameri et al. [6] applied typical survival analysis

techniques, i.e., Cox proportional hazards model (COX) and Time-Dependent COX

(TD-COX), to fit pre-enrollment and semester-wise information for classifying which student

is going to drop out and estimating when this is going to happen. Wintermute et al. [7] modeled

the certificate rates of MOOC users with a Weibull survival function, following the intuition

that students “survive” in a course for a particular time before stochastically dropping out.

However, literature on SDP tends to assume that survival estimates follow a specific parametric

distribution, which may not work in all cases. To solve this issue, the seminal work [8] extended

the previous assumptions by using RNN to learn the parametric distribution of both survival

time and user activity sequences, which provides us valuable new insights into combining neu-

ral networks and survival analysis to solve the SDP problem. Although this approach has more

flexibility to handle the survival analysis modeling, it is still challenging due to many aspects

that affect the accuracy of estimates, such as data volatility and sparsity.

First, the volatility in data may cause heteroskedasticity, which affects the model reliability

[9]. In recent years, in some human-related application scenarios such as MOOCs, it has been

independently observed that a series of user actions burst together in a short period, making

peaks randomly appear in time series [10, 11]. The phenomenon may cause the non-stationary

variance (heteroskedasticity, also known as volatility), leading to difficulty in sequential model-

ing [9]. On that account, volatility modeling has attracted sparked interest in the research com-

munity [12, 13]. The most common methodologies found in literatures treated the peak points

as outliers [14, 15] and adopted anomaly detections to identify them. Then they could be

removed manually or replaced with the means of a moving window. However, it always

requires extensively manual work for continuous re-detection. More importantly, the burst in

activities may indicate users’ underlying intention, which should be taken into account rather

than removed or replaced.

Second, the sparsity of data makes the RNN based model have difficulty in handling sparse

time series [16]. In addition to bursts of rapidly occurring events, human-created time series

datasets are always separated by long inactive periods, showing irregular sparsity [17, 18]. It

presents a more significant challenge because sparse data and the resulting missing values

severely limit the data’s ability to be analyzed and modeled for classification and forecasting

tasks [19]. The sparsity modeling problem has been widely studied, and existing approaches

mainly involve two categories. The first category centered around filling in the missing values

with substituted values at the data pre-processing stage, which is known as data imputation

[20, 21]. However, these pre-processing techniques contaminate the training data significantly

when the individual time series is highly sparse and irregular. Moreover, they have the appar-

ent limitation of disregarding important information between observations and missing val-

ues. Accordingly, the second category tried to resolve this obstacle by modifying the gating
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architecture of LSTM or GRU units to handle missing values in the learning process directly

[22, 23]. However, these works are restricted in addressing specific dataset issues that limit

transferability to different application domains.

To the best of our knowledge, there is currently no method that can inherently provide a

mechanism to tackle the challenges mentioned above. Therefore, we address the following

research questions:

• RQ1: Is it possible to model the temporal dynamics of user activities while addressing the

issues of volatility and sparsity without additional feature pre-processing?

• RQ2: Can the treatment of volatility and sparsity issues improve the predictive performance

of the state-of-the-art survival analysis models in SDP tasks?

In this paper, we aim to answer these questions by addressing the volatility and sparsity

issue of sequential modeling in an end-to-end deep learning framework. In particular, we

design a Survival Analysis based Volatility and Sparsity Modelling Network (SAVSNet) to

model the SDP task. SAVSNet consists of three stages: the volatility modeling network, the

sparsity modeling network, and the survival analysis network. The volatility modeling network

adopts a 1D-CNN to filter the original signal’s volatility adaptively. Parallelly, an LSTM is

applied to capture the temporal dependency of input time series. Then, we employ an update

gate to fuse the hidden representation output by these two branches adaptively. This approach

uses convolution to filter the volatility and preserves the temporal information extracted by

the LSTM. In the sparsity modeling network, we handle the sparsity in a customized LSTM

unit called Time-Missing-Aware LSTM (TM-LSTM), which concatenates informative miss-

ingness patterns, i.e., missing data indicators and time intervals, with the time series, rather

than performing simple imputations. Our model captures the long-term temporal dependency

of time series observations and utilizes the missing patterns to improve prediction perfor-

mance. With the output of the second stage, we compute the hazard rate for each timestep,

which indicates the instantaneous dropout rate of a student at time t given that no event has

occurred before. Afterward, a survival analysis loss function is employed to estimate the hazard

rate. The corresponding survival probability that indicates no dropout event has occurred by

time t, is derived from the predicted hazard rate. In comparison with binary classifiers, which

generally provide single outcome prediction, the benefit of using a survival analysis framework

is that it can provide continuous and consistent prediction results [8].

We conduct experiments on two real-world student dropout datasets to demonstrate the effec-

tiveness of our proposed model. The results show that our model outperforms the state-of-the-art

models. We also conduct an ablation study to reveal the effectiveness of the model components

and a sensitive experiment to explore the effect of hyperparameter settings on the model.

To summarize, our contribution to this work is threefold:

1. We propose an end-to-end learning approach for modeling the volatile time series without

the need for an additional data smoothing step. This approach not only utilizes the spatial

feature extraction capability of 1D-CNN to perform adaptive filtering on the original data

but also retains useful temporal information through LSTM.

2. We propose a novel TM-LSTM unit that effectively exploits two representations of infor-

mative missingness patterns in the sparse time series to improve prediction performance.

This method avoids a separate interpolation process and can be incorporated into other

deep learning frameworks.

3. As far as we know, we are the first to combine neural networks and survival analysis to

solve the SDP problem. Our approach takes advantage of the neural network’s ability to
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capture the potential non-linear relations between the hazard rates and time-varying covar-

iates without any specific survival time distribution assumption.

Related works

In this section, some classical methods of student dropout prediction are introduced first.

Then, we list the survival analysis methods proposed so far. Finally, we review two lines of

work relevant to ours, namely volatility and sparsity modeling.

Student dropout prediction

In the surveyed works that have addressed the SDP problem, most researchers treated SDP as

a binary classification task and used classic Machine Learning (ML) algorithms to estimate the

classification probability of a given vector of features. For instance, Gitinabard et al. [3] use

decision trees to select features and use logistic regression to predict dropouts. Ayouni et al.

[4] trained Decision Tree (DT) and Support Vector Machines (SVM) to classify a student into

different engagement levels. However, these methods remain a need for meticulously designed

feature engineering, limiting their applicability. Moreover, they may fail to model the complex

nonlinear relations of dynamic student activities.

As deep learning (DL) models have successfully modeled complex nonlinear dependencies,

there has been increasing research effort to apply DL algorithms to SDP. The clickstream

information is commonly used by the academia [24], and RNN-based models are often chosen

due to their ability to capture the dynamics of sequential patterns. Wang et al. [5] approached

the SDP task as a sequence classification problem and used the RNN model to obtain a better

prediction result. CNN can also be found in the literature to eliminate the potential inconsis-

tency introduced by manual feature engineering. The work of [2] proposed a CFIN frame-

work, which employed a one-dimensional CNN (1D-CNN) to extract features from an

augmented learning activity feature vector automatically.

Despite the success of the methods mentioned above in modeling the binary classification

task, they may give rise to a biased estimation when modeling the instances that the dropout

event is not observed due to time limitations [25]. It is known as the censoring problem, which

survival analysis techniques could effectively handle.

Survival analysis

Survival analysis (SA) models have been successfully applied in a variety of real-world domains

such as biology/medicine analysis, credit risk, student/employee attrition, and predictive

maintenance that require estimating the time until an event of interest occurs [25]. One of the

main challenges for modeling such time-to-event data is the so-called censoring problem, and

SA addresses such problem by learning the dependencies between covariates and survival

time.

The most commonly used SA model is the Cox Proportional Hazards (CPH) model [26]. It

is a semi-parametric model, which does not require any knowledge of the underlying distribu-

tion of time, but assumes that the linear combination of the example covariates have an expo-

nential influence on the outcome. Recently [6, 7], have introduced the CPH model into the

SDP domain to predict the risk of students dropping out of their degrees. However, in practice,

the linear method may fail to fit the dependencies between covariates and survival time. This

problem is solvable to some extent through the use of ML techniques. For instance, Nasejje

et al. developed a Conditional Survival Forest (CSF) model, which was an ensemble of tree-

based SA model [27]. It tends to recursively partition data based on similar events of interest.
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Katzman et al. proposed a DeepSuvr model [28], which utilized a three-layer fully connected

neural network to fit the nonlinear relationship between input features and the survival status

of a subject.

Although these extensions of the CPH model have partially solved the problem of fitting

non-linear relationships, they are still semi-parametric models, and the distribution of survival

time is still unknown. Accordingly, parametric methods have been proposed, assuming the

survival time of all instances follows a particular distribution. A case in point is the Gompertz

distribution [29]. It assumed that the logarithm of the hazard follows a skewed continuous

probability distribution, resulting in an exponentially increasing failure rate. However, assum-

ing particular distribution for survival time may not apply to all situations. Accordingly,

Zheng et al. proposed a neural SA model for fraud early detection (SAFE) [8]. It utilized

RNN to learn the parametric distribution of both time and covariates without any specific sur-

vival time distribution assumption. However, the presence of volatile and sparse time

series can severely limit the deep sequential model’s ability for classification and forecasting

tasks.

Volatility and sparsity modeling

A characteristic of time series volatility is the random presence of peaks that deviate from the

average over temporal- or channel-wise. Modeling with the peaks can significantly affect the

model performance [15]. Therefore, the most straightforward option in the SDP field was to

treat the peak data as outliers and use outlier detection methodologies such as clustering [30]

and Exceptional Model Mining (EMM) [31] to identify and remove them. An alternative

approach was to use a moving window average to smooth the anomalous peak in time series

and reduce short-term noise [32]. However, these methods split the detection and prediction

into two separate steps, increasing time and computational complexity. What’s more, It is not

appropriate to remove or smooth these peaks without considering the reasons for their crea-

tion. Actually, the peak data in the MOOC is a “natural outlier”, which may be generated by

genuine learning activity [15]. It may provide helpful information about students’ learning

and should be considered when making predictions.

Sparsity is characterized by a large proportion of missing data in a dataset, and the intervals

between successive observations are often irregular. It always causes performance degradation

for classification and prediction tasks. One way to solve this issue is to deploy data interpola-

tion techniques such as spline [20], and Generative Adversarial Networks (GAN) [21] to get

data readings of the same interval. However, these methods tend to perform worse when data-

sets have a high proportion of missing values. In fact, the missing values in MOOCs are a note-

worthy indicator of the dropout trend, which should be integrated into the model rather than

replaced by interpolation. Accordingly, some studies have integrated missing pattern informa-

tion into complex temporal dependency learning processes by modifying conventional gated

GRU or LSTM architectures. Che et al. [22] developed a modification of the GRU unit, namely

GRU-D, which introduced a missing indicator and time interval to impute missing values as

the decay of previous input values toward the empirical mean. Although GRU-D considered

two representations of missing patterns, they were only applied to generate a derived input for

interpolation. It may seriously compromise the model’s reliability as it cannot distinguish

imputed values from actual records. Baytas et al. [23] proposed a Time-Awre LSTM (T-LSTM)

unit, which employed the elapsed time between consecutive elements of a sequence to decay

the short-term memory of the standard LSTM unit rather than the current input. This

approach has captured the global structure information of irregular time series. However, it is

restricted in transferability to different application domains due to only considering the effect
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of the short-term memory on the current output, and the decay mechanism needs to be explic-

itly designed.

Methods

Formulation of student dropout prediction

Unlike previous work that modeled the SDP problem as a binary classification task, our study

is particularly interested in developing a model based on the survival analysis framework,

which could predict the dropout outcome and output monotonically decreasing survival prob-

abilities to achieve consistent predictions along time. Meanwhile, we aim to perform end-to-

end learning directly using volatile and sparse MOOC time series as input without the need

for an additional interpolation or data smoothing step.

Below we first provide some of the terms that used in this study.

• Dropout: A student who does not have any engagement records after a specific point-in-

time is defined as a dropout.

• Event: Student dropping out of the course is our event of interest.

• Duration: It corresponds to the length of time a user is active, i.e., the time between the first

observation of student activities and the end of learning (active withdrawal or the end of the

observation window).

• Censored: A student who has not been subject to a dropout event in the observation window

is considered a censored instance. Therefore, it can be found that the dropout and censored

indicators are mutually logical non-s.

Formally, we present the notations used in this paper.

Let D ¼ fðXi; yi;TiÞgNi¼1
represents a dataset with N samples, where Ti denotes the duration

time and yi is the ground truth that indicates the sample i is a dropout (yi = 1) or a non-drop-

out (yi = 0). For each sample i, we denote a multivariate time series with D variables of length

Ti as X ¼ ðx1; � � � ; xt; � � � ; xTiÞ
T
2 RTi�D

, where for each t 2 {1, . . ., Ti}, xt 2 R
D

represents the

t-th observations of all variables and xdt denotes the measurement of d-th variable of xt. The

goal of our model is to train a mapping function between the input xt and the survival proba-

bility at each timestamp, i.e., St = f(xt). By comparing the survival probability St at time Ti with

a threshold τ, we can obtain a binary outcome yi.

Model structure

In this section, we will describe the architecture of the SAVSNet model. We first give an over-

view of SAVSNet. Then we will describe the main components.

Overall architecture. Fig 1 presents the architecture of our proposed model SAVSNet,

which is designed as three stages of deep learning networks: a volatility modeling network, a

sparsity modeling network, and a survival analysis network. (1) In the volatility modeling net-

work, we leverage a dual-branch structure consisting of a 1D convolutional network to capture

the spatial dependencies of multivariate time series and an LSTM network to learn the tempo-

ral dependency, respectively. Then we utilize an update gate to fuse the two hidden representa-

tions adaptively. (2) In the sparsity modeling network, we design a customized Time-Missing-

Aware LSTM (TM-LSTM) unit that exploits the elapsed time and missing indicator to adjust

the long-term and short-term memory of the LSTM unit. (3) In the survival analysis network,

we apply a softplus function to transform the output of TM-LSTM into a hazard rate that rep-

resents the instantaneous hazard of the student given no dropout event occurred before. Then
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we employ a survival analysis loss function to estimate the hazard rates. Accordingly, the sur-

vival probability at each time step is obtained by the formula St ¼ e
�
Pt

k¼1
lk [8]. By comparing

the survival probability at the last timestamp with a threshold τ, we can predict whether a user

would drop out of the course.

Volatility modeling network. A common practice in existing approaches for volatility

modeling is to treat the local and temporary peaks as outliers and use outlier detection tech-

niques to identify and remove/smooth them, respectively. However, these approaches always

lead to a two-step process and cannot be integrated into a deep learning architecture. There-

fore, we seek to develop a unified deep learning approach to filter the multivariate time series

peaks. Experiment from [33, 34] has shown that CNN is insensitive to data variation through

its spatial dependency extraction capability. It inspires us to utilize a 1D-CNN network to cap-

ture the spatial dependency of time series to reduce the feature scale variations. In addition,

considering the possibility of losing useful information by filtering the peak data, we also use

an LSTM network parallel to 1D-CNN to capture the temporal dependency of the original

time series. Then, the spatial and temporal dependencies are fed into an update gate to gener-

ate a hidden representation of the original data.

The 1D-CNN network receives the MTS X as input and applies filters to convolve with the

sequence input. The convolution operation of 1D-CNN is illustrated by Fig 2. A filter produces

a 1D feature map by converging over the local area of the input signal, i.e., temporal-wise and

channel-wise features. Then, the convolution operation slides the filter across the sequence to

detect specific characteristics in all locations. Each filter will constantly adapt to the input sig-

nal, effectively matching its filter coefficients to a short-term model of the signal source,

thereby reducing the mean square error output. This operation preserves feature scale invari-

ance and can be regarded as a form of adaptive filtering [35]. The 1D-CNN is succeeded by a

Batch Normalization (BN) layer to accelerate and stabilize the training process, and the BN

layer is followed by a Rectified Linear Unit (ReLU) activation function to ensure the non-linear

behavior of the network. The convolution operation is formalized in the equation:

mt ¼ ReLUðBNðbt þ
XNl � 1

j¼1

Conv1Dðojt;XÞÞÞ ð1Þ

Fig 1. The architecture of SAVSNet. The model consists of three major components, namely the volatility modeling network, the sparsity modeling

network, and the survival analysis network.

https://doi.org/10.1371/journal.pone.0267138.g001
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wheremt is the feature maps of output, bt is the bias, Nl is the number of channels and ωjt is

the filter weight.

The LSTM network takes the token xt at each time step as input and outputs the hidden

state ht, which captures temporal dependency among the MTS input. A dropout layer succeeds

the LSTM to prevent neural networks from overfitting. The computation of LSTM at each

time step is depicted by [36] as the following:

ft ¼ sgðWfxt þ Uf ht� 1 þ bf Þ

it ¼ sgðWixt þ Uiht� 1 þ biÞ

ot ¼ sgðWoxt þ Uoht� 1 þ boÞ

~ct ¼ secðWcxt þ Ucht� 1 þ bcÞ

ct ¼ ft � ct� 1 þ it � ~ct

ht ¼ ot � shðctÞ

ð2Þ

Fig 2. An example of the convolution operation of 1D-CNN. 1D-CNN moves the convolution kernel smoothly along the temporal wise of the input

time series and generates the filtered signal by performing convergence over the local area of the input.

https://doi.org/10.1371/journal.pone.0267138.g002
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where {Wf, Uf, bf}, {Wi, Ui, bi}, {Wo, Uo, bo}, and {Wc, Uc, bc} are the network parameters of the

forget gate ft, input gate it, output gate ot and the candidate memory ~ct . ct is the cell state and ht
is the hidden state.

With the output of 1D-CNN and LSTM, we employ an update gate to adaptively fuse them

to derive a representation of the original data. The design of the update gate is inspired by the

GRU [37], which uses a gating mechanism to control the weights about how much informa-

tion from two features will be preserved. The process can be formulated as follows:

zt ¼ sð½mt; ht�Wz þ bzÞ

~xt ¼ zt �mt þ ð1 � ztÞ � ht
ð3Þ

where [., .] represents the concatenating operation and�means the Hadamard product.

Since the concatenating operation needs to ensure the two joined elements are consistent,

we set the 1D convolutional layer with a stride of 1 and “same” padding, making the sequence

length dh generated by the 1D-CNN equal to that of LSTM. Then, we concatenatemt with ht
into a vector with length 2dh. Then, we send the combination vector into a fully connected

layer to generate an update gate vector zt with output size dh. The vector zt is then used to con-

trol the proportion ofmt and ht in the output hidden state ~xt.
Sparsity modeling network. Gated RNN variants with different gates and inner connec-

tions have become a promising tool for handling the sparsity issue of irregular time series.

These variants made effective use of missing value patterns, time intervals, and complex tem-

poral dependencies to achieve improved performance in terms of speed and accuracy for spe-

cific datasets or domains [19]. The work of T-LSTM [23] introduced a solution by decaying

the short-term memory of the LSTM unit according to the elapsed time intervals between

two consecutive records. However, only considering the effect of sparsity on short-term mem-

ory may have limited transferability to different application domains. As listed in Eq (2), there

are two forms of cell memory in the standard LSTM unit. One is long-term memory, i.e., the

cell state ct, which aggregates data from all previous timesteps through linear computation.

The other is short-term memory, i.e., the hidden state ht, which encodes the characterization

of the previous timestep’s data through nonlinear activation. When modeling sparse

time series using standard LSTM units, long-term memory would not be significantly

affected by the previous record with a more extended period. In contrast, even the input zero

vector will cause the LSTM unit to generate non-zero output values due to the nonlinear map-

ping of short-term memory, which could make data inferred from sparse observations less

reliable.

Therefore, we aim to explore a new unified approach to address both of these issues. We

introduce two representations of informative missing patterns, i.e., missing indicator and

elapsed time to regulate the flow of information in the LSTM unit. The missing indicator ut 2
{0, 1}D is a binaray vector that advises the model which inputs are observed (or missing) at

time step t. To be specific, if the input token xt is observed with non-zero statistics, the indica-

tor is set to 1. Conversely, if xt is filled with zero vectors, the indicator is set to 0.

Thus we have:

ut ¼
1; if xt is observed with non � zero

0; otherwise

(

ð4Þ
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With the missing indicator ut, we can calculate the elapsed time Dt 2 R
D

to stand for the

time gap from the last observation to the current timestamp.

Dt ¼
0; if t ¼ 0 or ut ¼ 1

Dt� 1 þ 1; if ut ¼ 0

(

ð5Þ

Then, we propose a Time-Missing-Aware LSTM (TM-LSTM) unit to incorporate the two

informative missing patterns into the recurrent neural network. The struture of TM-LSTM

unit is illustrated by Fig 3. In the comparison with the classical LSTM unit, TM-LSTM takes

three inputs, which are the output of the previous stage ~x t , the missing indicator ut−1 and the

elapsed time of previous time step Δt−1.

TM-LSTM employs Δt−1 to adjust the confidence of previous long-term memory ct−1. Intui-

tively, longer the elapsed time, less influence of long-term memory has on the current output.

So we use a monotonically non-increasing function g(�) to convert the elapsed time to a decay-

ing weight. Here we select g(Δt) = 1/log(e + Δt) as suggested in [38]. Meanwhile, we put the

previous long-term memory ct−1 through a tanh activation to obtain a representation CLt� 1
by

the network. Consequently, we can obtain a discounted long-term memory ĈL
t� 1

by the

Fig 3. The structure of Time-Missing-Aware LSTM (TM-LSTM) cell. TM-LSTM introduces the elapsed time Δt−1 and the missing indicator ut−1 to

adjust the previous long-term and short-term memory, respectively.

https://doi.org/10.1371/journal.pone.0267138.g003
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product of CLt� 1
and g(Δt).

CLt� 1
¼ tanhðWdCt� 1 þ bdÞ

ĈL
t� 1
¼ CLt� 1

� gðDtÞ

ð6Þ

where {Wd, bd} are the network parameters to be learned.

Meanwhile, TM-LSTM applies ut−1 to control the flow of previous short-term memory ht−1.

As previously analyzed, the presence of zero vectors could make the recurrent cells generate

non-zero hidden state output. Hence, we use the missing indicator as a switch to control the

transfer of short-term memory by a pointwise multiplication. Specifically, ut−1 equal to 1 indi-

cates that there are non-zero inputs at the previous time step, so ht−1 is the nonlinear mapping

result of the previous inputs, and it should be let through to participate in the calculation of

the current memory. While ut equal to 0 means that the input of the previous time step is an

all-zero vector, so ht−1 is derived entirely from the transmission of the previous hidden state,

which could make it less reliable in characterizing the hidden state at the previous step. There-

fore, the previous short-term memory ht−1 should be masked, and the transmission of memory

is entirely dependent on the long-term memory.

hSt� 1
¼ ht� 1 � ut� 1 ð7Þ

The adjusted previous long-term memory ĈL
t� 1

as given in Eq (6) and the adjusted previous

short-term memory hSt� 1
as given in Eq (7) are then injected into a standard gated architecture

of the vanilla LSTM:

ft ¼ sðWf ~x t þ Uf hSt� 1
þ bf Þ

it ¼ sðWi~x t þ UihSt� 1
þ biÞ

ot ¼ sðWo~x t þ UohSt� 1
þ boÞ

~C ¼ tanhðWc~x t þ UchSt� 1
þ bcÞ

Ĉt ¼ ft � ĈL
t� 1
þ it � ~C

ĥt ¼ ot � tanhðĈtÞ

ð8Þ

where Ĉt and ĥt is the cell state and hidden state of TM-LSTM, and the gates and network

parameters are interpreted in the same way as Eq (2).

Survival analysis network. Instead of converting the output of the sparsity modeling net-

work into a binary prediction result, we introduce a survival analysis network, which maps

these output hidden representations to survival probabilities to address the issue of censoring

and achieve consistent prediction results.

The survival analysis network starts with a softplus layer to transform the hidden state ĥt at

each timestamp to a positive hazard rate λt. This is done because the hazard rate λt represents

the instantaneous probability at time t given no event occurred before time t [8]. The equation

is given as below:

lt ¼ softplus
�
wlĥt

�
¼ ln

�
1þ exp

�
wlĥt

��
ð9Þ

where wλ is the weight of ĥt. Then, we adopt a maximum likelihood function as used in litera-

ture [8] to estimate the hazard rate and the corresponding survival probability. If a sample i
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has the dropout event (yi = 1), the likelihood function seeks to make the predicted time-to-

event equal to the accumulation of all hazard rates before Ti as maximizing the term P{T< Ti};
if a sample i is a non-dropout (yi = 0), the likelihood function aims to make the sample survive

over the last-observed time Ti, i.e., maximizing P{T� Ti}. The joint likelihood function for a

sample i is (A detailed derivation is provided as S1 File):

PfT < Tigy
i
� PfT � Tig1� yi

¼ ðe
PTi

t¼1
lt � 1Þ

yi
� e�
PTi

t¼1
lt

ð10Þ

where T is a continuous non-negative random variable representing the survival time until the

occurrence of a dropout event.

Naturally, we could get the survival analysis loss function of sample i by taking the negative

logarithm of the likelihood function:

‘
i
¼ ð
XTi

t¼1

ltÞ � y
i � lnðe

PTi

t¼1
lt � 1Þ ð11Þ

Then, the overall loss is the sum of the loss functions of all samples in the training set:

L ¼
XN

i¼1

‘
i
¼
XN

i¼1

ð
XTi

t¼1

ltÞ � y
i � lnðe

PTi

t¼1
lt � 1Þ

" #

ð12Þ

By optimizing the model parameters, we can estimate the hazard rate λt for new samples.

The corresponding survival probability at each timestamp can be calculated by St ¼ e
�
Pt

k¼1
lk ,

which is monotonically decreasing along time to helps us achieve consistent predictions. Then

we can predict the student dropout result by comparing the survival probability at the last

timestamp with an optimal threshold τ.

Experiment

Dataset description

We conduct experiments on two SDP benchmark datasets to evaluate our proposed model.

They are drawn from XuetangX, the largest MOOC platform in China. It was launched in

October 2013 and has provided over 1,000 courses and attracted more than 10,000,000 regis-

tered users. The XuetangX platform provides various course information (course start date,

course end date, course category, and course type) and user profiles (gender, birth year, and

education level). They also record system logs of users’ learning activities such as video watch-

ing, forum discussion, assignment completion, and web page clicking. Considering data pri-

vacy and ethical issues, all the publicly available datasets from the XuetangX platform have

anonymized the user names into UserIDs [39].

Two datasets. The first dataset is KDDCup 2015, which has been widely used for various

MOOC dropout prediction studies [2]. The dataset contains information about 39 courses and

72,395 enrolled students. Each course takes 30 days as the history time window, and the pre-

diction period is set to 10 days. Seven different event types of student learning activity (i.e., fea-

tures) are provided in KDDCup 2015. The second dataset is XuetangX [40], which is much

larger than KDDCup 2015. The original XuetangX dataset contains 246 courses, 202,000 stu-

dents, and 22 event types. To facilitate model training, we adopt the data processing method

used in [24], i.e., pruning all e-courses with less than 350 student trajectories, which leaves us

with 19 courses and 23,839 students. For the XuetangX dataset, the history period is 35 days
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and the prediction period is still ten days. Both datasets are split by the ratio of 70% training

sets, 10% validation sets, and 20% testing sets. Due to both the datasets suffering from the

unbalanced class distribution, we utilize downsampling on the train and valid set to achieve

balanced subsets. We leave the test set with no processing to ensure the generalization of the

prediction results. Table 1 summarises the characteristics of the two datasets.

Hyper-parameters and baselines

In this section, we first introduce parameter settings in our model. Then we describe several

baseline methods.

In the volatility modeling network, we set the hidden units of LSTM and the filters of

1D-CNN as 128 to keep them consistent in channel-wise dimension to facilitate the fusion

operation of the update gate. In order to study the influence of students’ short-term behavior

duration on the results, we set different convolution kernel sizes of 1D-CNN as 2, 3, 4, 5 and 6,

respectively. The dropout rate at the LSTM branch is set to 0.1. In the sparsity reduction net-

work, we set the number of units in the TM-LSTM cell as 128. The model is trained by back-

propagation via Adam optimizer with a batch size of 16 and a learning rate 10−4.

Depending on the assumptions made in the model, the baseline methods can be subdivided

into semi-parametric and parametric models.

1. Semi-parametric models

The semi-parametric models are built on the PH assumption [26], which leaves the time

component of the hazard function ht unspecified. The adopted semi-parametric models are

listed as follows:

• Cox Proportional Hazard (CPH, 2016, [6]): a commonly used semi-parametric survival

analysis model, which assumes that the risk of failure is a linear combination of the

covariates.

• DeepSurv (2018, [28]): a nonlinear extension of the CPH model, which utilized a three

layer fully-connected neural network to fit the nonLinear relationship between features

and levels of risk.

• Conditional Survival Forest(CSF, 2017, [27]): a nonlinear survival method, which was uti-

lized to inherently model high-level interaction terms by employing maximally selected

rank statistics to obtain an unbiased split variable selection.

2. Parametric models

Parametric models are classified into two main categories according to the way parameters

are used. One assumes that the survival time of all instances follows a particular theoretical

distribution, while the other leaves it entirely up to the model to learn the dependencies

between covariates and survival time.

Table 1. Datasets characteristics of KDDCup 2015 and XuetangX.

Type KDDCup 2015 XuetangX

Num of courses 39 19

Enrollment students 72,395 23,839

Max time window length in days 30 35

Num of event types 7 22

Avg sparsity 90.8% 90.02%

Class distribution (0 : 1) 20.7% : 79.3% 38.7% : 61.3%

https://doi.org/10.1371/journal.pone.0267138.t001
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• Gompertz (2017, [29]): a generalization of the exponential distribution characterized by

the logarithm of the hazard being linear in t. It results in an exponentially increasing haz-

ard rate. This distribution provides a remarkably close fit and is often applied to model

highly negatively skewed data in survival analysis.

• SAFE (2019, [8]): a deep survival framework that adopts RNN to capture the information

of time-varying covariates and map them into time-varying hazard/survival probability.

Evaluation metrics

We adopt a commonly used survival analysis evaluation metric, Concordance Index (C-index)

[41], to evaluate the models’ discrimination ability. It can provide a ranking of the survival

time based on the individual hazard rate. Specifically, C-index randomly forms pairwise com-

parisons of all subjects and calculates the proportion of pairs whose predicted hazard rates are

consistent with the actual survival time and censored indicators. The C-index values of survival

models generally range from 0.5 to 1, where 0.5 is equivalent to a random prediction result,

and 1.0 is a perfect concordance. Additionally, we employ Accuracy, F1, and Area under the

ROC Curve (AUC) to evaluate the classification performance of various models. Actually,

AUC is the probability that the model ranks a random positive example more highly than a

random negative one. According to the definition of C-index, it is a generalization of AUC.

Results

Results of different models

We perform five random runs and report the average testing performance of our proposed

method compared with other models. Tables 2 and 3 show the overall results of the compara-

tive experiments on KDDCup 2015 and XuetangX dataset.

We can observe that the proposed model SAVSNet outperforms other state-of-the-art

methods on the two datasets. This may be attributed to the fact that we take the advantage of

neural network to learn the non-linear relations between the hazard rates and the student’s

dynamic learning sequence, while effectively addressing the volatility and sparsity of the time

series. SAFE achieves the second best results on KDD2015 dataset. This could be due to the

limitation in the capability of RNN in modeling the volatile and sparse time series. Interest-

ingly, Gompertz performs better than SAFE over some metrics on the XuetangX data. The

potential reason may be felt that Gompertz specifies the negatively skewed distribution of

Table 2. The results on KDDCup 2015 dataset.

KDDCup 2015 dataset

Category Models C-index " Accuracy " F1 " AUC "

Semi-parametric models CPH [6] 0.7827 0.7161 0.7993 0.7233

DeepSurv [28] 0.7826 0.7274 0.8120 0.7079

CSF [27] 0.8118 0.7668 0.8407 0.7565

Parametric models Gompertz [29] 0.8237 0.7855 0.8576 0.7466

SAFE [8] 0.8753 0.8361 0.8929 0.8023

SAVSNet (Ours) 0.9066 0.8464 0.8999 0.8149

" indicates that the higher the value, the better the performance. Of all the results, the highest are shown in bold. The second highest results are shown above underlines.

https://doi.org/10.1371/journal.pone.0267138.t002
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time-to-event, which may closely fit the XuetangX dataset but can not exactly match the time

distribution of KDD2015 dataset. The experimental results also show that the overall perfor-

mance of parametric models is better than semi-parametric models. It appears that these semi-

parametric models are subject to the PH assumption, which may be attributed to the deficiency

of temporal information in modeling survival data. Among all semi-parametric models, CSF

performs better than CPH and DeepSurv in most metrics. It may be reasonable to suppose

that CSF reduces split variable selection bias by maximally selected rank statistics. DeepSurv

gets the similar results with CPH on KDD2015 dataset but performs worse among other mod-

els on XuetangX dataset. It can be inferred that DeepSuvr’s use of a three-layer fully connected

neural network to fit the relationship between covariates and hazard fuction is not always

effective.

Ablation study

In this section, we conduct an ablation study on KDDCup 2015 dataset to investigate the effec-

tiveness of various components in SAVSNet. With the ablation study, we can get deep insights

into the contribution of different components to the final performance.

Effectiveness of key components of SAVSNet. Firstly, we define some variations of

SAVSNet which denote missing/replacing one or more parts of the model. Specifically, SAVS-

Net-VM and SAVSNet-SM denote we remove the volatility modeling network or the sparsity

modeling network from SAVSNet, respectively. SAVSNet-TM indicates the TM-LSTM unit is

replaced with a standard LSTM unit. Except for the changes mentioned above, other compo-

nents remain unchanged. The experiment results are listed in Table 4. We can find that SAVS-

Net achieves the best performance on the KDD2015 dataset, which proves the effectiveness of

each component of our proposed model. Moreover, it is observed that SAVSNet-SM performs

worse than SAVSNet-VM. This could be inferred that the sparsity of data has a more signifi-

cant influence on the results, so the performance degradation of removing the sparsity model-

ing network is more prominent. A significant drop in SAVSNet-TM is also noted, which is

evident that the introduction of informative missing patterns significantly contributes to the

model prediction performance.

Effectiveness of key components of volatility modeling network. To further evaluate the

design of the volatility modeling network, we remain the sparsity modeling network but

change the composition of the volatility modeling network. Specifically, SAVSNet-CN and

SAVSNet-LM denote we removed the 1D-CNN part and the LSTM part of the volatility

modeling network, respectively (the update gate has also been removed). SAVSNet-UG

Table 3. The results on XuetangX dataset.

XuetangX dataset

Category Models C-index " Accuracy " F1 " AUC "

Semi-parametric models CPH [6] 0.7464 0.7286 0.8202 0.6464

DeepSurv [28] 0.5927 0.6461 0.7589 0.5604

CSF [27] 0.7467 0.7313 0.8172 0.6831

Parametric models Gompertz [29] 0.7039 0.7550 0.8425 0.6477

SAFE [8] 0.7762 0.7523 0.8336 0.6986

SAVSNet (Ours) 0.7976 0.7794 0.8518 0.7384

" indicates that the higher the value, the better the performance. Of all the results, the highest are shown in bold. The second highest results are shown above underlines.

https://doi.org/10.1371/journal.pone.0267138.t003
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indicates replacing the update gate with a ratio of 0.5:0.5. As shown in Table 5, SAVSNet still

gets the best performance. Noticeably, the overall performance of SAVSNet-CN is lower than

SAVSNet-LM. It may be reasonable to suppose that 1D-CNN is more prominent because it

provides the ability to filter the random peaks in the raw data. Interestingly, when we focus on

SAVSNet-UG, we find that its performance is even lower than SAVSNet-CN and SAVSNet-

LM on some of the metrics. It appears that simply fusing the output of the 1D-CNN and

LSTM may be difficult to learn the dynamic changes in volatility, which implies the update

gate has a substantial impact on the prediction performance.

Sensitive study

To assess the effect of different 1D convolution kernel size on model performance, we conduct

sensitive experiments on the KDD2015 dataset. This approach is a common technique used to

compare different versions of the same factor and is seen as a critical component of internal

reliability [42]. Specifically, we refer to SAVSNet-n as the model with n kernel size of 1D CNN.

Table 6 shows the performance of the model with different convolution kernel size from 2 to 7.

Then, we choose the results on C-index and F1 and plot their curve. As shown in Fig 4, the C-

index and F1 of the SAVSNet-n model first increase from SAVSNet-2 to SAVSNet-3 and then

decrease as the kernel size gets bigger from SAVSNet-4 to SAVSNet-7, where SAVSNet-3 has

the best performance. It indicates that setting the kernel size to 3 is an appropriate choice to fil-

ter out the sequence’s volatility, which leads to better model performance.

Case study

One of the advantages of survival models over binary classifiers is their ability to generate

monotonically decreasing survival curves. It is helpful to characterize the time-to-event distri-

butions and distinguish the survival differentiation between students.

Table 4. Ablation study of key components of SAVSNet.

Model C-index " Accuracy " F1 " AUC "

SAVSNet(Ours) 0.9066 0.8464 0.8999 0.8149

SAVSNet-VM 0.8636 0.8386 0.8948 0.8022

SAVSNet-SM 0.8052 0.8240 0.8830 0.8069

SAVSNet-TM 0.7849 0.8091 0.8711 0.8053

-VM and -SM denote removing the volatility modeling network or the sparsity modeling network from SAVSNet, respectively. -TM indicates replacing the TM-LSTM

unit with a standard LSTM unit.

https://doi.org/10.1371/journal.pone.0267138.t004

Table 5. Ablation study of components of volatility modeling network.

Model C-index " Accuracy " F1 " AUC "

SAVSNet(Ours) 0.9066 0.8464 0.8999 0.8149

SAVSNet-CN 0.8648 0.8088 0.8708 0.8061

SAVSNet-LM 0.8959 0.8255 0.8836 0.8135

SAVSNet-UG 0.7519 0.8235 0.8826 0.8074

-CN and -LM denote removing the 1D-CNN or the LSTM part from the volatility modeling network, respectively. -UG indicates replacing the update gate with a ratio

of 0.5:0.5.

https://doi.org/10.1371/journal.pone.0267138.t005
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To obtain a general view of the predictions, we apply the K-Means algorithm [43] on the

test set of the KDD2015 dataset to group similar instances into clusters by making use of the

average covariates of students as input features. Due to the number of cluster k being unspeci-

fied, we first calculate the silhouette score [44] of cluster k from 2 to 7. As shown in Fig 5A, the

silhouette score is highest when k is set to 5. Then, we assign the students in the test set into 5

clusters and plot the clusters in Fig 5B.

Since the analysis of the clustering results is not the focus of this paper, we only select the

instance closest to the centroid of each cluster as the representative instance to compare the

survival probability curve predicted by SAVSNet. As shown in Fig 5C, there are apparent dif-

ferences in the survival probabilities of different cases. The instance of cluster 4 has a higher

survival probability initially, but the survival curve has a sharp drop very rapidly. It may sug-

gest that the student in cluster 4 may have been interested in the course at first, but his/her

interest shifted as the course progressed. The instance of cluster 3 has a dramatic drop in sur-

vival curve from the beginning of the course, revealing that students in cluster 3 tend to drop

out of the course at an early stage. The student in cluster 1 and 2 provide a survival curve with

a relatively constant slope. In contrast, cluster 5, constituting only 7% of the test data, yields a

significantly higher survival probability than other clusters. It may represent that only around

7% of them were interested in continuing their studies. Furthermore, we observe that many of

the curves seem to have lower survival probabilities at the end of the observation window

(drops in the survival curves around 15 days), which could be speculated that these instances

have dropout of the course.

Table 6. The effect of different convolution kernel on KDDCup 2015.

Model C-index " Accuracy " F1 " AUC "

SAVSNet − 2 0.9072 0.8158 0.8762 0.8104

SAVSNet − 3 0.9129 0.8464 0.8999 0.8149

SAVSNet − 4 0.8949 0.8319 0.8887 0.8140

SAVSNet − 5 0.9066 0.8138 0.8745 0.8102

SAVSNet − 6 0.8875 0.8297 0.8870 0.8138

SAVSNet − 7 0.8955 0.8358 0.8919 0.8116

https://doi.org/10.1371/journal.pone.0267138.t006

Fig 4. The results of C-index and F1 on KDDCup 2015 with different convolution kernel size.

https://doi.org/10.1371/journal.pone.0267138.g004
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Discussion

This paper explored a survival analysis model built on neural networks for volatile and sparse

sequential data and applied it for the MOOC SDP task. The experiment results suggest that

SAVSNet archives a 2% to 3% improvement in C-index and AUC on two real-world datasets

compared to the state-of-the-art survival analysis model, which proves that our proposed

model is a promising alternative to the naive baseline algorithms [6, 8, 27–29]. Meanwhile, the

ablation study results show that removing either the volatility modeling network or the sparsity

modeling network will reduce model performance. It demonstrates that our designed modules

can effectively deal with the issue of data volatility and sparsity, and the techniques proposed

can be generalized to any volatile and sparse sequence scenarios. We also found that the spar-

sity of the data has a more significant impact on the results than the volatility. The finding is

consistent with intuition because sparse data may indicate a lower willingness for students to

participate in courses and a higher tendency to drop out. Among all the volatility modeling

network components, the elimination of the CNN module results in more significant degrada-

tion of model performance. The results validate that activity burst affects the parameter esti-

mates and that the CNN structure effectively filters the volatility over time. Actually, the

findings are in line with the results from prior research [33, 34, 45].

Fig 5. A case study of SAVSNet. A: The silhouette scores of clusters from 2 to 7. B: Exhibiting unsupervised clustering into 5 clusters. C: Comparison

of the survival probability curves of the representative instance in 5 clusters. D: A set of heatmaps showing longitudinal and multivariate learning

activities for the 5 representative instances.

https://doi.org/10.1371/journal.pone.0267138.g005
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Compared with binary classification models, which only output a single prediction out-

come [2, 5, 24], our model is a marked improvement in providing a process evaluation for stu-

dents’ learning activities. By mapping the longitudinal students’ learning activities into

survival probabilities, we can intuitively observe students’ performance with the survival prob-

ability curve. Therefore, instead of waiting for the end of each course phase to warn students,

we can target at-risk students at the early stage of the declining survival curve. It can help us

achieve early dropout prediction with fewer data, thus making institutional retention efforts

more efficient and effective. Furthermore, an application of event history modeling would

assist researchers in examining the temporal evolutionary effects of students’ learning activi-

ties. By comparing Fig 5C and 5D, it can be found that when students’ learning behaviors are

sparse, their survival curve will decline rapidly, which indicates a fast transition from persis-

tence to dropout. In addition, we found that when students’ activity bursts, their survival

curves decline more slowly, indicating that students’ efforts can slow the downward trend of

the survival curve. It may reveal the causes and consequences of the low engagement of stu-

dents that frustrate many MOOC providers.

However, we also should acknowledge some limitations, which provide directions for

future studies. First, the way the dropout label is defined in the SDP task limits our model’s

classification performance. As the SDP task generally provide a binary dropout label after the

last day of each course [2, 6], we have to compare the survival probability at the last moment

with a static threshold obtained from the grid search to convert the survival probability into a

binary result. As illustrated by Fig 5C, survival curves with different slopes may fall to zero at

the last moment. As a result, it is hard to choose a proper threshold for classifying non-drop-

outs from dropouts. Further research could select datasets with sequence labels or leverage an

automatic threshold mechanism to improve classification performance. Second, the assump-

tion of monotonically decreasing survival probabilities [7, 8, 28] may not be applicable in all

situations. For example, a student’s commitment to learning could recover the survival proba-

bility. Future researchers could design a survival mechanism with a recoverable factor based

on this suggestion so that the survival curve is more differentiated at the last moment, facilitat-

ing the selection of the optimal threshold.

Conclusion

In this paper, we propose a novel end-to-end framework named SAVSNet for student dropout

prediction, which focuses on addressing the problems of data volatility and sparsity. To reduce

data volatility’s impact while retaining the original data information, we develop a volatility

modeling network to adaptively filter the volatility in multivariate time series by 1D-CNN

while retaining temporal correlation with LSTM. Furthermore, to efficiently take advantage of

the information of sparse time series, we design a Time-Missing-Aware LSTM unit to incorpo-

rate two kinds of informative missing patterns for regulating the flow of information in the

LSTM unit. Eventually, SAVSNet provides a process evaluation method by outputting mono-

tonically decreasing survival probabilities. The experiment results on two real-world datasets

validate that the treatment of volatility and sparsity improves predictive performance. Exten-

sive ablation studies demonstrate the effectiveness of each component. The broader impact of

this study is to indicate that students’ engagement and persistence are conducive to reducing

the dropout rate. Therefore, MOOC stakeholders should pay close attention to students who

have been disengaged for a certain period and provide individually tailored support prior to

student withdrawal.

The study is limited by the lack of sequence labeling or an automatic threshold mechanism

to achieve better classification performance. These limitations should be addressed in future
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studies. In addition, we will design a recovery factor for the survival analysis mechanism to

make the survival curve recoverable according to changes in student learning.
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