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INTRODUCTION

The human apolipoprotein E (apoE, protein; APOE, gene) 
is single chain protein, classified as a lipoprotein, with 299 
amino acids. ApoE has 2 domains i.e., the amino-terminal do-
main that has low-density lipoprotein receptor binding region 
and a carboxy-terminal domain that has lipid-binding region.1 
APOE gene, located on chromosome 19q13, has several sin-
gle-nucleotide polymorphisms.2 The 3 common type poly-
morphisms are ε2, ε3, ε4; whereas rare type polymorphisms 
include ε1, ε5, ε7. The common types constitute 3 homozy-
gous (ε2/ε2, ε3/ε3, ε4/ε4) and 3 heterozygous (ε2/ε3, ε2/ε4, ε3/
ε4) diplotypes, which induces either exchange of 1 or 2 amino 
acid(s)3,4 or glycosylation of 1 amino acid.5 The ε2, ε3, and ε4 
alleles differ by single amino acid substitutions at residues 112 
and 158 of the protein. The amino acids sequence of these resi-
dues is cysteine-cysteine (ε2), cysteine-arginine (ε3), and argi-

nine-arginine (ε4).6 The ε3 allele also is the most common al-
lele in all population and neutral or protective to cells and 
organs.

ApoE is an important plasma protein found in plasma lipids 
such as very low-density lipoproteins, chylomicron, and a sub-
class of high-density lipoprotein. It is essential for the catabo-
lism of triglyceride-rich lipoprotein constituents, transporta-
tion of cholesterol and other lipids, and cellular repair.7,8 Foods 
with high cholesterol and triglyceride induce its expression in 
various animals.9 The liver is the main organ producing apoE 
in human, producing >75% of total apoE. Brain, spleen, lung, 
kidney, ovary, testis, peripheral nerves and muscle also pro-
duce apoE.10 Cholesterol is associated with myelin production 
and essential component of the brain cell membrane. It con-
tributes to brain development, neuronal maintenance, and re-
pair, as well as maintaining the synaptic plasticity of neuron 
cells.11 Astrocytes and microglia, vascular smooth muscle cells, 
and choroid plexus are sources of apoE in the human brain. 
Neurons can produce apoE, especially under stressful condi-
tions.7,12 Increased apoE can modulate lipid metabolism in the 
compromised nervous system.

APOE polymorphism was identified in 1993 in relationship 
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to the onset and clinical feature of Alzheimer’s disease. It has 
since become an important factor in the understanding of 
pathophysiology of Alzheimer’s disease, immunoregulation, 
and cognition in other dementias.13

Whether APOE has a protective or harmful role in the brain 
is under debate.14,15 In an epidemiological study, the terms are 
relative.16-18 When the APOE ε4 allele frequency is higher in 
patients with Alzheimer’s disease than cognitively normal per-
son, APOE ε4 is considered harmful. On the other hand, when 
the frequency of APOE ε2 allele in Alzheimer’s disease patients 
is less than that of cognitively normal person, APOE ε2 allele 
may be protective.19 However, these terms have a different 
meaning in laboratory studies. When cells with APOE ε2 allele 
survive longer than cells with other haplotypes in a toxic envi-
ronment, then APOE ε2 is protective. APOE ε4 is considered 
toxic to the nervous system and vascular endothelial cells, as 
compared to the other isoforms. The biological efficacy of 
APOE ε3 is between APOE ε2 and APOE ε4, hence, APOE ε3 
is considered neutral in terms of risk for Alzheimer’s dis-
ease.14,20

The mechanisms for the harmful effect of APOE ε4 are as 
follows. First, “domain interaction” theory explains the nega-
tive role of the APOE ε4.21 The domain interaction occurs be-

tween Arg-61 of the amino domain and Glu-255 of the car-
boxy-domain. This single amino acid interchange of the 
APOE ε4 causes a structural change such that APOE ε4 be-
comes more compact than APOE ε3 or APOE ε2.22 This medi-
ates the adverse effects of APOE ε4 (Fig. 1).23 Second, affinity 
of APOE ε4 for very low-density lipoproteins and low-density 
lipoprotein could explain brain damage by APOE ε4.24 Third, 
a recent study confirmed that proteolytically cleaved APOE ε4 
is a major factor in Alzheimer’s disease. An amino-terminal 
fragment of APOE ε4 is identified in neurofibrillary tangles 
using antibody, suggestive of neurotoxic effect of the amino 
terminal.25,26 Finally, the carboxy-domain fragments of APOE 
ε4 are neurotoxic and cause mitochondrial dysfunction and 
formation of neurofibrillary tangles in transgenic mice.27

ALZHEIMER’S DISEASE

Alzheimer’s disease is the most common cause of dementia 
in the elderly.28 With an increment of life expectancy in devel-
oped countries, the incidence and prevalence of Alzheimer’s 
disease are significantly rising. The prevalence of Alzheimer’s 
disease is increasing roughly at 2-fold rate per 5 years in pa-
tients above 65 years of age, reaching >30% at age 85. Al-

Fig. 1. Schematic diagram of human apolipoprotein E structure and main functional areas. The NH2 terminal domain and COOH terminal 
domain is connected by a flexible hinge region. There is low-density lipoprotein receptor binding region in NH2 terminal domain while Major 
lipid binding region and Amyloid beta interaction region are in COOH terminal domain. In apolipoprotein E ε4, domain reaction occurs be-
tween Arginine at residue 61 and Glutamate at residue 255 which results in the compact shape of the molecule. LDL: low-density lipoprotein.
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zheimer’s disease is considered to have heterogeneous genetic 
causes. It is divided into early-onset Alzheimer’s disease and 
late-onset Alzheimer’s disease by the age 65. Interestingly, Al-
zheimer’s disease with the strong genetic background, usually 
autosomal dominant, has a relatively early onset of around 50 
years. Moreover, research with genome-wide association study 
reveals that APOE ε4 carriers have a 33-fold higher risk of Al-
zheimer’s disease than APOE ε3/3 carriers.29,30 Loss of short 
term memory is the earliest clinical feature followed by loss of 
other cognitive features such as visuospatial function, language 
function, and frontal executive function. The primary pathol-
ogy of Alzheimer’s disease is an abnormal aggregation of amy-
loid beta that is a produced from amyloid precursor protein31 
in the extracellular space and tau protein in the neuronal cell.32 
Accumulation of amyloid beta causes senile plaque and accu-
mulation of abnormal tau protein causes neurofibrillary tangle. 
The majoir component of neurofibrillary tangles is hyperphos-
phorylated tau, a form of paired helical filament.33-35 APOE ε4 
is precisely correlated with cerebrospinal fluid amyloid beta 
levels in the preclinical stage of Alzheimer’s disease, which is 
less prominent in full-blown dementia.36 APOE ε4 may also 
mediate the development of dementia through tau phosphor-
ylation, destruction of cytoskeleton, and mitochondrial dys-
function.37-39 Experiments with cellular models, animal mod-
els, and patient biomarkers suggest that amyloid beta induces 
tau pathology. However, the relationship between amyloid 
beta and tau protein and their respective role(s) in Alzheimer’s 
disease remains unclear.40,41 Perivascular accumulation of amy-
loid beta also leads to other pathologies such as cerebral amy-
loid angiopathy.42 Longitudinal neuroimaging and pathologi-
cal studies show that pathological changes of Alzheimer’s 
disease begin decades before the clinical onset.43-46 Excess ag-
gregation of amyloid beta is a major shift in early stage Al-
zheimer’s disease. Amyloid beta 40 and 42 are important com-
ponents among its subtypes. Amyloid beta 40 is more 
prevalent and less toxic than Amyloid beta 42.47 Amyloid beta 
associated senile plaques and hyperphosphorylated tau associ-
ated neurofibrillary tangles are possibly associated with APOE 
ε4.48-51 These pathological changes result in loss of dendritic 
spines and decrement of synaptic density, finally, neuronal 
cells’ death.52,53 While the former study supports a harmful role 
of APOE ε4,37-39 later study suggests that multiple factors mod-
ulate the effect of APOE ε4 in the development of Alzheimer’s 
disease.50,51

Three recent studies explained the discrepancy between the 
amount of amyloid beta and cognitive dysfunction. A study of 
gene expression in the cerebral cortex of APOE ε4 carriers and 
late-onset Alzheimer’s disease indicates several regulatory me-
diators including APBA2, FYN, RNF219, and SV2A of which, 

those involved in amyloid beta precursor protein metabolism 
are likely to be associated with pathologic changes in late-onset 
Alzheimer’s disease.54 The longitudinal study, Alzheimer Dis-
ease Neuroimaging Initiative (http://www.adni-info.org) like-
wise shows that APOE ε4 participates in the pathology of pre-
clinical Alzheimer’s disease via amyloid beta. They also found 
a significant relationship between cerebrospinal fluid amyloid 
beta and cerebrospinal fluid clusterin as well as cerebrospinal 
fluid amyloid beta and cerebrospinal fluid phosphorylated tau 
on entorhinal cortex atrophy rate. Thus, phosphorylated tau 
protein and clusterin, a chaperone glycoprotein, mediate neu-
rodegeneration.55

Thirdly, hippocampal oscillation of theta and gamma 
rhythms are possibly associated with cognition. Animal mod-
els indicate that hippocampal and cortical network undergo 
reorganization in Alzheimer’s disease. Altered oscillation of 
theta and gamma rhythm develops first followed by increased 
amyloid burden, and finally loss of gamma-amino-butyric-
acidergic neurons. Moreover, high levels of amyloid beta in 
hippocampus cause seizure activity without serious neuronal 
loss.56,57

However, lowering tau reduce the cognitive deficit under el-
evated amyloid beta level by blocking ectopic cell cycle re-en-
try.58,59

LATE-ONSET ALZHEIMER’S DISEASE

Late-onset Alzheimer’s disease is multifactorial, including 
genetic and environmental factors with negative impact on 
endocytic function, lipoprotein signaling as well as synaptic 
regulation.60 Recently, chronic inflammation causing focal ac-
cumulation of mitochondria suggested as a triggering factor 
for late-onset Alzheimer’s disease.61 Usually, late-onset Al-
zheimer’s disease develops after the age of 65 years, and 60 
years is proposed as the more appropriate cut-off age of the ill-
ness.28,62 Amyloid plaque and neurofibrillary tangle are the 
main pathological findings of late-onset Alzheimer’s disease. 
APOE ε4 occurs in up to 80% of late-onset Alzheimer’s disease 
patients and is considered a risk factor for this dementing ill-
ness.13,16,62 The following study shows that apoE strongly binds 
amyloid beta and APOE ε4 is the common haplotype in late-
onset Alzheimer’s disease.49 Moreover, carriers of APOE ε4 
showed up to 15 years earlier disease onset and increased inci-
dence of neuropsychiatric symptoms.63,64 Intriguingly, two Af-
rican populations with high frequencies of APOE ε4 show no 
such strong relationship.30,65 In late-onset Alzheimer’s disease, 
the function of key amyloid beta processing enzymes is nor-
mal.60 However, the amount of amyloid plaque in the brain in-
creases not because of increased amyloid beta production but 
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because of impaired clearance.66 APOE ε4 is responsible for re-
duced amyloid clearance in the diseased brain.67 The presence 
of APOE ε4 also related with more rapid progression and poor 
response to cholinergic therapy in many ethnic groups.13 How-
ever, results are unequivocal in only Caucasian populations; 
adequate evidence in other ethnic groups such as African 
American and Hispanic populations is still needed. Relatively 
smaller sample size, allele frequency variation among ethnici-
ties, and lifestyle issues could explain the discrepancy.18,68-70 
Overall, APOE polymorphism is not a useful diagnostic bio-
marker or prognostic factor for late-onset Alzheimer’s disease, 
as compared to amyloid beta 42 and tau in cerebrospinal flu-
id.71 However, it still may be used as a predictor of increased 
neuropsychiatric symptoms and decreased response to phar-
macological therapy.13,15,64

EARLY-ONSET ALZHEIMER’S 
DISEASE

Early-onset Alzheimer’s disease develops before 65 years 
old, and it is rare disease composing <1% of Alzheimer’s dis-
ease cases.62 Alzheimer’s disease was first reported by Dr. Alois 
Alzheimer in the early 20th century as a case of early-onset 
disease.72 Since Corder et al.13 reported APOE ε4 as a risk fac-
tor for late-onset Alzheimer’s disease, much effort is made to 
clarify the relationship between early-onset Alzheimer’s dis-
ease and APOE ε4. However, the results are inconclusive. In-
stead, other genes affecting amyloid precursor protein process-
ing are highlighted and evaluated for a possible relation with 
early-onset Alzheimer’s disease.62 These include amyloid pre-
cursor protein, presenilin-1, and presenilin-2, which are asso-
ciated with early-onset autosomal dominant Alzheimer’s dis-
ease. Mutations in amyloid precursor protein gene are related 
to the conversion of amyloid precursor protein to a better sub-
strate of beta-secretase. Amyloid beta derived from mutant 
amyloid precursor protein is more easily aggregated than that 
from wild type. Patient with presenilin mutation usually devel-
ops Alzheimer’s disease between 30 and 50 years of age. Prese-
nilin mutations were initially thought to increase gamma-
secretase activity. However, recent studies reveal that these 
mutations decrease gamma-secretase activity but increase the 
ratio of amyloid-beta42/amyloid-beta40, which supports the 
loss of function hypothesis.73

In contrast to the 2 enzymes, alpha-secretase reduces amy-
loid beta production in the brain. Increased brain APOE ε4 
has an association with enhanced beta--secretase activity and 
subsequently increased amyloid beta production.54 Endosome 
dysfunction is now considered to have a major role in the pro-
duction of large amount of amyloid beta in sporadic Alzheim-

er’s disease. A postmortem study shows that enlarged endo-
somes facilitate a higher chance of amyloid cleavage by beta 
and gamma-secretase before the development of clinical de-
mentia in APOE carriers.74 However, endosomal abnormali-
ties are absent in early-onset familial Alzheimer’s disease.75 This 
result suggests differential mechanisms between early-onset 
and late-onset Alzheimer’s disease. Overall, APOE polymor-
phism appears to have a limited role in early-onset Alzheimer’s 
disease.

APOE POLYMORPHISM IN 
DIFFERENT ETHNIC GROUPS

APOE polymorphism in various ethnic groups is based on 
the specific disease-status of the group. APOE status follows 
Mendelian inheritance, with regional as well as ethnic differ-
ence. In a haplotype analysis study, APOE ε4 was suggested as 
the ancestral allele in humans.76 According to this theory, 
APOE ε3 and APOE ε2 evolved from APOE ε4, but APOE ε4 
remained after this evolution. Interestingly, apoE amino acid 
sequence of chimpanzee, genetically closest to humans, is 
monomorphic, similar to the human APOE ε3.77 Reduced fre-
quency of APOE ε4 is a major factor for increased human 
lifespan with a risk reduction of Alzheimer’s disease and car-
diovascular disease.30 As the amount of dietary fat and choles-
terol increased during the ancient history of mankind, APOE 
ε3, which can reduce increased cholesterol level with APOE 
ε4, may evolve.78 Allele frequency of APOE ε4 in human pop-
ulation is uneven, with high frequencies of APOE ε4 in the 
equatorial area and high latitudes areas.79

In a Korean study of patients with Alzheimer’s disease, the 
most common APOE allele is APOE ε3 (71.3%), followed by 
APOE ε4 (21.3%), APOE ε2 (7.5%).18 A population study with 
normal elderly Korean showed that the most common APOE 
allele is APOE ε3 (86.9%), followed by APOE ε4 (6.6%), APOE 
ε2 (6.5%).80

In general, Caucasians and Africans have higher frequencies 
of APOE ε4 than Asians. APOE ε3 is most commonly found 
in the majority of populations with a range of 8.5 to 98 per-
cent, followed by ε4 (0 to 50%), and ε2 (0 to 37.5%).18,79 These 
variations of APOE polymorphism among areas in the world 
and ethnicities could affect the results of clinical studies and 
drug efficacies.

CONCLUSION

APOE interacts with environmental and genetic factors in 
the onset and progression of neurodegenerative diseases as 
well as cognitive decline. Genotyping APOE polymorphism is 
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a traditional method for evaluation of dementia and neurode-
generative diseases. Evidence strongly suggests APOE ε4 as a 
risk factor for late-onset Alzheimer’s disease, but the low pre-
dictive value prevents it from usage in diagnosis and progno-
sis. There is less evidence of APOE genotype as a risk factor for 
early-onset Alzheimer’s disease. Although APOE genotyping 
itself does not precisely predict the development of a particular 
disease, it can be included in the fully integrated evaluation of 
neurological diseases. Preventing the toxic effect of APOE ε4 
may be a method of prevention and treatment of dementing 
illnesses.
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