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OBJECTIVE—We sought to evaluate the entire picture of all
monocyte chemotactic factors that potentially contribute to
adipose tissue macrophage accumulation in obesity.

RESEARCH DESIGN AND METHODS—Expression and reg-
ulation of members in the entire chemokine superfamily were
evaluated in adipose tissue and isolated adipocytes of obese
versus lean mice. Kinetics of adipose tissue macrophage infiltra-
tion was characterized by fluorescence-activated cell sorting.
The effects of fatty acids on stimulation of chemokine expression
in adipocytes and underlying mechanisms were investigated.

RESULTS—Six monocyte chemotactic factors were found to be
predominantly upregulated in isolated adipocytes versus stromal
vascular cells in obese mice for the first time, although most of
them were previously reported to be upregulated in whole
adipose tissue. In diet-induced obese mice, adipose tissue en-
largement, increase of adipocyte number, and elevation of mul-
tiple chemokine expression precede the initiation of macrophage
infiltration. Free fatty acids (FFAs) are found to be inducers for
upregulating these chemokines in 3T3-L1 adipocytes, and this
effect can be partially blunted by reducing Toll-like receptor 4
expression. FFAs induce expression of monocyte chemotactic
factors in adipocytes via both transcription-dependent and -inde-
pendent mechanisms. In contrast to the reported role of JNK as
the exclusive mediator of FFA-induced monocyte chemoattrac-
tant protein-1 (MCP-1) expression in macrophages, we show a
novel role of inhibitor of �B kinase-� (IKK�) in mediating
FFA-induced upregulation of all six chemokines and a role of
JNK in FFA-induced upregulation of MCP-1 and MCP-3.

CONCLUSIONS—Multiple chemokines derived from adipo-
cytes might contribute to obesity-related WAT macrophage infil-
tration with FFAs as potential triggers and involvement of both
IKK� and JNK pathways. Diabetes 58:104–115, 2009

O
besity-related type 2 diabetes is associated with
low-intensity inflammation (1,2). Human stud-
ies have demonstrated elevated circulating lev-
els of inflammatory markers in obese diabetic

patients (1,3). Furthermore, blood mononuclear cells
(MNCs) in the obese state are also in a proinflammatory
state (3). The discovery of macrophage accumulation in
adipose tissue of obese rodents and humans revealed a
potentially important source of inflammatory molecules in
obesity (4,5). Activated macrophages are well known to
secrete a variety of inflammatory cytokines and chemo-
kines, which impair insulin signaling (6,7). Dysregulation
of lipolysis by increased expression of adipose cytokines
is an important factor for causing systemic insulin resis-
tance through elevated circulating free fatty acid (FFA)
levels. Elevation of circulating FFAs has also been re-
ported to induce inflammation in MNCs (8). Decreased
adipose macrophage infiltration in diet-induced obese
(DIO) mice deficient in monocyte chemoattractant pro-
tein-1 (MCP-1) and its major receptor CCR2, accompanied
by decreased adipose expression of cytokines and lowered
circulating FFA levels, has been associated with improved
systemic insulin sensitivity (9,10). Transgenic mice over-
expressing MCP-1 in adipose tissue, with increased adi-
pose macrophage content and elevated circulating FFA
levels, are insulin resistant (10,11). However, the role of
MCP-1 in adipose macrophage infiltration in obesity is
controversial because a recent study showed that MCP-1–
deficient mice have unchanged adipose macrophage
content (12). Decreased macrophage infiltration and re-
duction of inflammatory gene expression in adipose tissue
have also been associated with weight loss in obese
subjects (13,14). Thiazolidinediones, a class of insulin-
sensitizing drugs that mainly improve adipose insulin
sensitivity of type 2 diabetic patients, also have potent
anti-inflammatory effects, suppress adipose macrophage
gene expression in vitro and in vivo, and inhibit proinflam-
matory MNCs (15–22). DIO mice treated with CCR2 antag-
onist have a 28% reduction in adipose macrophage content
and have improved hyperglycemia (9). These results indi-
cate that eliminating macrophage extravasation into fat in
obesity may be beneficial for improving whole-body insu-
lin sensitivity.

MCP-1 has been a controversial candidate chemokine
for recruiting macrophages into WAT in obesity, indicating
involvement of other chemokines. In the present study, we
examined the entire murine chemokine superfamily for
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their expression and regulation in adipose tissue of obese
mice. Six chemokines were found to be significantly
increased in obese adipose tissue. We revealed for the first
time that elevation of chemokines in obese adipose tissue
is predominantly in adipocytes and that FFAs are inducers
for specific upregulation of the aforementioned six che-
mokines in cultured adipocytes. Although JNK has been
demonstrated to mediate FFA-induced MCP-1 expression
in macrophages (23), inhibitor of �B (I�B) kinase-� (IKK�)
is the main mediator of FFA-induced upregulation of
multiple chemokines in adipocytes.

RESEARCH DESIGN AND METHODS

Cells, reagents, and treatments. 3T3-L1 cells were obtained from American
Type Tissue Culture Collection. 3T3-L1 cell sublines stably expressing short
hairpin interfering RNA (shRNA) against Toll-like receptor 4 (shTLR4) or
scramble shRNA were established as described previously (24). 3T3-L1 CAR
cells, a 3T3-L1 subline stably expressing the truncated adenovirus receptor,
were provided by Dr. David Orlicky (University of Colorado Health Sciences
Center, Denver, CO). 3T3-L1 CAR cells have dramatically improved adenovi-
rus infection efficiency compared with regular 3T3-L1 cells (25). For differen-
tiation, preadipocytes were grown to confluency and induced with Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% cosmic calf serum
(CCS), 1 �g/ml insulin, 0.5 mmol/l isobutylmethyl xanthine, and 1 �mol/l
dexamethasone for 3 days. After induction, cells were maintained in DMEM
containing 10% CCS and 1 �g/ml insulin for 7 more days. FFA mixture,
dexamethasone, actinomycin D, and cycloheximide were purchased from
Sigma. For FFA treatment, 3T3-L1 adipocytes were treated with 0.5 mmol/l
FFA mixture in the presence of BSA at the molar ratio of 4:1. NADPH, nuclear
factor-�B (NF-�B), and JNK inhibitors were purchased from Calbiochem.
Rosiglitazone was purchased from BioMol International. MCP-1, MCP-2,
MCP-3, monocyte inflammatory protein-1� (MIP-1�), and macrophage-related
protein (MRP)-1 ELISA construction kits were purchased from Antigenix
America. MRP-2 ELISA kit was purchased from R&D Systems. JNK1 small
interfering RNA (siRNA) was purchased from Dharmacon. JNK2 and IKK�
siRNAs were purchased from Santa Cruz Biotechnology. JNK1 and IKK�
antibodies were purchased from Santa Cruz Biotechnology. Phospho-JNK
antibody was purchased from Cell Signaling Technology.
Mouse models. Male ob/ob mice and littermate controls were purchased from
The Jackson Laboratory. These mice were fed standard chow and killed at 9
weeks of age for tissue collection. For DIO mice, C57BL/6J mice were
purchased from The Jackson Laboratory at 3 weeks of age, acclaimed for a
week, and fed on either a chow diet (5% kcal from fat) or a high-fat diet (60%
kcal from fat; D12492; Research Diets) for 20 weeks. For rosiglitazone
treatment, 9-week-old ob/ob male mice were orally gavaged once a day at the
dose of 15 mg/kg for 28 consecutive days. At the end of the study, mice were
killed by CO2 inhalation, and epididymal fat pads were excised for RNA
extraction. Animal experiments were approved by the Institutional Animal
Care and Use Committee of Rhode Island Hospital.
Isolation of primary adipocytes. Epididymal white fat pads from DIO mice
were excised, weighed, and rinsed in isolation buffer. Fat pads were then cut

into small pieces in isolation buffer supplemented with 1 mg/ml type I
collegenase and digested at 37°C in shaking water bath at 100 rpm for 45
min. Then, digested tissues were filtered through 400 �mol/l mesh to get
single cell suspension. Cells were rinsed twice with isolation buffer before
RNA extraction.
Transcription profiling. Total RNA was extracted from epididymal adipose
tissue of ob/ob and DIO mice. Twenty micrograms of RNA from each sample
was further purified to remove contaminating organics and non-RNA species
using a silica resin according to the manufacturer’s instructions. Total RNA
was converted to biotinylated, fragmented cRNA and hybridized to Murine
U74Av2 chips using protocols recommended by the microarray manufacturer.
The samples were stained and washed on Fluidics Station 400 and scanned on
a GeneArray Scanner. Primary data extraction was performed with Microar-
ray Suite 5.0 and signal normalization across samples was performed using all
probe sets with a mean expression value of 500.
RNA isolation and real-time PCR. RNA samples were extracted using the
TRIzol reagent. Chemokine expression and regulation profile were measured
using real-time PCR analysis. Random hexamers were used for reverse
transcription. Real-time PCR analysis was performed in a 15-�l reaction on a
96-well clear plate using Power SYBR Green RT-PCR Reagents kit on ABI
Prism thermal cycler model 7500. The relative mRNA expression levels were
normalized to expression of 28S rRNA.
Electroporation of adipocytes and luciferase assay. 3T3-L1 adipocytes
were transfected with NF-�B-Luciferase (Firefly) construct by electroporation
with a Nucleofector system (Amaxa Biosystems) according to the manufac-
turer’s instructions. Briefly, 3T3-L1 adipocytes were trypsinized, resuspended
in Nucleofector solution at 2.0 � 106 cells/100 �l, and mixed with luciferase
reporter vector. Cells were then electroporated by program A-033 using
Nucleofector II (Amaxa Biosystems). Cells were immediately plated on
12-well plates (1.0 � 106 cells/well) after electroporation. Twenty-four hours
after electroporation, cells were serum-free overnight. NF-�B inhibitor was
applied to adipocytes 1 h before FFA treatment and also added during FFA
treatment. For luciferase assay, transfected cells were washed twice with
PBS, lysed by two freeze-thaw cycles, and centrifuged at 10,000g for 5 min at
4°C to remove cellular debris. Firefly luciferase activity was measured by
mixing 20 �l cell extract with 100 �l luciferase assay buffer containing firefly
luciferase substrate. Light production was measured for 5 s on a Perkin Elmer
luminometer.

RESULTS

Obesity is associated with upregulation of multiple
monocyte chemotactic factors in adipose tissue and
adipocytes. To date, 46 chemokines have been identified
and 38 murine orthologs have been found, including a
pseudogene. We analyzed the expression and regulation of
murine chemokines in adipose tissue from both ob/ob and
DIO mice by transcriptional profiling and real-time PCR
analysis. We selected 9-week-old ob/ob mice and 24-week-
old DIO mice fed on a high-fat diet for 20 weeks because
of their comparable adiposity. The metabolic parameters

TABLE 1
Metabolic parameters of ob/ob and DIO mice

9 weeks 20 weeks
Lean ob/ob Chow High-fat diet

n 10 10 8 5
Body weight (g) 27.5 � 0.4 48.5 � 1.1* 31.2 � 0.73 51.6 � 1.14*
Fed plasma glucose (mg/dl) 221 � 18.84 477 � 2.81* 282 � 14.37 378 � 18.89*
Fed plasma insulin (ng/ml) 0.76 � 0.15 7.99 � 0.1* 1.61 � 0.67 7.47 � 0.59*
Epididymal fat (g) 0.75 � 0.04 4.1 � 0.1* 1.12 � 0.05 2.06 � 0.20*
Total adipocytes per mouse �105 8.74 � 0.70 21.2 � 3.97 18.7 � 0.68 29.7 � 6.1
Total stromal-vascular cells per

mouse �105 7.75 � 0.59 58.5 � 5.12* 6.99 � 0.49 100.9 � 20.5*
F4/80 CD11C� cells (%) 8.09 � 0.32 28.9 � 0.32* 11.99 � 2.39 28.99 � 2.98*

Data are means � SE. Metabolic parameters of ob/ob and DIO mice and lean controls. ob/ob mice and controls were 9 weeks old. DIO mice
and controls were 24 weeks old. High-fat diet was initiated at the age of 4 weeks and continued for 20 weeks. Body weight and blood glucose
levels were measured in the fed state. Mice were then killed in the fed state for plasma collection to measure insulin. Epididymal fat pads
were isolated, weighed, and digested for isolation of stromal vascular fraction. Percentage of macrophage in stromal vascular fraction was
determined by fluorescence-activated cell sorting using anti-F4/80 and CD11C antibodies (detailed methods are in the supplementary
materials available in the online appendix). *P � 0.05, obese vs. lean mice.
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of these mice are listed in Table 1. Six CC and one CXC
chemokines were found to be significantly upregulated in
WAT of both ob/ob and DIO mice. These CC chemokines
include MCP-1, MCP-2, MCP-3, MIP-1�, MRP-1, and
MRP-2 (Fig. 1). CXC chemokine MIP-2 was also signifi-
cantly upregulated in WAT of both ob/ob and DIO mice;

MIP-1� was significantly upregulated in WAT of ob/ob but
not DIO mice; MIP-2� was significantly upregulated in
WAT of DIO but not ob/ob mice. Interestingly, all six
upregulated CC chemokines have monocyte chemotactic
capabilities. Separation of adipocytes and stromal vascu-
lar cells indicate that these CC chemokines are mainly
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FIG. 1. Obesity is associated with upregulation of multiple monocyte chemotactic factors in adipose tissue and adipocytes. A: Significantly
upregulated monocyte chemotactic factors in epidydimal fat pads of ob/ob mice versus lean controls (n � 5, top left), in DIO mice versus lean
controls (n � 5, top right), in isolated adipocytes of DIO mice versus lean controls (n � 4, bottom left), and in isolated stromal vascular cells in
DIO mice versus controls (n � 4, bottom right). Expression of chemokines was measured by real-time PCR analysis. For comparison, the
expression level of these genes in lean mice was arbitrarily set at 1. B: Protein levels of MCP-1, MCP-2, MCP-3, MIP-1�, MRP-1, and MRP-2 in
adipose tissue of ob/ob and DIO mice. C: Plasma levels of MCP-1, MCP-2, MCP-3, MRP-1, and MRP-2 in ob/ob and DIO mice. D: Protein levels of
MCP-1, MCP-2, MCP-3, MIP-1�, MRP-1, and MRP-2 in adipose tissue of lean mice on acute high-fat diet. Error bars represent � SE. *P < 0.05,
ob/ob (O) vs. lean (L) or high fat (HF) vs. low fat (LF). HFD, high-fat diet; WK, week.
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increased in primary adipocytes (Fig. 1). MCP-1, MCP-2,
MCP-3, MIP-1�, and MRP-2 have been previously reported
to increase at the mRNA level in whole adipose tissue
(4,7,9,26). Our study not only adds MRP-1 to the list but
also points out that elevation of chemokine expression
mainly occurs in adipocytes. The protein levels of MCP-1,
MCP-3, MIP-1�, MRP-1, and MRP-2 were significantly
increased by 402, 213, 604, 92, and 190%, respectively, in
WAT of DIO mice with the protein level of MCP-2 un-
changed (Fig. 1B). The protein levels of MCP-1, MCP-2,
MCP-3, MIP-1�, MRP-1, and MRP-2 were significantly
increased by 85, 16, 134, 134, 21, and 60%, respectively, in
WAT of ob/ob mice (Fig. 1B). The circulating levels of
MCP-1, MCP-3, MRP-1, and MRP-2 were significantly in-
creased by 160, 254, 41, and 17%, respectively, in plasma of
DIO mice (Fig. 1C). The circulating levels of MCP-1 and
MCP-3 were also significantly increased by 345 and 71%,
respectively, in plasma of ob/ob mice (Fig. 1C). Circulating
levels of MCP-2 did not change in either DIO mice or ob/ob

mice. Circulating levels of MRP-1 and MRP-2 only in-
creased in DIO mice but remained unchanged in ob/ob
mice. Circulating level of MIP-1� was undetectable in
either ob/ob or DIO mice. To understand when these
chemokines start to increase, a high-fat diet was applied to
4-week-old C57BL/6J mice for a short period of time. The
protein level of MCP-1 rapidly increased 1 day after
high-fat diet and continued to increase at 3 and 7 days on
high-fat diet (Fig. 1D). The protein levels of MCP-2 and
MCP-3 trended up 1 day on high-fat diet and the elevation
became significant at 3 and 7 days on high-fat diet. The
protein level of MRP-2 significantly increased at 7 days on
high-fat diet. However, MIP-1� and MRP-1 protein levels
did not significantly increase within 1 week of high-fat
diet. These results indicate that MCP-1, MCP-2, MCP-3, and
MRP-2 might be more important in the initial macrophage
extravasation into adipose tissue compared with MIP-1�
and MRP-1, which probably play a role in attracting
macrophage into adipose tissue in a later stage of obesity
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development. To determine whether elevation of chemo-
kine expression in adipose tissue occurs before macro-
phage infiltration, we evaluated the kinetics of
macrophage infiltration by comparing adiposity and mac-
rophage number in DIO mice versus lean controls 1, 4, 8,
12, 16, and 20 weeks on high-fat diet (supplementary Table
1, available in an online appendix at http://dx.doi.org/10.
2337/db07-1344). Our results clearly show that fat pad
enlargement, increase of adipocyte number, and elevation
of expression of monocyte chemotactic factors occur as
early as 1 week on high-fat diet, but adipose macrophage
content did not significantly increase until 12 weeks on
high-fat diet. A recent study reported that F4/80 and
CD11C double positive cells are mainly responsible for
macrophage-mediated inflammatory activities (23). We
therefore analyzed the adipose macrophage content by
counting F4/80 and CD11C double positive cells.

FFAs are potent inducers for chemokine expression.
Massive expansion of adipose tissue reflects the need for
the body to store excessive amount of energy in the form
of triglyceride, which is synthesized using FFAs and
glycerol as substrates. The effects of FFAs and glycerol on
chemokine production in adipocytes have not been docu-
mented. To determine whether a surplus of FFAs and/or
glycerol could be the stimuli for increased chemokine
production, 3T3-L1 adipocytes were stimulated with a
mixture of either 0.5 mmol/l FFA/BSA or 0.5 mmol/l
glycerol. We chose to use a mixture of 0.5 mmol/l satu-
rated (lauric and myristic acid) and unsaturated (oleic,
linoleic, and arachidonic acid) FFAs for stimulation. FFAs
dramatically upregulated MCP-1 expression, whereas
glycerol had no effect (Fig. 2A). Further experiments
indicated that FFAs are also able to upregulate MCP-2,
MCP-3, MIP-1�, MRP-1, and MRP-2 in 3T3-L1 adipocytes
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adipocytes. For comparison, the expression level of these genes in vehicle-treated 3T3-L1 adipocytes was arbitrarily set at 1. B: FFAs upregulate
monocyte chemotactic factors in 3T3-L1 adipocytes at protein level. Conditioned medium was collected from adipocytes treated with ethanol/BSA
or FFA/BSA for 3 h after overnight incubation with serum-free medium and used for enzyme-linked immunosorbent assay (ELISA) analysis. Error
bars represent � SE. *P < 0.05, treated vs. vehicle. Results shown here are representative of three independent experiments.
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(Fig. 2A). As a negative control, expression of eotaxin 2,
which is not upregulated in obese adipose tissue, was
examined in 3T3-L1 adipocytes and was found not to be
increased by FFA treatment (Fig. 2A). The upregulation of
mRNA level of the above chemokines by FFA treatment is
accompanied by increased protein secretion into condi-
tioned medium (Fig. 2B). FFA-stimulated chemokine pro-
duction in 3T3-L1 adipocytes is dose (data not shown) and
time dependent (Fig. 3). Detailed chemokine expression
time course revealed that the peak expression of MCP-1,
MCP-2, MCP-3, and MIP-1� is 	3 h after treatment (Fig.

3). Interestingly, FFA-stimulated upregulation of MRP-1
and MRP-2 is due to delayed decrease rather than in-
crease of the actual mRNA levels compared with vehicle-
treated cells (Fig. 3). Experiments using individual FFAs
indicate that the effect is most likely attributed to unsat-
urated FFAs (supplementary Fig. 1, available in the online
appendix).
Role of TLR4 in FFA-induced chemokine expres-
sion. TLR4 plays an important role in innate immunity.
Recently, TLR4 has been demonstrated to mediate fatty
acid–induced activation of inflammatory pathways and
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FIG. 4. TLR4 is involved in FFA-induced upregulation of chemokine expression. 3T3-L1 preadipocytes stably expressing shRNA against TLR4
(L1-shTLR4) or scramble shRNA (L1-scramble) were differentiated into adipocytes, treated with ethanol/BSA, or 0.5 mmol/l FFAs/BSA for 3 h
after overnight incubation with serum-free medium before RNA extraction. For comparison, the expression level of chemokines in vehicle-treated
3T3-L1 adipocytes expressing scramble shRNA was arbitrarily set at 1. *P < 0.05, L1-shTLR4 vs. L1-scramble. Results shown here are
representative of three independent experiments.
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attenuation of insulin signaling (24,27). To investigate
whether TLR4 plays a role in FFA-induced chemokine
expression in adipocytes, we treated 3T3-L1 adipocytes
stably expressing scramble shRNA or shTLR4 with
FFAs. Consistent with a previous report, reduction of
TLR4 expression in adipocytes significantly reduced
FFA-induced IL-6 expression (Fig. 4). FFA-induced
expression of MCP-1, MCP-3, MIP-1�, MRP-1, and
MRP-2 was also reduced (Fig. 4). In addition, the basal
levels of MCP-1, MRP-1, and MRP-2 were also de-
creased (Fig. 4). However, TLR4 knockdown did not
have any effect on MCP-2 expression in either basal or
FFA-stimulated condition. These results indicate that
TLR4 is partially responsible for FFA-induced chemo-
kine expression and that an alternative pathway(s) also
exists.

Mechanism of FFA-induced chemokine expression.
To further explore the mechanism of FFA-induced chemo-
kine expression in 3T3-L1 adipocytes, we tested whether
the regulation is dependent on transcription and/or protein
synthesis. The upregulation of MCP-1, MCP-2, MCP-3, and
MIP-1� mRNA in response to FFAs is transcription depen-
dent because the effect can be blocked by actinomycin D
treatment (Fig. 5A). In contrast, the upregulation of MRP-1
and MRP-2 mRNA is posttranscriptional (Fig. 5A). Only
FFA-stimulated MIP-1� expression requires protein syn-
thesis because it is blocked by cycloheximide treatment
(Fig. 5B). In contrast, blockage of protein synthesis signif-
icantly further increased expression of MCP-1 and MCP-3
(Fig. 5B).

FFAs have been reported to induce production of hy-
drogen peroxide in 3T3-L1 adipocytes (28). Despite the
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fact that high concentration of hydrogen peroxide (0.5
mmol/l) can mildly induce MCP-1 mRNA in 3T3-L1 adipo-
cytes 24 h after treatment, we found that 0.5 mmol/l
hydrogen peroxide did not significantly upregulate these
six chemokines in 3T3-L1 adipocytes 3 h after treatment
(data not shown). In addition, treatment with 500 �mol/l
NADPH oxidase inhibitor apocynin could not repress
FFA-induced chemokine production but did effectively
abolish production of hydrogen peroxide caused by FFA
treatment (Fig. 6A). FFAs are also known to activate both
NF-�B and JNK pathways (29,30). Therefore, we tested the
possibility of whether FFA-induced chemokine expression
is due to activation of NF-�B and/or JNK pathways. NF-�B
transcriptional activation inhibitor was used to treat

3T3-L1 adipocytes at 200 �mol/l, which inhibited FFA-
induced NF-�B activation by 99.8% (Fig. 6B). Significant
repression on FFA-induced chemokine expression by
NF-�B inhibitor was observed for all six chemokines (Fig.
6B). JNK inhibitor II (SP600125) was applied to assess the
role of JNK in FFA-induced expression of chemokines in
3T3-L1 adipocytes. FFA-induced expression of MCP-1 and
MCP-3 was significantly reduced in SP600125-treated
3T3-L1 adipocytes (Fig. 6C). The efficacy of SP600125 in
3T3-L1 adipocytes was confirmed by reduction of JNK
phosphorylation (Fig. 6C). To confirm the role of NF-�B in
FFA-induced chemokine expression by a biological ap-
proach, we reduced the expression of IKK� by RNA
interference (Fig. 7A). Consistent with our results with
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NF-�B inhibitor, reduction of IKK� expression in 3T3-L1
adipocytes by RNA interference also reduced FFA-induced
upregulation of all six CC chemokines (Fig. 7A). The
inhibitory effect of JNK inhibitor on FFA-induced MCP-1
and MCP-3 expression was also confirmed by RNA inter-
ference (Fig. 7B). In addition, overexpression of both wild
type and the constitutively active form of IKK� in 3T3-L1
CAR adipocytes via adenovirus-mediated gene transfer
can significantly increase expression of MCP-1, MCP-2,
MCP-3, MIP-1�, and MRP-2 (Fig. 8) but, surprisingly, not
MRP-1 (data not shown).
Effects of rosiglitazone on expression of monocyte
chemotactic factors in vitro and in vivo. Thiazo-
lidinediones have been reported to have potent anti-
inflammatory activity and suppress NF-�B activity in
MNCs and lower plasma MCP-1 level (15,20). To address
whether thiazolidinediones can repress FFA-induced ex-
pression of chemokines in adipocytes, 3T3-L1 adipocytes
were treated with rosiglitazone for 24 h before stimulation
with FFAs. Pretreatment with rosiglitazone significantly
and dose dependently reduced expression of MCP-1,
MCP-3, MIP-1�, MRP-1, and MRP-2, but not MCP-2, in
3T3-L1 adipocytes (supplementary Fig. 2, available in the
online appendix). Obese mice treated with thiazo-
lidinediones have been reported to have reduced ex-
pression of MCP-1, MCP-3, and MIP-1� but unchanged
MCP-2 expression in adipose tissue; and obese humans
treated with pioglitazone have reduced expression of
MCP-1 in adipose tissue (4,9,31). However, potential
regulation of MRP-1 and MRP-2 in adipose tissue by
thiazolidinediones has never been examined. We treated
ob/ob mice with rosiglitazone for 4 weeks and evaluated
the expression of all six chemokines upregulated in
obese fat. Consistent with previous reports, expression
of MCP-1, MCP-3, and MIP-1� was repressed but MCP-2
remains unchanged (Fig. 8B). Surprisingly, rosiglitazone
can only reduce expression of MRP-1 and MRP-2 in
vitro but not in vivo, suggesting that these two chemo-
kines might be regulated by an additional mechanism in
vivo compared with in vitro.

DISCUSSION

Obesity-related adipose tissue macrophage accumulation
has been demonstrated to contribute to systemic insulin
resistance (9–11). To understand the responsible chemo-
tactic factors in addition to MCP-1, we systematically
analyzed the expression and regulation of murine chemo-
kines in adipose tissue of male ob/ob and DIO mice.
Totally, five additional monocyte chemokines were found
to be upregulated at both mRNA and protein level in WAT
of ob/ob and DIO mice, indicating that macrophage extrav-
asation into adipose tissue in the obese state might be very
complicated. A recent publication showed that another
monocyte chemokine MIP-2
 is upregulated at the mRNA
level in WAT of both ob/ob and DIO mice, whereas we only
detected mild upregulation in WAT of DIO but not ob/ob
mice (32). The discrepancy is likely due to gender differ-
ence. In that report, MIP-2
 has been shown to play an
important role in WAT macrophage infiltration in female
but not male DIO mice (32). In our study, we only followed
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FIG. 7. Effect of IKK� and JNK knockdown on FFA-induced upregula-
tion of chemokines. A: Top, reduced IKK� expression in 3T3-L1
adipocytes by RNA interference. 3T3-L1 adipocytes were electropo-
rated with either scrambled siRNA or siRNA against IKK�. Twenty-
four hours after electroporation, adipocytes were incubated in serum-
free DMEM overnight. Forty-eight hours after electroporation,
adipocytes were treated with 0.5 mmol/l FFA/BSA or ethanol/BSA for
2 h and then harvested for examination of IKK� expression. Bottom,
expression of chemokines in 3T3-L1 adipocytes with IKK� knockdown.
Adipocytes treated as described in A were harvested for examination
of chemokine expression by real-time PCR analysis. *P < 0.05, scram-
bled vs. siIKK�. B: Top, reduced JNK expression in 3T3-L1 adipocytes

by RNA interference. Bottom, expression of chemokines in 3T3-L1
adipocytes with JNK knockdown. For comparison, the expression level
of chemokines in scrambled siRNA–electroporated and ethanol/BSA-
treated 3T3-L1 adipocytes was arbitrarily set at 1. Results shown here
are representative of three independent experiments.
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up on the six CC chemokines that are upregulated in WAT
of both ob/ob and DIO male mice. Isolation of primary
adipocytes proves that aforementioned chemokines are
predominantly increased in adipocytes, supporting the
hypothesis that adipocyte-derived chemokines might play
important roles in initial macrophage infiltration. Acute
high-fat diet study showed rapid increase of MCP-1,
MCP-2, MCP-3, and MRP-2 in fat within a week, at which
time point circulating levels of these chemokines did not
change. Our kinetic study with DIO mice indicates that fat
mass enlargement precedes increase of macrophage con-
tent and further supports that adipocytes may play an
important role in initiating macrophage infiltration by
secreting chemokines.

Elevated level of FFAs, a well-known factor contribut-
ing to systemic insulin resistance and inflammation in
MNCs in obesity (8), was found to potently induce expres-
sion of monocyte chemotactic factors in cultured 3T3-L1
adipocytes, accompanied by increased protein secretion
into conditioned medium. FFA-stimulated expression of
monocyte chemotactic factors is dose and time depen-
dent, and unsaturated fatty acids are mainly responsible
for this effect. The extent and duration of chemokine
induction by FFAs in 3T3-L1 adipocytes vary among
chemokines. Because these chemokines start to elevate in
adipose tissue at different time points on high-fat diet, it is
likely that they play unequal roles in attracting monocytes.
Why so many monocyte chemotactic factors increase in
the obese state is not clear. Genetic models deficient in
these chemokines individually or in combination will
provide more information regarding their relative im-
portance for adipose tissue macrophage attraction. In
addition to potential macrophage recruiting capability,

whether these chemokines have other biological func-
tions, such as impairing insulin sensitivity in insulin target
cells, like MCP-1 (7), remains to be investigated.

Interestingly, not all of the upregulated chemokines are
due to the actual increase of mRNA. In the cases of MRP-1
and MRP-2, the mRNA levels decreased rapidly in vehicle-
treated 3T3-L1 adipocytes, whereas delayed reduction of
mRNA was observed in FFA-treated cells, suggesting that
FFAs might protect mRNA stability of MRP-1 and MRP-2.
For MCP-1, MCP-2, MCP-3, and MIP-1�, mRNA levels were
induced by FFA treatment via a transcription-dependent
mechanism. TLR4 has been recently demonstrated to be
an important receptor for mediating the effects of FFAs on
activation of inflammatory pathways. We found that TLR4
is also partially responsible for FFA-induced upregulation
of MCP-1, MCP-3, MIP-1�, MRP-1, and MRP-2. FFAs are
known to activate both NF-�B and JNK pathways, the
important intracellular pathways that are activated by
inflammatory stimuli. The IKK�/NF-�B axis has been dem-
onstrated to be the molecular target for the hypoglycemic
actions of salicylates (33,34). IKK� selectively phosphory-
lates the I�B protein inhibitor of NF-�B, which triggers
degradation of I�B and releases NF-�B for translocation
into the nucleus to transcribe many target genes that are
related to insulin resistance (35). By application of the
NF-�B activation inhibitor, reduction of IKK� expression
via RNA interference, and IKK� overexpression, we
showed that the IKK/NF-�B pathway has a broad effect on
FFA-induced chemokine expression. JNK is a stress ki-
nase that is involved in insulin resistance (36–38). Animals
deficient in JNK-1 are protected from developing insulin
resistance on a high-fat diet (39). In addition, JNK has also
been demonstrated to be a major contributor to FFA-
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induced cellular insulin resistance using 3T3-L1 adipocytes
as a model system (29). In our study, inhibition of the JNK
pathway partially reduced FFA-induced upregulation of
MCP-1 and MCP-3. Because upregulation of MCP-1 and
MCP-3 by FFA treatment is due to increased transcription,
JNK-involved chemokine expression is most likely through
activation of c-Jun. AP-1 sites have been reported to exist
in the promoters of MCP-1 and MCP-3. Our data provide
further evidence to demonstrate that JNK is not only
important for mediating FFA-induced insulin resistance
but also involved in FFA-induced expression of monocyte
chemotactic factors in adipocytes.

Among the current therapeutic agents for treating type 2
diabetes, thiazolidinediones mainly improve adipose insu-
lin sensitivity. Existing evidence indicates that thiazo-
lidinediones have a potent anti-inflammation effect
through repressing NF-�B activity at least in MNCs, sug-
gesting that improved insulin sensitivity might be partially
through its anti-inflammatory effect (15,20,22). Rosiglita-
zone not only significantly reduced MCP-1, MCP-3, and
MIP-1� expression in adipose tissue, it can also repress
FFA-induced expression of the aforementioned chemo-
kines around the peak expression time in adipocytes.
These results suggest that the anti-inflammatory effect of
thiazolidinediones is likely through both macrophages and
adipocytes. Surprisingly, rosiglitazone only represses FFA-
induced expression of MRP-1 and MRP-2 in vitro but not in
vivo. Whether expression of MRP-1 and MRP-2 in vivo is
under a different control mechanism compared with in
vitro remains to be studied. Upregulation of multiple
monocyte chemotactic factors via different mechanisms in
obesity may render it difficult to completely deplete adi-
pose macrophages through targeting an individual chemo-
kine or receptor. It is noteworthy to point out that
improvement of systemic insulin resistance has been
observed in MCP-1, MIP-2
, and CCR2-deficient mice and
in mice treated with a CCR2 antagonist, although adipose
tissue macrophage content was only partially reduced.
These results not only demonstrate that adipose tissue–
infiltrated macrophages play an important role for the
development of obesity-related insulin resistance but also
imply that reduction of adipose macrophage to a higher
extent might be more beneficial.
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