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Mental health impacts of particulate
matter exposure and non-optimal
temperature among rural and urban
children in eastern China
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YangyangWu1,2, JingWei3, BiranCheng1, Hong Sun4, YidongZhou5, Chen Li1,6, PengWang1,7, Hao Zhang8,
Yiyi Wang9, Lei Huang1,10 & Kai Chen11,12

Over 100 million children worldwide suffer from mental distress, with incidence rates steadily
increasing. However, the combined impacts of air pollution and non-optimal temperature on
schoolchildren’smental health, as well as the disparities across urban and rural schools and between
genders, remain insufficiently explored. Utilizing 95,658 mental distress records from school children
in eastern China, we developed nine composite exposure scenarios to evaluate the mental health
impacts of short-term (0–14 days) exposure to particulate matter (PM) air pollution (i.e., PM1, PM2.5,
PM10), average temperature, and temperature variability (including both intra-day and inter-day
temperature fluctuations). We found that children’s mental distress was significantly associated with
PM pollution, particularly in urban schools, with rising risk trends and intensified hazards for finer
particles (PM10 < PM2.5 < PM1). For each 10 μg/m³ increase, the relative risks of mental distress
absenteeism for PM1, PM2.5, and PM10 were 1.017, 1.011, and 1.008, respectively. Polluted days
coupled with warming temperature >10 °C and large intra-day (>10 °C) and inter-day fluctuations
(<−2.5 or >0 °C) consistently exhibited higher and increasing risks, with relative risks ranging from
1.031 to 1.534 (p < 0.05). Girls, constituting 61.4% of the cases examined, exhibited greater
vulnerability than boys, with higher threats and rising trends across all scenarios. Among the affected
children, 77.9% didn’t receive medical assistance. Given the global warming trend, it’s crucial to
address the combined impacts of extreme weather and PM pollution on schoolchildren’s mental
health, particularly for girls and in rapidly urbanizing areas.

Mental illness is increasingly recognized as a significant global public
health challenge among children. The Global Burden of Disease
Assessment reports an 11.58% increase in disability-adjusted life
years attributed to mental disorder in children aged 5–14 over the

past 30 years1, with 14% of this population experiencing severe
mental disorders and a consequent reduction in life expectancy of 10
to 20 years2. Despite these alarming statistics, children’s psycholo-
gical issues are often neglected and stigmatized, resulting in
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insufficient societal and parental focus on addressing their mental
health needs3,4.

Emerging evidence underscores the critical role of PM pollution and
non-optimal temperatures in exacerbating mental health issues5–7. PM can
penetrate the brain via the olfactory bulb and blood-brain barrier, affecting
stress and emotional regulation7. A nationwide survey in China, for
instance, detected a 28% increase in the risk of poor mental health among
adults for each 10 μg/m³ increase in PM2.5 concentration

8. Additionally,
rising temperature may intensify mental crisis, with suicide rates increasing
by 1.7% for each 1 °C rise in average temperature9,10.

While the individual impacts of air pollution and non-optimal tem-
peratures onmental health are well-documented11,12, the synergistic effects of
combined exposure to these environmental stressors remain poorly under-
stood. Such composite exposures may potentiate mental distress through
interconnected biological pathways, including neuroinflammation, immune
dysregulation, oxidative stress, and neurotransmitter imbalances. Thus, it’s
imperative to incorporate considerations of children’s climate resilience into
psychological publichealth initiatives, tailored to theirunique susceptibility to
compounded environmental risks. Moreover, existing evidence, primarily
derived from adult populations13, couldn’t accurately capture the determi-
nants of children’smental health due to differences in physiological function,
behavioral patterns, and social environments. Additionally, reliance on sui-
cide statistics or hospital admissions may overlook individuals without hos-
pital records or with milder conditions11,14, potentially underestimating the
broader health, social, and educational impacts.

Concurrently, there is growing awareness of the urban-rural divide in
mental health outcomes12,15,16. Urban areas, with higher industrial and
vehicular emissions, heat island effects, and dense populations, may pose
greater mental health risks, whereas rural areas face challenges such as
limited healthcare resources, inadequate air purification and temperature
control, and lower awareness of protectivemeasures. Previous evidence also
highlights differential psychiatric responses between males and females
arising from the intricate interplay of biological, psychological, and social
factors17–19. Given that current research predominantly focuses on
adults5,8,20, there is a critical need for non-clinical community- or school-
centered studies that explore these gender and geographic disparities among
schoolchildren.

Mental health disorders are among the leading contributors to the
health burden of Chinese children from non-communicable diseases21.
Considering that children spend roughly one-third of their day in school,
school environment substantially influences their mental well-being22. This
study utilizes a composite exposure framework to assess risk interactions
between particulatematter, non-optimal temperature, and schoolchildren’s
mental distress. The research aims to furnish insights for early intervention
strategieswithinhealthcare and education systems tomitigatemental health
burdens and foster healthy school environments22.

Methods
Mental health monitoring among schoolchildren
The study encompasses 89 counties in Jiangsu Province, China (Fig. 1, Fig.
S1). Daily records detailing children’s absences due to mental distress were
sourced from the national school healthmonitoring system, collaboratively
managed by educational institutions and regional disease control centers23.
The reporting procedure involves the child’s guardian or class teacher
initially filling out a questionnaire to report symptoms to the school doctor
or community hospital. These health professionals then confirm themental
health diagnosis and document the absence’s specifics, including duration
(start and end dates), type ofmental health condition, symptoms presented,
individual characteristics, and contextual information from the school and
region. This comprehensive documentation process also includes collecting
oral symptom descriptions from parents and details of any related out-
patient or hospitalization. For absences following hospital visits, medical
documentationmust be provided to the school, ensuring informed consent
for the child’s return to class. Quality control of data collection is conducted
daily by staff at the regional disease control center (Text S1).

During the data cleaning process, mental health diseases and symp-
toms were extracted according to the International Statistical Classification
of Diseases and Related Health Problems, 10th Revision (ICD-10),
including disorders such as depression, neurasthenia, and anxiety. To
mitigate confounding effects, several measures were implemented: (1)
potential mental discomfort related to academic stress, other diseases, or
physical injuries was controlled based on the text recognition of corpus; (2)
COVID-19-related records, including children with COVID-19 or had
intersecting activity paths with COVID-19 cases, were excluded; (3) Given
the limited and inconsistent evidence linking air pollution to severe mental
disorders, especially in children, and the influence of multiple other risk
factors such as genetics and family environment14,24–26, this study focused on
short-term exposure effects and excluded absences lasting 1 week or longer
to better capture environmentally induced acute responses; (4) for indivi-
duals withmultiple consecutive absences, only the initial date of the absence
period was retained to minimize confounding from repeated events. The
geographic coordinates (longitude and latitude) of each school were mat-
ched by the geographic information system using a unique identification
code for the region and the school. Data extraction, collection, and quality
control were facilitated by the Jiangsu Provincial Center forDisease Control
and Prevention. The final dataset comprises 95,658 records of personal
absences due to mental health issues from 2016 to 2021 across primary and
secondary schools. From these records, we derived a multi-school-centered
time series dataset summarizing daily counts and rates of mental distress-
related absences. Detailed data cleaning procedures and the keywords for
identifying mental distress are documented in Text S1, S2.

Overall, the study was based on de-identified data obtained from the
Jiangsu Center for Disease Control and Prevention, with no direct partici-
pant contact, identifiable information, or collection of biological specimens
involved. Data use was authorized for research purposes in accordance with
the Declaration of Helsinki.

Particulate matter and non-optimal temperature exposure
estimation
High-resolution daily estimates of particulate matter concentrations,
including PM1, PM2.5, and PM10, were obtained from the China High Air
Pollutants (CHAP) dataset for the period 2016 to 2021, with a spatial
resolution of 1 km27–29. These exposure data were derived from Moderate
Resolution Imaging Spectroradiometer (MODIS) Multi-Angle imple-
mentation of Atmospheric Correction (MAIAC) aerosol products using
developed spatiotemporal machine learning models. The cross-validation
coefficients of determination (CV-R2) for PM1, PM2.5, and PM10 were
reported as 0.83, 0.92, and 0.90, respectively27,28,30. Using the k-nearest

Fig. 1 | Spatial distribution of urban and rural schools across 89 counties in Jiangsu
Province, China.
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neighbors (k-NN) algorithm implemented in the FNNpackage in R version
3.6.1, we quantified the daily pollution exposure for each school over the
previous 0–14 days. This non-parametric algorithm is favored for its
straightforward implementation and effectiveness in handling complex
relationships between features and outcomes that are not readily modeled
by parametric approaches31. It operates by identifying the nearest particulate
matter grid center points to each school location based on geographic
proximity, thereby accurately estimating localized environmental exposure.
The average ambient concentrations of ambient particulatematter in school
environment were 23 μg/m³ for PM1, 38 μg/m³ for PM2.5, and 70 μg/m³
for PM10.

Hourly temperature simulation (2-meter temperature index) at a
resolution of 9-km was derived from the ERA5-Land meteorological rea-
nalysis dataset, provided by the European Centre for Medium-Range
Weather Forecasts32. We also derived daily average temperature (DAT) in
thepast 0–14daysbasedon24-h temperature for each school throughk-NN
algorithm.Moreover, we calculated the accordingly intra-day change (IDC)
of temperature derived frommax andmin hour temperature on the day, as
well as IDFsbasedon theDATbetween the lagday and the lagpreviousday9.

Co-exposure assessment
Compound environmental exposure scenarios were constructed by first
identifying threshold values, then combining averaged 14-day PM con-
centrations with non-optimal temperatures based on established bench-
marks, and finally applying gender-specific stratification.

First, for particulate matter, PM2.5 and PM10 were categorized
according to China national Grade I Ambient Air Quality Standards (GB
3095-2012)33,34, which define 24-h average concentration limits of 35 μg/m³
and 50 μg/m³, respectively. In contrast, no official standard exists for PM1.
Therefore, a concentration of 22 μg/m3, the median value observed across
the studyperiod,was adopted as a threshold todefine lowandhigh exposure
categories. This choice was based on previous studies that used the median
as a PM cutoff in the absence of a regulatory benchmark or in the desire to
focus on relative high-low pollution35–37, which also ensured balanced group
sizes and accounted for local pollution patterns.Although theWorldHealth
Organization’s 24-h guideline value for PM2.5 (15 μg/m

3) is considered a
more generalizable threshold, it was ultimately excluded from stratified
analyses because nearly all measurements across the study locations
exceeded this value. This limitation is addressed in the discussion. Conse-
quently, PM1, PM2.5, and PM10 were classified into low- and high-exposure
categories at thresholds of 22 μg/m³, 35 μg/m³, and 50 μg/m³, respectively.

Regarding ambient temperature, no universal standard defines ther-
mally optimal conditions across different climates or health outcomes38,39.
We therefore adopted an epidemiological approach based on the concept of
non-optimal temperature exposure40. Non-optimal temperature refers to
any ambient temperature that is either higher or lower than the theoretical
minimumrisk exposure level,which is definedas the temperature associated
with the lowest overall health risk for a given location. Specifically, risk
thresholds were determined by identifying the minimum-risk temperature
using exposure–response curves derived from single-exposure models of
temperature related absenteeism. Considering the risk thresholds derived
fromour single temperature exposuremodels, we developed specific criteria
for categorizing temperature exposure. A threshold of 10 °C was used to
differentiate between suitable and unsuitable temperature conditions for
DAT and IDC. IDF was further segmented into cooling, suitable, and
warming categories, using−2.5 °C and 0 °C as cut-offs. These classifications
enable the analysis of the compound impacts of air pollution and tem-
perature variability on health outcomes.

Then, we devised nine composite exposure scenarios by integrating
PM1, PM2.5 and PM10 with DAT, IDC and IDF including DAT-PM (DAT-
PM1, DAT-PM2.5, DAT-PM10), IDC-PM (IDC-PM1, IDC-PM2.5, IDC-
PM10), and IDF-PM (IDF-PM1, IDF-PM2.5, IDF-PM10). These scenarios
are structured into differentiated levels based on the combinations of par-
ticulatematter and temperature conditions. Specifically, DAT-PM1-10 had 4
levels, including (1) Suitable DAT and low-level PM (level 1); (2) Suitable

DAT and high-level PM (level 2); (3) Unsuitable DAT and low-level PM
(level 3); and (4) Unsuitable DAT and high-level PM (level 4); IDC-PM1-10

had 4 levels, including (1) Suitable IDC and low-level PM (level 1); (2)
Suitable IDC and high-level PM (level 2); (3) Unsuitable IDC and low-level
PM (level 3); and (4) Unsuitable IDC and high-level PM (level 4); IDF-
PM1-10 had 6 levels, including (1) Suitable IDF and low-level PM (level 1);
(2) Suitable IDF and high-level PM (level 2); (3) Cooling IDF and low-level
PM (level 3); and (4) Cooling IDF and high-level PM (level 4); (5)Warming
IDF and low-level PM (level 3); and (4) Warming IDF and high-level PM
(level 6). For all scenarios, Level 1 is designated as the reference group
against which all other levels are compared.

Finally, to explore potential gender differences in co-exposure sce-
narios, we refined the composite exposure indicators into binary variables,
where ‘0’ denotes non-composite exposure days, including scenarios of low
pollution with suitable temperatures, low pollution with unsuitable tem-
peratures, and high pollution with suitable temperatures; “1” indicates days
of identified co-exposure characterized by high pollution with unsuitable
temperature conditions. Building on this framework, we integrated gender-
specific co-exposure indicators to conduct interaction term tests and sub-
group analyses, aiming to assess the differential resilience to environmental
stressors between males and females (0–0: males in no co-exposure days,
0–1: females in no co-exposure days, 1–0: males in co-exposure days, and
1–1: females in co-exposure days). Please refer to Fig. S2 for the flowchart of
composite indicator construction.

Covariates
We calculated the daily relative humidity (RH) over the past 14 days using
air pressure, dew point temperature, and surface temperature data obtained
from the ERA5-Land meteorological reanalysis dataset32. Other variables
covered included year, season, day of the week (DOW), region (urban and
rural), gender, grade, medical symptoms, diagnostic causes, medical choice
(outpatient, hospitalization, at home), start and end dates of absenteeism,
and school enrollment were considered by subgroup analysis or as controls
to mitigate potential spatial and temporal confounding factors.

Statistical analysis
We employed a space-time stratified design that integrates quasi-binomial
regression models with distributed lag linear and non-linear functions to
examine the associations between air pollution, non-optimal temperatures,
and the incidence of mental distress among school-aged children41. This
design adjusts for overdispersion in absenteeism rate42, and controls for
spatial and temporal variations at the school level, accounting for regional
and school-specific environmental factors that are constant within the time
window. Based on the characteristics of school time-series statistics, the
stratum is defined as a categorical variable of the school-specific year and
DOW (e.g., school code-year-DOW). This stratification helps address
potential confounding factors such as long-term trends, short-term holiday
effects, and inter-school variations. The model is specified as follows:

logitðpÞ ¼ αþ β0 � exposureþ β1 � stratumþ βT � covariates ð1Þ

Where p represents the daily absenteeism rate due tomental distress,α is the
intercept, exposure includes particulatematter or non-optimal temperature
treated with cross-basis functions with coefficient β0, stratum adjusts for
location-specific temporal window, and covariates are additional con-
founders with coefficients βT.

For particulate matter, we applied a linear trend using a one-basis
matrix in accordance with the previous findings demonstrating a positive
linear relationship43,44, while for non-optimal temperatures, we used a nat-
ural cubic spline to capture non-linear effects45. When taking the single
exposure model, additional external exposure factors were considered as
confounders. To account for the influence of RH, a natural cubic splinewith
three degrees of freedomwasutilized. Furthermore,wemodeledboth lagged
and cumulative effects for exposures ranging from 0 to 14 days. The relative
risk associated with a 10 μg/m³ increase in particulate matter exposure,
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along with the corresponding 95% confidence interval (95% CI), was cal-
culated to quantify the potential impact on mental health.

We conducted Pearson correlation analysis and k-means cluster ana-
lysis to explore the relationships between PM exposure and temperature
environments. Structural equation modeling (SEM) was employed to
investigate the path dependencies of PM and temperatures on school
absenteeism using daily county-level records. The analysis was performed
using the lavaan package in R version 3.6.1. The latent variable PM was
defined by three observed indicators (PM1, PM2.5, and PM10). Structural
models were estimated with school absenteeism regressed on PM, DAT,
IDC, and IDF using the sem function. Model fit was assessed through
comprehensive summary statistics and fit indices obtained using the sum-
mary and fitMeasures functions. Additionally, path diagrams were gener-
ated using the lavaanPlot function, displaying standardized estimates and
significance levels.

To evaluate the compound effects on children’smental distress–related
absenteeism, we first dichotomized the absenteeism rate based on its
median, defining a binary outcome variable. We then employed a condi-
tional logistic regression model with a binomial distribution to assess the
interactive effects of various exposure conditions during the past 0–14 days.
The reference group was defined as exposure to low PM pollution under
suitable temperature conditions. The effects were evaluated using three
indicators: the Relative Excess Over Expected Interaction (REOI), the
Attributable Proportion due to Interaction (AP), and the Synergy Index
(S)46. These metrics represent the interaction effect component, the pro-
portion of the total effect attributable to interaction, and the ratio between
the total effect and the individual effects, respectively. The formulas are as
follows:

REOI ¼ ðO11 � 1Þ � ðOR10 � 1Þ � ðOR01 � 1Þ
¼ OR11 � OR10 � OR01 þ 1

ð2Þ

AP ¼ REOI=OR11 ð3Þ

S ¼ ðOR11 � 1Þ=½ðOR10 � 1Þ þ ðOR01 � 1Þ� ð4Þ
Where OR represents the odds of mental health related absenteeism under
different exposure scenarios relative to the reference group (low pollution-
suitable temperature), OR11 represents the odds ratio for the joint exposure
to both high PM and non-optimal temperature condition, OR10 for PM
exposure alone, and OR01 for non-optimal temperature alone.

Additionally, the interaction term was induced to explore risk differ-
ences and trends associated with gender across exposure scenarios. Speci-
fically, we compared the relative risks among males in composite exposure,
females in non-composite exposure, and females in composite exposure,
with males in a non-composite exposure environment serving as the
reference group.

Sensitivity analysis
We tested the risk trends over 0–14 days andweighted the absence period as
an alternative metric to the absence rate evaluation index. We conducted
stratified analyses to investigate effect modifications across various
dimensions, including gender, region, season, specificmental disorders such
as neurasthenia and depression, types of educational institutions, and
medical choice. Furthermore, the COVID-19 outbreak was incorporated as
a time-stratified adjustment within the basic model to evaluate its com-
prehensive impacts (Fig. S3). We also performed generalized linear
regression models based on overall records to ensure the robustness of the
exposure-response relationship (Figs. S4, S5, Table S1). In addition, we
further examined the robustness of risk associations after adjusting for O3

exposure, as well as the potential risks attributable to O3 under both inde-
pendent and joint exposure scenarios, to extend the scope of discussion. All
analysis was performed by R version 3.6.1 with two-tailed test significance
*p < 0.05, **p < 0.01, ***p < 0.001.

Results
Mental distress characteristics
Mental depression and neurasthenia constituted 43.39% of overall cases
(Table 1). The mean age of participants was 14.38 ± 2.34 years, and the
average period of absence due to mental distress was 1.39 ± 1.14 days.
Seasonal statistics show that cases of absenteeism due to mental discomfort
are highest in spring, accounting for 40.09%, followed by autumn at 25.12%.
It was noted that only 20.20% of cases sought medical help, while 77.90%
chose home care only.

Children’s absence from school due tomental illness is concentrated in
the southern region. Significantly higher incidences of mental health issues
were reported among females and in urban areas compared to males and
rural areas, respectively (p < 0.001, Fig. S1). Specifically, females accounted
for 61.38%of absences, andurban schools represented81.92%of these cases,
with middle schools contributing more than half (52.32%, G7–G9, Fig. 2).

Particulate matter assessment
We found that exposure to particulatematter has been strongly linked to the
onset of mental distress in children, with increased risk corresponding to
finer particle sizes (Fig. 3). Specifically, for each 10 μg/m3 increase in 14-days
PM1, PM2.5, andPM10 exposure, the relative riskswere 1.017 (95CI%: 1.008,
1.025), 1.011 (95CI%: 1.007, 1.016) and 1.008 (95CI%: 1.005, 1.010),
respectively. The risk associated with these exposures demonstrated a
progressive increase over the 14-day period. Both males and females
exhibited substantial risks associated with particulate matter exposure, with
no significant gender differences observed. Notably, urban children
experienced significantly higher and increasing psychological burden,
particularlywith PM1posing the highest risk of 1.034 (95%CI: 1.024, 1.045),

Table 1 | Characteristics of mental distress cases

Characteristic Observations Percentage

All cases 95,658

Age (mean + SD) 14.38 ± 2.34

Absence days 1.39 ± 1.14

Gender

Male 36,941 38.62%

Female 58,717 61.38%

Region

Urban 78,367 81.92%

Rural 17,291 18.08%

Mental Distress

Depression 20,551 21.48%

Neurasthenia 20,963 21.91%

Others 54,144 56.60%

Hospital visits

Yes 19,320 20.20%

No 74,517 77.90%

Unknown 1821 1.90%

Education

Primary school 10,808 11.30%

Middle school 50,050 52.32%

High school 31,586 33.02%

Others 3214 3.36%

Season

Spring 38,348 40.09%

Summer 13,094 13.69%

Autumn 24,030 25.12%

Winter 20,186 21.10%
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while the association wasn’t significant in rural schools (p < 0.05). We also
observed that the risk associated with outpatient care was higher compared
to home care, and no significant risk was observed among children who
were hospitalized (Fig. S6). Subgroup analyses underscored that, despite
heterogeneity in specific strata, the models consistently indicated a robust
overall risk associated with 0–14 days exposure (Figs. S6–S13).

Non-optimal temperature assessment
The impact of ambient temperature on children’s mental distress exhibits a
more pronounced anddiscernible risk trend compared to particulatematter
exposure between females andmales (Fig. 4). As average daily temperatures
increased, the incidence of mental discomfort escalated sharply in a super-
linear pattern. The adverse health effects of average temperatures exceeding

Fig. 3 |Children’s mental distress risk trends associated with 0–14 days of exposure to PM1, PM2.5, and PM10 across gender and region, where 7-days and 14-days represent
the average concentration of particulate matter in the past 7 and 14 days.

Fig. 2 | Descriptive statistics of children absent from school due to mental distress. a Grade distribution of absent children in urban and rural areas, where G1–G12
represents the first grade of elementary school to the third grade of high school, bmedical choices for different absence durations (<3, 3–5, 5–7, >7) in urban and rural areas.
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10 °C remained significant throughout the 14-day exposure window, albeit
with a slight attenuation over time. Females exhibited a heightened vul-
nerability to elevated temperatures compared to males. Similarly, IDC of
temperature exceeding 10 °C consistently correlatedwith significantmental
distress in children, with females demonstrating heightened vulnerability,
evenwith a 14-day lag. This associationpersisted robustly across both urban
and rural environments. Inter-day temperature fluctuations exhibited a
J-shaped relationship with mental health outcomes, with considerable
health risks observed at both cooling (<−2.5 °C) and warming (>0 °C)
segments. Notably, the risk associated with warming temperatures was
significantly higher than that for cooling temperatures, especially among
females, though the cumulative effect eventually diminished (Fig. 4, Fig.
S14). Subgroup analyses confirmed that the risk associatedwith hotweather
and extreme temperature fluctuations remained consistent across different
subgroups (Fig. S6, Figs. S10–S16). However, we identified risk hetero-
geneity related to medical choices; specifically, the increased risk associated
with lower temperatures among hospitalized children warrants further
attention (Fig. S6).

Composite exposure characteristics
As shown in Fig. 5, the autocorrelation coefficients for average tempera-
ture and PM pollution over a period of 0 to 14 days ranged from 0.14 to
0.97 and 0.82 to 0.95 (p < 0.05). We found that days with high PM2.5

pollution were significantly correlated with lower average temperature
and higher intra-day temperature change (p < 0.05), with correlation
coefficients ranging from 0.32 to 0.48 and 0.06 to 0.21, respectively
(Table S2).

Children were broadly exposed to composite exposure environments.
Specifically, scenarios involving DAT > 10 °C in conjunction with
PM10 > 50 μg/m³ account for 45.2% of cases; the combination of
IDC > 10 °C with elevated PM10 > 50 μg/m³ constitutes 26.4%; unsuitable

warming or cooling caused by IDFwith PM10 > 50 μg/m³ account for 46.1%
of occurrences (Fig. 5, Fig. S17).

Increased mental health risks associated with composite
exposure
Fig. 6 demonstrates that co-exposure to particulate matter alongside non-
optimal temperatures significantly amplifiesmental health risks in children,
with these risks escalating over a 0–14-day exposure period. Compared to
baseline conditions of low pollution and suitable temperatures, scenarios
featuring high pollution with high average temperatures as well as sub-
stantial intra-day and inter-day temperature fluctuations consistently pre-
sented elevated risks across all nine composite exposure scenarios, with
relative risk estimates ranging from1.099 to1.534 (95%CI: 1.379, 1.706,high
PM10-warming IDF-14 days) (p < 0.05). Notably, in the DAT–PM com-
bined exposure scenarios, the relative risk exhibited a linear increasing trend
from the day of exposure to a cumulative lag of 14 days, for DAT–PM1

(RR = 1.110–1.421), DAT–PM2.5 (RR = 1.121–1.425), and DAT–PM10

(RR = 1.167–1.451, p < 0.05).
Excess risk analysis indicated that, although most exposure combina-

tions demonstrated a significantly heightened mental health threat in
environments of highpollutionandnon-optimal temperatures compared to
the baseline, not all combinations exhibited persistent additive risk effects.
However, specific interactions involving 14-days cumulative exposure
consistently exhibitedpositive additive effects, including combinations IDF-
PM10-14-days, IDF-PM2.5-14-days, IDF-PM1-14-days, IDC-PM10-14-
days, DAT-PM10-14-days, and DAT-PM2.5-7-days, DAT-PM1-7-days,
with attributable proportions ranging from1.11% (REOI = 0.02, S = 1.04) to
10.80% (REOI = 0.15, S = 1.67). Path analysis further revealed that parti-
culatematter not only directly contributed tomental discomfort (p < 0.001)
but also exacerbated health risks through interactions with IDC (p < 0.05),
DAT (p < 0.001), and IDF (p < 0.001) (Fig. 6, Fig. S18).

Fig. 4 | Mental health impacts associated with non-optimal temperature environment. a–c Health risks of exposure to DAT (°C) at lag-0 day, d–f cumulative risks of
exposure to DAT over past 14 days, and g–l health risks of exposure to IDC (°C) and IDF (°C) at lag-14 day.
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The interaction analysis exploring the relationship between composite
exposure and gender demonstrated that females consistently faced sig-
nificant higher risks than males across both composite and non-composite
exposure environments (relative risks for females:1.675–2.323, for males:
0.959–1.386, p < 0.05, Fig. 7). Throughout the 0–14 days exposure period,
the risk for males remained relatively stable across the combined exposure
indices. In contrast, females experienced a progressive increase in risk, with
the most pronounced escalation observed in the IDF-PM combination.

Discussion
Children are vulnerable to air pollution and temperature extremes due to
their immature immune defensemechanisms, limited protective awareness,
and guardians’ insufficient coping abilities47,48. This study identifies strong
links between schoolchildren’s mental distress and exposure to particulate
matter, average temperature, and temperature variability over 14-days’
exposure, based on long-term multi-city, school-based health monitoring
system. We noted disparities in health burdens and risk trends both across
urban and rural children and between genders, with heightened mental
distress consistently reported under composite exposure scenarios. The
findings highlight the imperative to address the combined impacts of
extreme temperature and air pollution on schoolchildren’s attendance amid
escalating global climate change.

Single exposure models reveal the differential impacts of exposure to
particulate matter and temperature extremes on children’s mental health.
Aligned with findings from adult studies20,45,49, our analysis confirms that
particulatematter, particularlyfiner particles, pose significant and escalating
threats to children’s mental health over a 14-day period. These finer parti-
cles, due to larger surface area, can absorb more toxins, exacerbating
inflammatory responses, enhancing penetration into the respiratory tract,

andpotentially crossing the blood-brainbarrier, causingmore severemental
impairment7,50. Additionally, non-optimal temperatures, such as extreme
heat, cold snaps, or heat waves, closely correlate with mental health chal-
lenges in adults, with our findings extending these associations to
children5,9,45. For instance, average temperatures exceeding 10 °C were
found to precipitate a super-linear increase in mental distress. Meanwhile,
it’s imperative to continue monitoring significant intra-day (exceeding
10 °C) and inter-day (falling below −2.5 °C or rising above 0 °C) tem-
perature fluctuations due to their profound implications for mental health.

Composite exposures may synergistically exacerbate biological
vulnerability51–53, including alterations in neuroinflammation and immune
responses, oxidative stress, cortisol levels, and neurotransmitter imbalances,
or could directly influence human emotion and sleep7,10,54. Compared to
days with single exposures or lower pollution coupled with an optimal
temperature environment, concurrent exposure to higher pollution days
combined with warming temperature and large inter-day and intra-day
temperature fluctuation significantly intensifies mental health risks among
children. Despite existing particulate matter standards, children globally,
including those in China, face considerable mental health risks due to these
combined environmental factors48. Although sustained reductions in air
pollution have produced widespread health gains, more frequent extreme
temperature events may offset these benefits. As climate change intensifies
extreme weather events55, sustained attention to composite exposure is
crucial to safeguarding childhood mental well-being.

Notably, while the association between particulate matter and chil-
dren’s mental distress remained robust even after controlling O3 exposure
(Fig. S19), we also observed distinct risk patterns associated with O3 itself
(Fig. S20). Specifically, O3 exposure on the same day (lag-0) showed the
highest acute risk (RR = 1.007, 95% CI: 1.005–1.008), whereas the risk

Fig. 5 | Co-exposure characteristics. a Pearson correlation and K-means clustering
between particulate matter, DAT, IDC and IDF, where + represents no significant
correlation at p > 0.05, and b–d percentage of co-exposure days of DAT-PM10, IDC-
PM10, and IDF-PM10, where 0_0 means low PM-suitable temperature; 0_1 means

low PM-increasing DAT and IDC, or low PM-cooling IDF; 1_0 means high PM-
suitable temperature; 1_1 means high PM-increasing DAT and IDC, or high PM-
cooling IDF; 0_2 means low PM-warming IDF; and 1_2 means high PM-
warming IDF.
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diminished after lag-9. However, cumulative exposure over 7 and 14 days
remained significantly associated with elevated risk (RR = 1.006–1.007,
p < 0.001). These temporal patterns may be consistent with the unique
biological pathways through which ozone may affect the brain, including
systemic inflammation, dopaminergic neuron reduction, and neuro-
transmitter disruption56,57. Furthermore, we found that combined exposure
to O3 and temperature extremes, especially large diurnal temperature ran-
ges, significantly amplified the risk of mental distress, showing a linear
increase over 0–14 days (Fig. S21). These findings highlight that the mental
health risks of other air pollutants such as O3 also deserve further attention,
particularly regarding their distinct biological pathways and epidemiologi-
cal patterns under current O3 pollution and climate change conditions.

Particulate matter-induced mental health crises were significantly
more pronounced in urban areas compared to the overall setting, while this
association was absent in rural regions. These urban-rural disparities could
be attributed to variations in the sources and composition. A study con-
ducted in northern China highlighted such differing biological toxicities,
where metals and metalloids such as Pb, Cd, As, Cu, and Zn, as well as
inorganic elements from industrial emissions like Ni, Zn, As, Pb, and Cd,
induced elevated levels of anxiety and depression58. Given China’s rapid
urbanization and the substantial influx of children into urban environ-
ments, there is a pressing need to address themental health crisis associated
with environmental exposure among school-age children relocating to
these areas.

The findings revealed no significant gender differences in the risks
associated with particulate matter exposure. However, females were iden-
tified asmore susceptible to the adverse effects of non-optimal temperatures.
Under composite exposure scenarios, this susceptibility was markedly
pronounced, with females consistently demonstrating increased

vulnerability and their risk escalation significantly exceeding that of males.
This increased susceptibility may be attributed to variations in hormone
levels, thermoregulatory capacity, metabolic rates during development,
psychological sensitivity, components differences, and behavioral activity
patterns5,11,45,58. The intertwined influences complicate control and inter-
vention efforts for compound impacts. In the face of intensifying extreme
climate events, there is an urgent need to address the substantial health
threats that non-optimal temperatures and their interactions with pollution
pose to females. Enhanced understanding of these gender-specific vulner-
abilities can inform targeted public health interventions and policies to
better protect this at-risk population in a changing climate.

Limitations should also be noted in this design. First, due to the lack
of large-scale individual exposure monitoring data, we can only use the
ambient concentration of PM at the school level from machine learning
simulations using satellite inversion.Moreover, the studywas conducted
in a region with generally high levels of air pollution, which warrants
caution when interpreting associations between PM exposure and
children’s mental health in areas with lower pollution. Second, the
impacts of environmental exposure need to be carefully assessed in the
post-epidemic era. Although we have eliminated the records of
schoolchildren infected or crossing with infected cases from the system
records and conducted the robustness test stratified by the outbreak, we
couldn’t rule out the unpredictable impact of lockdown during non-
school periods and fear of COVID-19. Third, this study identifies risk
differences related to particulate matter and temperature exposure
across various regions and genders from an epidemiological perspective.
However, the primary toxic components and their biological mechan-
isms in relation to composite exposure environments are still unclear.
More evidence frommultidisciplinary studies, including cellular, organ,

Fig. 6 | Mental health risks associated with composite environmental exposures
in the past 14 days. a Evaluation of health risk trends associated with nine different
composite exposure scenarios compared with the baseline group (0_0 means low
PM-suitable temperature; 0_1means low PM-increasing DAT and IDC, or low PM-
cooling IDF; 1_0 means high PM-suitable temperature; 1_1 means high PM-
increasing DAT and IDC, or high PM- cooling IDF; 0_2 means low PM-warming
IDF; and 1_2 means high PM-warming IDF, b quantifying the contribution of

interactive effects to overall risk by AP, where positive means REOI > 0, AP > 0, and
S > 1, negative means REOI < 0, AP < 0, and S < 1, none means no compound effect,
NA means no significant difference between groups, c examination of the path
relationships between 14-day cumulative PM,DAT, IDC, and IDF, where ARmeans
daily mental distress-related absence rate, SRMR = 0.079, CFI = 0.924, TLI = 0.855,
NFI = 0.924.
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and animal experiments, is needed to deepen understanding on psy-
chological response. Improving the child healthmonitoring system takes
time. This study only covers 89 counties in China due to the substantial
costs associated with long-term observation. Future research should
urgently include evidence from various countries and regions with dif-
ferent levels of development. Although the use of school absence data
underscores the importance of the school environment in shaping
children’s mental health, some children may continue attending school
despite experiencing mental discomfort. This may lead to an under-
estimation of the mental health risks associated with environmental
exposures. Detailed research on the impact of schoolchildren’s family
background and indoor exposure characteristics on their mental health
is also necessary.

This study explores risk trends and disparities among children from
both composite and non-composite short-term exposures to air pollution

and non-optimal temperatures. The findings provide insights for for-
mulating targeted intervention strategies, informed by detailed character-
izations of exposure-response curves differentiated by school type, medical
choice, region, and gender, as well as heightened compounded risks amid
escalating climate change. We highlight the pressing need to address the
growing mental health crisis among females, which is exacerbated by par-
ticulate matter, increasing temperatures, and pronounced intra- and inter-
day temperaturefluctuations.Toeffectivelymitigate these risks,we advocate
for the implementation of a comprehensive school-centered health pro-
tection framework. Proposed strategies include the development of an early
warning system for composite exposures and equipping under-resourced
schools with essential temperature control and air purification systems. As
global environmental challenges intensify, prioritizing improvements in air
quality, school environments, and individual health monitoring are crucial
in the future for safeguarding the mental health of children.

Fig. 7 | Mental health risk differences between males and females across varied
exposure conditions. The baseline group is males in a non-composite exposure
environment. Comparison groups are defined as follows: 0_1 (red) for females in a

non-composite exposure environment; 1_0 (orange) for males in a composite
exposure environment; 1_1 (green) for females in a composite exposure
environment.
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Data availability
The data are not open source. Access should be supported by the corre-
sponding author of the study, including obtaining necessary approvals and
signing a data access agreement.
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