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Abstract

Unbiased, high-throughput screening has proven invaluable for dissecting complex biological processes. Application of this
general approach to synaptic function would have a major impact on neuroscience research and drug discovery. However,
existing techniques for studying synaptic physiology are labor intensive and low-throughput. Here, we describe a new high-
throughput technology for performing assays of synaptic function in primary neurons cultured in microtiter plates. We
show that this system can perform 96 synaptic vesicle cycling assays in parallel with high sensitivity, precision, uniformity,
and reproducibility and can detect modulators of presynaptic function. By screening libraries of pharmacologically defined
compounds on rat forebrain cultures, we have used this system to identify novel effects of compounds on specific aspects
of presynaptic function. As a system for unbiased compound as well as genomic screening, this technology has significant
applications for basic neuroscience research and for the discovery of novel, mechanism-based treatments for central
nervous system disorders.
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Introduction

The application of unbiased, high-throughput screening ap-

proaches has had a major impact on basic research and drug

discovery. For example, forward genetic screens in yeast and flies

have yielded fundamental insights into a variety of complex

biological processes [1,2], microarray-based screens have provided

a comprehensive means to examine regulation of gene expression

[3], and small molecule library screens have been critical for

identifying chemical modulators of biological processes for drug

discovery applications [4]. Despite the extensive body of research

focused on synaptic mechanisms in mammalian neurons, there are

no screening tools capable of performing dynamic measurements

of synaptic activity in a high-throughput format. Such tools would

enable the performance of genetic and pharmacological screens to

comprehensively examine the molecular biology of the synapse

and to identify novel modulators of synaptic function. Moreover,

since altered synaptic function has been associated with a number

of psychiatric and neurological disorders [5,6,7,8,9,10,11,

12,13,14], the identification of novel proteins or compounds that

modulate or restore aberrant synaptic function involved with

disease pathogenesis is an attractive approach for the discovery of

new mechanism-based therapies.

More specifically, an alteration of synaptic vesicle cycling has

been implicated in a variety of disorders, including schizophrenia,

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and

epilepsy [5,6,7,8,9,10,11,12,13,14]. A fundamental component of

synaptic transmission, synaptic vesicle cycling is a complex, multi-

stage process that includes the steps of vesicle exocytosis,

endocytosis, reinsertion into the recycling pool, mobilization to

the active site, and priming for a subsequent round of exocytosis

[15]. In recent years, powerful methods utilizing fluorescent

reporters have emerged for monitoring presynaptic function in

living neurons [16]. These assays are typically performed on a

fluorescence microscope to image the effects of physiologically

relevant patterns of action potentials, elicited by an integrated field

stimulation system, on reporters of presynaptic activity [17].

However, since these methods are time and labor intensive, they

are not amenable to unbiased screening applications.

The translation of presynaptic assays into a high-throughput

screening system is technically challenging largely due to a

requirement for long-term kinetic measurements (.5 min/well)

[17]. To achieve an acceptable throughput, a presynaptic

screening system must perform assays in all wells of a 96-well

plate in parallel. This need for parallelization imposes significant

technical demands on the imaging and stimulation components of

the technology. For example, high-content imaging systems have

single-synapse resolution and sufficient optical sensitivity, but they

are limited to measuring one well at a time [18]. In contrast, plate

readers capable of performing 96 parallel kinetic fluorescence

measurements have significantly reduced optical sensitivity.

Therefore, a presynaptic screening technology requires a parallel

imaging system with excellent optical sensitivity and a reporter

system that yields high signal density and signal-to-background
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properties. Finally, this assay parallelization requires the integra-

tion of an electrode array that can deliver field potentials

simultaneously to neurons in all wells of 96-well plates such that

all neurons are exposed to uniform current densities.

Here, we report the development of the MANTRATM (Multi-

well Automated NeuroTRansmission Assay) system: a high-

throughput screening technology for performing assays of the

synaptic vesicle cycle in primary neurons. We demonstrate that

this system can perform 96 parallel synaptic vesicle cycle assays,

meets the critical technical specifications necessary to carry out

unbiased, functional screening of presynaptic neuronal function,

and is capable of rapidly identifying novel effects of test agents on

synaptic vesicle cycling. Through its current application and its

capacity to be extended to additional synaptic processes, this

technology has tremendous potential for broadening our under-

standing of synaptic function and, ultimately, developing new

classes of mechanism-based treatments for the many diseases

associated with synaptic dysfunction.

Results

MANTRA system development
A high throughput screening technology for monitoring

synaptic vesicle cycling requires four technology components: a

reporter system, an imaging system, a field stimulation system, and

a data analysis system. We initiated technology development by

evaluating potential solutions for these components.

We chose a pHluorin-based protein as the reporter technology

because it is genetically encoded, enabling homogeneous assays

[19], can report both vesicle exocytosis and endocytosis [20], and

can report repeated rounds of vesicle cycling [20]. This reporter

system is based on the fusion of a pH-sensitive GFP variant,

pHluorin, to the lumenal domain of a transmembrane synaptic

vesicle protein (Figure 1A). At the internal pH of a resting vesicle,

the pHluorin fluorescence is quenched. When action potentials are

elicited in neurons expressing the reporter, vesicles exocytose,

exposing the pHluorin to the neutral pH of the synaptic cleft

causing an increase in its fluorescence. Upon endocytosis and

reacidification of the vesicles, fluorescence is again quenched. Due

to its reported excellent signal-to-background properties, we opted

for a synaptophysin-pHluorin fusion construct (sypHy) in which

pHluorin is inserted into the second intralumenal loop of

synaptophysin [21].

To maximize the number of neurons expressing the reporter,

we used an adeno-associated virus (AAV) delivery system that

yields a high infection efficiency with minimal cytotoxicity [22].

To eliminate non-neuronal expression, we utilized the human

synapsin promoter [23] to drive reporter expression. Immunohis-

tochemistry performed on neurons infected with this virus (hSyn-

sypHy-AAV) demonstrated that sypHy is expressed in a punctate

pattern that colocalizes with synaptotagmin I, indicating that it is

targeted to presynaptic terminals (Figure 1B). Colocalization

analysis showed that most terminals contained detectable sypHy

levels (mean 6 SEM: 8063% synapses; n = 3 cultures). Using

single-channel, high resolution microscopy [17], we verified that

this reporter system is capable of quantifying the synaptic vesicle

cycle in primary neurons (Figure 1C,D).

Since synaptic vesicle cycling assays are of long duration,

screening must be performed in 96 wells in parallel to achieve an

acceptable throughput. In addition, due to the lack of amplifica-

tion of the reporter signal, the instrument must have highly

sensitive optics. For the imaging component of the MANTRA

system, we selected the plate::vision plate reader (Perkin Elmer)

based on its parallel, high sensitivity imaging capacity. The

plate::vision measures fluorescence in a 500 mm wide segment of

each of 96 wells simultaneously and with high sensitivity by

employing a unique 96-minilens array and an intensified charge-

coupled device (CCD) camera [24]. Critically, assay plates in this

instrument are readily accessible during imaging, permitting

integration of a stimulation system.

Delivering uniform electrical stimuli to neuronal cultures in 96-

well plates is a major technical challenge. To achieve acceptable

assay variability, field stimuli must be spatially uniform across the

neurons within each well of the entire plate, which requires

carefully shaped and precisely positioned electrodes. Shape and

positioning must match precisely from well to well despite

considerable variability in the plate manufacturing process. For

these reasons, traditional field stimulation electrodes, such as

paired tungsten filaments or glass pipettes, are insufficient for the

task. Therefore, for the MANTRA stimulation system, we

identified and optimized an existing automated electroporation

system (CellaxessHT; Cellectricon) that solved these technical

hurdles as described below.

We constructed the MANTRA instrumentation by integrating a

plate::vision plate reader with a customized CellaxessHT system

within a temperature controlled cabinet (Figure 2A). In typical use,

a modified liquid handling unit with a robotic arm places the

electrode module into the assay plate. The electrodes each consist

of two concentric titanium tubes separated by a polytrifluoro-

chloroethylene (PTFCE) tip that serves as an electrical insulator

and the contact with the well bottom. The combination of force

exerted by the robot arm, an internal spring mechanism, and four

75 mm high feet on the bottom of each tip ensure that all

electrodes are at a uniform height (Figure 2B). In this position, the

outer titanium tube is submerged in assay buffer. Liquid handling

pistons draw buffer into the inner titanium tubes to create an

electrical contact between the electrodes. The plate::vision initiates

kinetic fluorescence sampling, and field stimulation pulses are then

applied by a pulse generator. Uniform electric fields are achieved

within individual wells through specific contouring of the bottom

of the PTFCE electrode tip. All stimulation, imaging, and tip

washing activities are coordinated by CellaxessHT control

software (Cellectricon).

The MANTRA system generates 96 channels of complex

waveform data. Multiple features of these waveforms yield

information about different aspects of the synaptic vesicle cycle

[25] (Figure 2C). To enable efficient analysis of these complex

data, we created a data handling system with which pulse train

information, raw fluorescence traces, extracted waveform features,

and treatment conditions are automatically loaded into a relational

database and processed, permitting visualization and further

analysis through a web-based user interface (Figure 2A). In a

typical dataset, a sypHy fluorescence response to a field

stimulation train is observed in all wells of a 96-well plate

(Figure 2D), demonstrating the capacity of the MANTRA system

to perform 96 parallel synaptic vesicle cycling assays.

MANTRA system technical performance
We undertook a series of studies to characterize the perfor-

mance of the MANTRA system in relation to the crucial

performance criteria necessary for a robust screening platform.

The ability to measure responses to multiple rounds of stimulation

is essential for monitoring presynaptic activity under a variety of

activity regimes. We exposed hSyn-sypHy-AAV infected neuronal

cultures in 96-well plates to repeated stimulus trains and observed

that sypHy responses were stable over time, changing in amplitude

by less than 2% per train on average (Figure 3A-C). Thus, the

MANTRA system can be used to repeatedly stimulate neuronal

High Throughput Screening of Synaptic Function
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cultures and consistently measure sypHy responses with minimal

bleaching or acute cytotoxicity.

To achieve uniformity of presynaptic responses, the field stimuli

applied to neurons must have a high degree of well-to-well and

plate-to-plate uniformity. We examined sypHy responses to

stimulus trains delivered at increasing voltages and observed a

sigmoid relationship between voltage and response amplitude

(Figure 3D), from which we could calculate an EV50 value for each

well (see Figure 3E legend). EV50’s were highly consistent within

and across plates (Figure 3E, F), demonstrating that the field

stimulation system consistently delivers uniform stimuli.

Analysis of the optical sensitivity of the MANTRA system showed

that it can consistently detect sypHy responses to as few as 50 stimuli

within wells of a single plate and across plates (Figure 3G–I),

enabling use of a large range of stimulus regimes that place different

demands on the synaptic vesicle cycling machinery. To quantify

well-to-well and plate-to-plate variability of sypHy responses to

screening stimuli, we subjected eight plates to a protocol consisting

of three pulse trains: 5 Hz, 30 seconds; 10 Hz, 30 seconds; and

50 Hz, 15 seconds. Within-plate and between-plate summary

statistics for extracted parameters from the responses to 10 Hz

trains are shown in Table 1 and from the 5 and 50 Hz trains in

Tables S1 and S2, respectively. %CV’s across all measures were

between 10 and 18%, indicating the achievement of assay

uniformity appropriate for screening applications.

We next confirmed that the MANTRA system induces and

measures synaptic vesicle cycling in response to action potential-

mediated opening of presynaptic Ca++ channels. First, we found

that tetrodotoxin (TTX), an inhibitor of the voltage-gated sodium

channels that carry action potentials [26], potently blocked the

fluorescence response to field stimulation (Figure 4A;

IC50 = 4.960.6 nM; n = 3 plates), demonstrating that action

potentials are required for the sypHy signal in the MANTRA

system. Second, since synaptic vesicle fusion is triggered primarily

by Ca++ influx through channels from the Cav2 family [27,28], we

analyzed the effects of inhibitors of these channels on the

MANTRA system. We used v-agatoxin IVA, v-conotoxin GVIA,

and SNX-482 for blockade of Cav2.1, Cav2.2, and Cav2.3,

respectively [29,30,31]. Figure 4B shows the sypHy responses

during a 30 Hz, 10 second stimulus train in the presence of these

Figure 1. SypHy delivered by AAV transduction as a reporter of presynaptic function. (A) Schematic illustrating the function of the sypHy
reporter of synaptic vesicle cycling. (B) Presynaptic localization of sypHy in neuronal cultures infected with hSyn-sypHy-AAV at 7 days in vitro (DIV)
and fixed at 22 DIV shown by colocalization of anti-GFP (green) and anti-synaptotagmin I (red) immunoreactivity. Scale bar: 10 mm. (C) Portion of a
kinetic fluorescence image series of an hSyn-sypHy-AAV infected culture prior to stimulation (1), during delivery of a 50 Hz, 10 second stimulus train
(2), 30 sec after offset of stimulus train (3), and 2 min after offset of stimulus train (4). Scale bar: 50 mm. (D) Relative fluorescence intensity of the entire
imaging field from the experiment shown in (c). Red bar indicates the stimulus.
doi:10.1371/journal.pone.0025999.g001
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blockers. Early in the train (30 stimuli), Cav2 channel blockade

reduced the sypHy response by .95% (Figure 4C; t-test:

p = 10217; n = 8). At the end of the train (300 stimuli), this

treatment resulted in a .75% inhibition of the response

(Figure 4D; t-test: p = 10218; n = 8). These data show that the

sypHy responses of the MANTRA system are dependent upon

action potential-mediated opening of presynaptic voltage-gated

Ca++ channels, consistent with typical synaptic vesicle release. The

reduction in the block of fluorescence responses with increasing

stimulation is likely due to action potential broadening following

Cav2 channel inhibition [32] and an increasing amount of Ca++

influx from other sources, such as T-type or L-type Ca++ channels

[33,34].

Since the synaptic vesicle cycle is sensitive to temperature

fluctuations [35], a thermostat system was incorporated into the

MANTRA instrumentation. Testing under typical use conditions

showed that this system can maintain the temperature of assay

wells to within a range of 60.5uC (Figure S1). In summary, these

data demonstrate that the MANTRA system is capable of

performing 96-parallel synaptic vesicle cycling assays with high

precision, uniformity, sensitivity, and reproducibility.

MANTRA system can identify synaptic vesicle cycling
modulators

To evaluate its utility for high-throughput screening, we

examined whether the MANTRA system can detect modulators

of synaptic vesicle cycling. The phorbol ester phorbol–12-

myristate-13-acetate (PMA) has been shown to enhance synaptic

vesicle release [36]. Using our microscope-based, high-resolution

system, we found that application of PMA (1 mM) increased the

amplitude of sypHy responses to a 5 Hz, 30 sec stimulus train

(Figure 5A,B; t-test: p = 0.004; n = 3). We next examined the

ability of the MANTRA system to detect this compound-induced

alteration in synaptic vesicle cycling. PMA (1 mM) was added to

multiple wells of a 96-well plate, which was then subjected to the

same stimulation protocol on the MANTRA instrument. The

Figure 2. The MANTRA system. (A) Schematic depicting the MANTRA system, including the cell culture system, the reporter system, the
instrumentation, and the heatmap application of the data analysis system. (B) Schematic depicting the relative dimensions of an electrode tip and
the imaging area within a single well of a 96-well plate. (C) Representative sypHy fluorescence trace from a single well when stimulated as in (D)
showing three of the basic waveform features automatically extracted by the MANTRA system analysis software. Red bar indicates stimulus. Scale bar:
0.05 DF/F, 20 sec. (D) Representative dataset from the MANTRA system showing sypHy fluorescence responses to a 50 Hz, 15 sec stimulus train from
all wells of a 96-well plate. For each well, y-axis: 0.35 DF/F, x-axis: 180 sec.
doi:10.1371/journal.pone.0025999.g002
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amplitudes of the fluorescence responses to the stimulus trains

from a set of three randomly selected PMA wells were significantly

greater than those of three randomly selected control wells

(Figure 5A,B; t-test: p = 0.01). These results recapitulate the effects

of PMA observed using the high resolution system and confirm the

ability of the MANTRA system to measure the effects of synaptic

vesicle cycling modulators.

To demonstrate that the MANTRA system can identify

modulators of synaptic vesicle cycling in high throughput

screening mode, we screened the plate of the Library of

Pharmacologically Active Compounds (LOPAC; Sigma) that

contains PMA. Given the response variability documented in

Table 1, compounds were screened in triplicate to improve

sensitivity to modest compound effects. Each of three assay plates

contained a single copy of each compound assigned to a pseudo-

randomized well location. Neurons were stimulated with three

pulse trains that varied in frequency (5 Hz, 30 sec; 10 Hz, 30 sec;

30 Hz, 15 sec). Using a hit detection threshold set at three

standard deviations from the mean of the control well values, PMA

was detected as a hit that increased the amplitude of the response

to the 5 Hz train (Figure 5C; mean 6 SEM standard score:

5.660.56). Eleven additional hits were identified that reduced the

response to the 5 Hz train (see Dataset S1 for complete dataset).

Each of these compound effects was confirmed on a separate set of

hit confirmation plates (Figure S2).

We next generated a concentration-response curve for the

effects of PMA on the amplitude of sypHy responses to 5 Hz

stimulus trains using a single assay plate (Figure 5D). The EC50 for

Figure 3. Validation of the MANTRA system technical performance. (A) Superimposed traces from nine successive 10 Hz, 10 sec trains from
a single well. Bar indicates stimulus. Scale bars: 0.05 DF/F, 20 sec. (B) Amplitudes from all wells of a plate were calculated for the nine trains and
normalized to the first train. Shown is the mean percent change per train for each well. Amplitude change per train for all wells was 21.560.97%
(mean 6 SD). (C) Normalized amplitudes (mean 6 SD) to each train for three plates. Data were fit by linear regression (slope = 20.014; r2 = 0.93;
p,0.0001). Amplitude change per train across plates was 21.560.13% (mean 6 SEM; n = 3). (D) Amplitudes of responses to 30 Hz, 10 sec trains
delivered at increasing voltages from a representative well. Data were fit with a sigmoid function (R2 = 0.99). Inset: Individual traces. Scale bar: 0.05
DF/F, 30 sec. Bar indicates stimulus. (E) The voltage generating the 50% peak response (EV50) for each well of a plate (%CV = 9.8%). (F) The EV50
(mean 6 SD) from all wells of multiple plates stimulated as in (e). (G) Amplitudes from a well stimulated with 10 sec trains of increasing frequencies.
Data were fit with a one-phase exponential curve (R2 = 0.99). Inset: Individual traces. Scale bar: 0.05 DF/F, 30 sec. Bar indicates the stimulation. (H)
Signal:noise for responses to the 50 pulse train (mean 6 SD: 12.261.7) for a plate. ‘‘Signal’’ is amplitude. ‘‘Noise’’ is the standard deviation of a 10
second baseline. (I) Signal:noise (mean 6 SD) data generated from a 50 pulse train from three plates.
doi:10.1371/journal.pone.0025999.g003
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the PMA-induced increase in sypHy response amplitude was

6.262.4 nM (mean 6 SEM; n = 3 plates). The ability to rapidly

identify modulators of synaptic vesicle cycling and to generate a

concentration-response curve from a single plate demonstrates the

utility of the MANTRA system for screening applications.

Identification of a presynaptic modulatory mechanism
The MANTRA system generates a rich dataset regarding the

effects of compounds on multiple aspects of presynaptic function

under different activity regimes. Further analysis of the LOPAC

plate data described above revealed specific effects of compounds

on synaptic vesicle cycling induced by the different stimulation

intensities. In particular, the adenosine A1 receptor agonist N6-

phenyladenosine is the only compound on the plate that decreased

the amplitude of responses to 5 Hz stimulation (see Figure 5C)

with little or no effect on responses to 30 Hz stimulation

(Figure 6A; mean 6 SEM 30 Hz/5 Hz amplitude ratio standard

score: 3.860.86). To determine if this effect is common to

compounds with the same pharmacological activity, we screened a

plate of 71 compounds consisting of modulators of adenosine or

Table 1. MANTRA system signal uniformity analysis.

Individual Plates All Plates

Parameter 1 2 3 4 5 6 7 8 Mean SD %CV

Amplitude
(DF/F)

Mean 0.16 0.15 0.15 0.19 0.15 0.17 0.16 0.17 0.16 0.02 9.0

SD 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03

%CV 13.2 11.6 12.7 10.1 15.6 17.2 15.5 15.0 13.9

Decay t
(sec)

Mean 15.5 13.3 13.0 16.5 13.0 17.7 16.5 16.6 15.2 1.88 12.3

SD 1.54 2.02 1.91 2.19 1.89 3.17 1.88 2.22

%CV 9.9 15.2 14.7 13.3 14.5 18.0 11.4 13.4 13.8

Derivative
(DF/sec)

Mean 0.019 0.018 0.019 0.020 0.017 0.020 0.020 0.020 0.019 0.001 5.5

SD 0.003 0.003 0.002 0.003 0.003 0.004 0.004 0.003

%CV 17.0 16.9 12.8 16.4 15.0 17.8 18.6 14.8 16.1

Integral
(DF/F x sec)

Mean 3.33 3.27 3.31 4.04 3.46 3.59 3.51 3.74 3.53 0.261 7.4

SD 0.41 0.41 0.43 0.43 0.53 0.59 0.49 0.55

%CV 12.2 12.4 13.1 10.7 15.3 16.5 14.0 14.6 13.6

Noise (DF/F) Mean 0.007 0.006 0.006 0.006 0.004 0.008 0.006 0.007 0.006 0.001

SD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Eight control plates were subjected to a stimulus protocol comprised of 1) a 5 Hz, 30 sec, 2) a 10 Hz, 30 sec, and 3) a 50 Hz, 15 sec pulse train in succession, with a 5
minute inter-train interval. Amplitude, decay time constant, peak first derivative, response integral, and baseline noise for the response to the 10 Hz train are shown.
doi:10.1371/journal.pone.0025999.t001

Figure 4. MANTRA system responses depend on action potential-mediated opening of presynaptic Ca++ channels. (A) TTX
concentration-response curve for response amplitudes to a 30 Hz, 10 sec pulse train from a single plate. Each point shows the mean 6 SEM of 8 wells
normalized to within-plate vehicle controls. Data were fit with a standard sigmoid concentration-response function (R2 = 0.99). (B) SypHy fluorescence
responses during a 30 Hz, 10 second stimulus train in the presence of the Cav2.1 inhibitor v-agatoxin IVA (500 nM), the Cav2.2 inhibitor v-conotoxin
GVIA (1 mM), and the Cav2.3 inhibitor SNX-482 (1.2 mM). The waveforms depicted are an average of 24 wells for the vehicle and 8 wells for the
treatment group. (C,D) Amplitudes (mean 6 SEM) of the sypHy responses shown in (B) following (C) 30 pulses (1 sec) and (D) 300 pulses (10 sec) of
the stimulus train (***: p,0.0001).
doi:10.1371/journal.pone.0025999.g004
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purine receptors (Enzo Life Sciences). We found 13 hit compounds

that increased the 30 Hz/5 Hz amplitude ratio, and 11 of these

hits are known adenosine A1 agonists (Figure 6B; see Dataset S2

for complete dataset). In all cases, the increase in this ratio resulted

from a decrease in the amplitude of the response to the 5 Hz train

and not from an increase in the 30 Hz response amplitude (Figure

S3). Adenosine A1 receptors have long been known to be

presynaptic receptors whose activation results in reduced synaptic

vesicle release [37,38]. Our screening results suggest that high

frequency stimulation can overcome this inhibitory mechanism

and demonstrate the capacity of the MANTRA system to rapidly

identify novel mechanistic aspects of synaptic vesicle cycling.

Discussion

In this report, we describe the development and validation of the

MANTRA system: a high throughput technology capable of

performing kinetic assays of the synaptic vesicle cycle directly in

primary neurons. We demonstrate that this system operates with high

precision, uniformity, sensitivity, and reproducibility and is capable of

detecting modulators of synaptic vesicle cycling in a high-throughput

screening mode. When using a complex stimulation protocol

covering a broad range of synaptic activity regimes, at least 1,500

wells, or 500 agents when screened in triplicate, can be analyzed on

the MANTRA system per day. With this throughput, the system can

be used to screen for modulators of presynaptic function.

Two key technological advances were necessary for the

development of the MANTRA system: 1) a primary neuronal

culture and synaptic vesicle cycling reporter system that generates

strong signals with a high signal-to-background ratio, and 2) novel

instrumentation integrating a sensitive, parallel-imaging compo-

nent and a 96-electrode stimulation system. While other screening

instruments with integrated imaging and field stimulation

components have been described, they are limited to measuring

eight wells in parallel [39,40]. Since those systems were developed

for ion channel assays, which are typically of short duration, this

limitation has a relatively minor impact on assay throughput in

that context. However, for analysis of the synaptic vesicle cycle,

assay durations of tens of minutes are required to cover a broad

range of stimulation parameters. Therefore, the throughput of the

previously described instruments [39,40] is insufficient for high-

throughput screening of presynaptic function.

Potential impact of the MANTRA system
The MANTRA system enables unbiased functional high

throughput screening of presynaptic activity directly in primary

neurons using physiologically relevant patterns of stimulation. This

application has the potential to significantly expand our under-

standing of presynaptic function. As described in this report, the

MANTRA system can be used for screening libraries of chemical

agents with known pharmacological activities to elucidate

presynaptic molecular mechanisms. By employing this approach

and screening two compound plates, we were able to rapidly

identify a novel property of adenosine A1 receptor-mediated

modulation of presynaptic function. Moreover, through the

screening of RNAi libraries, the MANTRA system has the

Figure 5. The MANTRA system can detect modulators of synaptic vesicle cycling. (A) SypHy traces from neuronal cultures treated with
PMA (1 mM) or vehicle (0.7% DMSO) generated with the high resolution microscope system (HiRes) or the MANTRA system in response to a 5 Hz,
30 sec stimulus train. Scale bar: 0.1 DF/F, 20 sec. (B) Vehicle-normalized amplitudes (mean 6 SEM) in response to the 5 Hz, 30 sec stimulus train in
vehicle- and PMA-treated cultures measured on the microscope based system (HiRes; n = 3) and on the MANTRA system, for which statistics were
generated from three randomly selected PMA- and vehicle-treated replicates. (C) The plate of the LOPAC library containing PMA was screened in
triplicate on the MANTRA system (10 mM; 1 hour incubation) using a stimulation protocol consisting of a 5 Hz, 30 sec train, a 10 Hz, 30 sec train, and
a 30 Hz, 15 sec train with stimulation trains separated by 5 minute intervals. Shown are the amplitudes (mean 6 SEM) of the three replicates for each
compound normalized to the mean amplitude of the vehicle wells. Dotted lines indicate three standard deviations from the vehicle mean. Red points
indicate vehicle wells, blue point indicates PMA. Green point indicates N6-phenyladenosine as further described in Figure 6. (D) PMA concentration-
response curve for response amplitudes to the 5 Hz train generated from a single plate. Each point shows the mean 6 SEM of 8 wells normalized to
within-plate vehicle controls. Data were fit with a standard sigmoid concentration-response function (R2 = 0.95).
doi:10.1371/journal.pone.0025999.g005
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potential to comprehensively identify novel genes and proteins

involved in the regulation of neurotransmitter release.

The MANTRA system has major applications for the discovery

of novel mechanism-based therapies for multiple central nervous

system (CNS) disorders, many of which represent largely unmet

medical needs. Alterations in presynaptic function have been

implicated in schizophrenia [5,6], depression [7], epilepsy [8],

autism [9], attention deficit/hyperactivity disorder [10], Alzhei-

mer’s disease [11], Parkinson’s disease [12], Huntington’s disease

[13], and migraine [14]. While significant progress has been made

towards identifying the genetic and molecular alterations present

in CNS disorders, it has been challenging to translate this body of

knowledge into the identification of single, attractive drug targets

that are amenable to traditional drug discovery efforts [41].

Rather, we propose that innovative, functional screening ap-

proaches are needed to address disease mechanisms for complex,

multi-factorial psychiatric and neurological disorders. In this

regard, the application of the MANTRA system to cellular models

of CNS diseases may lead to the discovery of novel compounds or

targets that restore aberrant synaptic function and serve as the

basis for new mechanism-based treatments.

The repertoire of genetically encoded optical reporters for

multiple neuronal processes is rapidly expanding [42]. Such

reporters can be targeted to specific subcellular compartments by

fusing them to proteins with appropriate targeting sequences

[43,44] and can be expressed in defined neuronal subtypes via cell-

subtype specific promoters [45]. With the incorporation of such

reporter systems, the applications of the MANTRA system can be

expanded to address multiple aspects of neuronal function in

different subcellular compartments of disease-relevant neuronal

subtypes. With its unique and broad capacity for unbiased, high-

throughput screening of synaptic function, we believe that the

MANTRA system has the potential for major impact on basic

neuroscience research and on CNS drug discovery.

Materials and Methods

Cell Culture
All experimental procedures were performed in accordance

with the NIH Guide for the Care and Use of Laboratory Animals.

In addition, all experimental procedures and protocols were

reviewed and approved for use by the Galenea IACUC

Committee. E18 embryos were recovered by postmortem

caesarian section from euthanized pregnant Sprague-Dawley rats.

Embryo forebrains were dissected, digested in HBSS (Invitrogen)

containing 0.25% trypsin and 0.1% DNAse, and dissociated by

trituration through fire-polished Pasteur pipettes. Neurons were

plated and maintained in Neurobasal Medium (Invitrogen) plus

2% B-27 Supplement (Invitrogen), 500 mM glutamine (Invitro-

gen), and 6.25 mM glutamate (Sigma) and were incubated at 37uC
in a 95% air/5% CO2 humidified incubator for 19–23 days before

use. For high resolution assay experiments, neurons were plated

onto poly-D-lysine (BD Biosciences) and laminin (BD Biosciences)

coated 25-mm square coverslips (Carolina Biological Supply)

inside a 5-mm-diameter cloning cylinder at 20,000 cells/cylinder.

For the high-throughput assays, neurons were plated into poly-D-

lysine coated, black-walled, thin-bottomed 96-well plates (Greiner

Biosciences) at 75,000 cells/well in 150 ml/well of medium.

Figure 6. High frequency stimulation overcomes adenosine A1 agonist-induced suppression of synaptic vesicle release. (A) The ratio
of the amplitudes of the responses to the 30 Hz train to amplitudes of the responses to the 5 Hz train was determined for the compounds from the
LOPAC plate described in Figure 5C. The depicted data (mean 6 SEM) were normalized to the mean of the vehicle control wells. Dashed line indicates
three standard deviations from the mean of the vehicles. Red points indicate vehicle wells. Blue point indicates PMA. Green point indicates N6-
phenyladenosine. Inset shows the average waveforms from the three replicates of N6-phenyladenosine and the 36 vehicle replicates from the three
replicate screening plates. Red bars indicate periods of stimulation Scale bar: 0.05 DF/F, 20 sec. (B) A single plate of compounds targeting adenosine
and purine receptors (Enzo Life Sciences) was screened as described in Figure 5C. Data are as described in (A). Green circles indicate compounds that
generated effects greater than three standard deviations from the mean of the vehicles.
doi:10.1371/journal.pone.0025999.g006
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Reporter Viral Transduction
The synaptophysin-pHluorin reporter [21] and the human

synapsin promoter [23] sequences were as previously described.

The expression construct was generated by custom cDNA

synthesis (Blue Heron Bio). A recombinant adeno-associated virus

of mixed serotype 1/2 (AAV1/2) was generated (GeneDetect).

Titers of the viral preparations were .1X1012 GP/ml. At 7 DIV,

neurons were infected with the hSyn-SypHy-AAV at 2500 MOI.

Immunocytochemistry
Primary rat neuronal cultures on coverslips were infected with

the hSyn-SypHy-AAV at 7 DIV. At 21 DIV, neurons were fixed in

4% formaldehyde, permeabilized in 0.3% Triton X-100, and

blocked in 0.1% Triton X-100 plus 10% normal goat serum

(Sigma). Neurons were incubated with primary antibodies, mouse

anti-synaptotagmin (1:1000; Synaptic Systems) and rabbit anti-

GFP (1:1000; Abcam), overnight at 4uC, rinsed in PBS, and

incubated in secondary antibodies, Alexa-Fluor488 conjugated

goat anti-rabbit IgG (1:1000; Invitrogen) and Alexa-Fluor555

conjugated goat anti-mouse IgG (1:1000; Invitrogen). Neurons

were rinsed, mounted onto glass slides using Fluoromount G

(Southern Biotech), and visualized with a Zeiss Axiovert Z1

microscope using a 40X 1.3NA oil immersion objective lens.

Colocalization analysis was performed using ImageJ.

High-resolution sypHy assays
Coverslips bearing neuronal cultures were washed in assay

buffer which contained (in mM): NaCl 119, KCl 2.5, dextrose 30,

HEPES 25, MgCl2 2, CaCl2 2, D-(2)-2-amino-5-phosphonopen-

tanoic acid (D-AP5) 0.05, and 6,7-dinitroquinoxaline-2,3-dione

(DNQX) 0.02. Coverslips were mounted in a custom-built

perfusion and stimulation chamber secured to the stage of a Zeiss

Axio Observer A1 microscope. Cultures were perfused at a rate of

100 ml/min using multiple peristaltic pumps, each connected to a

different input reservoir. Pharmacological agents were introduced

by switching peristaltic pumps. An objective warmer (Bioptechs)

was used to maintain bath temperature at 30uC. To elicit action

potentials, 1 ms voltage pulses (10 V) were passed between two

5 mm platinum sheet electrodes positioned on either side of the

recording chamber. Stimulus patterns were delivered by a stimulus

isolation unit (Coulbourn Instruments) controlled by Igor Pro

software (Wavemetrics) and a DAQ system (National Instruments).

Cultures were illuminated by a 475 nm LED (Cairn) and

fluorescence was filtered with a 470/525 emission/excitation filter

cube (Zeiss). Cultures were imaged with a 1.3 NA 40x oil-

immersion objective lens, and fluorescence images were acquired

with an iXON electron multiplying CCD (EMCCD) camera

(Andor) with 50 msec exposures at a frequency of 1 Hz. Mean

whole-field fluorescence intensity for each image was extracted

using ImageJ. Resulting time-varying fluorescence waveforms

were analyzed with custom routines (Igor Pro).

MANTRA system assays
96-well plates containing neuronal cultures at 21–23 DIV were

placed on the platform of an Evolution P3 liquid handling robot

(EP3; Perkin Elmer) with which culture medium was replaced with

assay buffer. Plates were transferred to a 30uC incubator for one

hour, transferred to the plate tray in the MANTRA instrument,

and subjected to a read/field stimulation protocol. Fluorescence

readings were made using a 475/535 nm excitation/emission

filter. Unless specified otherwise, field stimulus pulses were 30 V,

0.2 msec. This stimulation intensity was chosen for its ability to

reliably initiate action potentials in all neurons in all wells. SypHy

responses to these stimuli were completely abolished by TTX,

demonstrating that these responses are action potential-mediated

(see Figure 4A). The temperature of the cabinet was set at 32uC,

resulting in an assay buffer temperature of 30.5 to 31.5uC. Wells

were imaged at 1 Hz with 100 msec exposures. Data files were

post-processed using in-house analysis routines (Igor Pro) and

stored in a custom MySQL database. As a result of sporadic

inconsistencies in assay buffer aspiration into the central capillary

of the electrodes, stimulation failures can occasionally occur.

Failures were specified as any wells in which the DF/F in response

to a 50 Hz, 15 sec or a 30 Hz, 10 sec stimulation train was less

than 0.05. Typically 0–3 wells were removed from analyses from

each 96-well plate as a result of stimulation failures.

For compound screening, a 1.5 mM dilution plate was

generated using an EP3 liquid handling robot (Perkin Elmer).

2 ml of compounds were transferred from this dilution plate to

each of three near assay-ready compound plates in pseudo-

randomized locations using a Janus liquid handling station (Perkin

Elmer). Assays were performed as described above. Compounds,

including TTX (Tocris) and the Ca++ channel inhibitors v-

agatoxin IVA, v-contoxin GVIA, and SNX-482 (Alomone Labs),

were added with the final buffer addition of the plate wash process.

Supporting Information

Figure S1 MANTRA system temperature control system

validation. Well temperature was measured using a thermocouple

inserted into well H1 of a 96-well plate during an electrostimu-

lation protocol. Temperature of the metal plate tray, monitored by

an independent thermocouple inserted into the tray, remained

constant at 32uC throughout the run. The plate was preincubated

at 31uC and placed on the plate tray in the instrument. The plate

lid was removed and temperature logging was started at t = 0.

Removal of the lid caused the temperature to drop due to

evaporation. Within one minute the tip module entered the plate

wells. The presence of the tip module reduced evaporation causing

the temperature to re-equilibrate to approximately 31uC. When

the tip module was removed at the end of the run a temperature

decrease was again observed. Well temperature remained within

0.5uC of the target temperature of 31uC throughout the 35 minute

stimulation protocol.

(TIF)

Figure S2 Confirmation of hits from the LOPAC library plate

on the MANTRA system. Three assay plates were run on the

MANTRA instrument each containing six replicates (10 mM) of

each of the twelve hit compounds from LOPAC plate 13 (n = 18;

see Figure 5C). Shown are the amplitudes of the responses to 5 Hz

stimulation (mean 6 SEM) normalized to the mean amplitude of

the eight vehicle wells on the same plate. Each compound altered

the response amplitude in the direction observed on the initial

screening plates (t-test; ** p,0.001; *** p,0.00001).

(TIF)

Figure S3 Response amplitudes for compounds in a plate of

adenosine/purinergic-focused compounds. A plate containing

compounds targeting purine and adenosine receptors (Biomol)

was screened as described in Figure 6. Shown are the amplitudes

of the responses to the 5 Hz (A) and 30 Hz (B) trains normalized

to the vehicle controls. Dotted lines indicate three standard

deviations from the mean of vehicle wells. Green circles indicate

hit compounds that increases the 30 Hz:5 Hz response amplitude

ratio (see Figure 6).

(TIF)
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Table S1 Summary statistics from 8 control plates for 5 Hz,

30 sec trains. See Table 1 for explanation. Baseline noise is as in

Table 1.

(DOC)

Table S2 Summary statistics from 8 control plates for 50 Hz,

15 sec trains. See Table 1 for explanation. Baseline noise is as in

Table 1.

(DOC)

Dataset S1 MANTRA system screening data for a single

LOPAC plate.

(XLS)

Dataset S2 MANTRA system screening data for adenosine

receptor compound plate.

(XLS)
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