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Abstract: Thanks to their high porosity and surface area, mesoporous bioactive glasses (MBGs) have
gained significant interest in the field of medical applications, in particular, with regards to enhanced
bioactive properties which facilitate bone regeneration. The aim of this article is to review the state
of the art regarding the biocompatibility evaluation of MBGs and provide a discussion of the var-
ious approaches taken. The research was performed using PubMed database and covered articles
published in the last five years. From a total of 91 articles, 63 were selected after analyzing them
according to our inclusion and exclusion criteria. In vitro methodologies and techniques used for
biocompatibility assessment were investigated. Among the biocompatibility assessment techniques,
scanning electron microscopy (SEM) has been widely used to study cell morphology and adhesion.
Viability and proliferation were assessed using different assays including cell counting and/or cell
metabolic activity measurement. Finally, cell differentiation tests relied on the alkaline phosphatase
assay; however, these were often complemented by specific bimolecular tests according to the exact
application of the mesoporous bioactive glass. The standardization and validation of all tests per-
formed for MBG cytocompatibility is a key aspect and crucial point and should be considered in
order to avoid inconsistencies, bias between studies, and unnecessary consumption of time. Therefore,
introducing standard tests would serve an important role in the future assessment and development
of MBG materials.

Keywords: mesoporous bioactive glasses; in vitro; cytocompatibility; bioactivity; medical applica-
tions

1. Introduction

Bioactive glasses (BGs) represent a major discovery in tissue repair. The first BG ever
synthesized was the 45S5 Bioglass® in 1969 by Professor Larry Hench and was a clinical
success for cochlear bone repair [1]. It marked the beginning of the development from
bio-inert materials towards bioactive materials that have the property of interacting closely
with tissues to drive regeneration [2].

BG’s bioactivity is attributed to the two following properties [3]:

- The formation of a biomimetic hydroxyapatite layer after glass immersion after inter-
action with biological fluids;
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- The osteogenic ability of some dissolution products and leachable compounds and
ions.

From then, the BG technology was well developed, allowing researchers to elaborate
new materials, such as BG composites, nanobioactive glasses, doped-BGs, mesoporous
bioactive glasses (MBGs) [3].

Nowadays, due to their ease of synthesis and remarkable properties, BGs have found
uses in a wide range of medical applications, for example, bone regeneration [4], prosthesis
and implant coating [5,6], and hemostasis [7]. In dentistry, BG-based products are also
valuable for many clinical indications, such as dental hypersensitivity treatment [8]. A clas-
sification of methodologies for BG bioactivity quantification has been recently established,
aimed to a better understanding of the bioactive properties of BG regarding dental hard
tissues [9].

The current review focuses on MBG-based materials which were first introduced in
2004 [10]. After the melt quench technique, the sol-gel method is the most opted way to
prepare such glasses. Use of a bottom-up, low temperature synthesis route with versatile
process parameters offers the control needed to achieve particles with enhanced features.
Briefly, this process consists of creating a gel by polycondensation of silicon alkoxides Si(OR)4
in an aqueous phase. When a surfactant is introduced to the process, it tends to form three
dimensional micellular structures within the gel. The gel is then calcined up to 700 ◦C to
eliminate the organic components, leaving only the glass and its “cavities” (Figure 1) [11].
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Figure 1. Surface of a mesoporous bioactive glass [11]. Scale bar: 50 µm.

This specific method gives the mesoporous glass an intrinsic porosity and a very high
specific surface area of hundreds of m2/g, unlike the conventional fusion method that leads
to surface areas of few m2/g. High porosity and specific surface area positively influence the
bioactivity through accelerated dissolution of ions from the glass [12–14]. The mesoporous
aspect of these glasses was first used for catalytic applications [15]. However, it soon became
an essential engineering technique for materials as it was possible to control the porosity
by modifying the process parameters. In fact, the size of the pores can even reach the
micrometer scale using opal prints instead of surfactants [16] which offers new perspectives
for the delivery of high molecular weight molecules [17]. The porosity of MBG has been
demonstrated as leading to particular efficiency in promoting remineralization for bone
regeneration [18,19]. Furthermore, MBG can be doped with different elements to attain new
functionalities, such as, Cu-doped MBG which has been reported to have angiogenic and
antibiotic effects [20].

MBG-based materials seem to be very promising for medical applications, including
in dentistry, and, thus, a significant amount of research has recently been conducted with
regards to their effect on the remineralization of calcified dental tissues and the dentin-pulp
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complex tissues. More recently, Mocquot et al. revealed an enhancement of the metabolic
activity and the mineralization ability of primary dental pulp cells when they were subjected
to MBG-based particles [21].

As MBGs represent a new generation of conventional bioactive glasses with unique
properties (high surface area and high porosity) and have the potential for use across a large
spectrum of medical applications, important questions should be addressed concerning the
evaluation of their biocompatibility. Since the prime focus of researchers is the development
of improved bioactive glasses that are mainly safe and suitable for industrial and clinical
use, the aim of this review was therefore to identify and rank the different methods used
for the MBG biocompatibility assessment in vitro.

2. Methods
2.1. Research Question

Before any literature investigation, the following research question had been formu-
lated: “How to assess the in vitro biocompatibility of MBG?”

2.2. Search Strategy

PubMed was the only electronic database used for this review. The scientific articles
published from July 2015 to November 2020 were automatically investigated.

2.3. Keywords Selection

Two different keyword combinations were tested and the one resulting with the
maximum number of articles was selected.

2.4. Inclusion and Exclusion Criteria

To determine the relevant studies needed to conduct the current research review,
inclusion and exclusion criteria were established.

The articles were included according to the following rules:

(1) Research article;
(2) Use of mesoporous bioactive glasses with and without scaffolds or composite;
(3) Detailed investigation of biocompatibility in vitro.

On the other hand, the following were systematically removed from our study:

(1) Review articles;
(2) Articles that used non-mesoporous bioactive glasses;
(3) Articles that did not explain their biocompatibility methods;
(4) Articles that did not carry out biocompatibility tests in vitro.

2.5. Paper Selection and Data Extraction

Each article abstract was carefully read by the two first authors MS and MV to deter-
mine whether or not the article should be included in the study. Once the articles to be
included were shortlisted, their full text was then read and investigated to explore different
parameters:

- Medical application of the MBG;
- MBG composition and synthesis pathway;
- Cells used for biocompatibility tests;
- Biocompatibility tests performed and their results.

3. Results

In view of the small number of articles referring to the dental field, it was decided that
the scope should be extended to also assess the biocompatibility of MBGs used for different
medical applications. The search equation retained was as follows: “((mesoporous) AND
(bioactive) AND (glass)) OR (MBG) AND (biocompatibility)” as it returned the maximum
number of articles (Table 1).
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Table 1. Research equations explored.

Keyword Selection Number of Articles in PubMed

((mesoporous) AND (bioactive)
AND (glass)) OR (MBG) AND (biocompatibility) 91

((mesoporous) AND (bioactive) AND (glass)) OR (MBG)
AND (biocompatibility) AND ((dental) OR (tooth) OR (teeth)) 8

Duplicate articles were excluded (one article). Then, the title and abstract of each of
the remaining 90 articles were examined allowing the exclusion of 28 articles that did not
meet the inclusion criteria (Figure 2). The exclusion reason for each article is described in
Table 2. Finally, 63 relevant articles were investigated by reading the full text (Table 3).
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Table 2. Articles excluded and their grounds for exclusion.

Articles Grounds for Exclusion

Mao—2016 [22]

Only in vivo biocompatibility testsAnand—2019 [23]
Ghamor-Amegavi—2020 [24]

Lalzawmliana—2019 [25]

Li—2015 [26]

No biocompatibility data

Garg—2017 [27]
Jiang—2017 [28]

Shoaib—2017 [29]
Baino—2018 [30]
Baino—2018 [31]

Fernando—2018 [32]
Kargozar—2018 [33]
Nawaz—2018 [34]

Liu—2018 [35]
Pourshahrestani—2019 [7]

Mubina—2019 [36]

Shadjou—2015 [37]

Review Articles

Baino—2016 [38]
Galarraga-Vinueza—2017 [39]

Vichery—2016 [40]
Fiume—2018 [41]

Kargozar—2018 [42]
Kaya—2018 [43]
Wu—2018 [44]

Lalzawmliana—2020 [45]
Gisbert-Garzarán—2020 [46]

Sistanipour—2018 [47] Articles not using mesoporous bioactive glasses [47,48]
Wu—2019 [48]
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Table 3. Articles included and details of each investigation.

References Aims MBG Composition MBG Compared with
Conventional BG?

MBG Elabos
Method Type of Cells Used

Culture Setting
(Direct or Indi-
rect Contact)

Techniques Used to Assess
Biocompatibility Main Results

Lin—
2015 [49]

Bone
regeneration

MBG (no information on the
composition of the MBG) +
polyglycerol sebacate
(adjuvant)

No
Blank control Sol-gel rBMSCs: rat bone marrow

mesenchymal stem cells Direct

Cell adhesion: Optical density
Cell morphology: CLSM
Cell viability: MTT assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(RUNX-2, OCN, OPN)

Same viability and morphology.
Adhesion and proliferation
increased with PGS concentration.
At high concentrations,
biocompatibility decreased
due to acidification.

Min—
2015 [50]

Bone
regeneration

MPHS: MBG 80S15C
(80SiO2: 15CaO: 5P2O5) +
PHBHHx (adjuvant)

No
Negative control
(without treatment)

3D printing
hBMSCs: human bone
marrow mesenchymal
stem cells

Direct

Cell adhesion: SEM
Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(OCN, OPN, bFGF, SDF-1)

Cell morphology: well-extended
MPHS-1.0 and MPHS-1.5 with a
higher DMOG enhanced cell % rate
Higher ALP activity, expression
levels of OCN and OPN than
MPHS scaffolds.

Gómez-Cerezo—
2016 [51]

Bone
regeneration

MBG 58S (58 SiO2: 37 CaO:
5 P2O5) + polycapro-lactone
(adjuvant)

No
Polycaprolactone alone Sol-gel MC3T3-E1: murine

osteoblastic cells Direct

Cell morphology: SEM & CLSM
Cell viability: Alamar Blue assay
and membrane integrity: LDH:
CytoTox-ONE ™ (Promega, G7890)
Cell differentiation:
ALP activity assay

MBG stimulated cell proliferation,
colonization, and differentiation.
Cell migration affected by
architectural features and
enhanced by the chemical release
produced during the
MBG dissolution.

Han—
2016 [52]

Bone
regeneration

MBG (no information on the
composition of the MBG) +
PMMA (adjuvant),
titanium-doped

No
Negative control: no
titanium

Sol-gel U2OS: human osteosarcoma
cell line Direct Cell viability: MTT assay

Slight cytotoxicity for all titanium
concentrations.
No effect on the cell proliferation.

Hesaraki—
2016 [53]

Bone
regeneration

MBG 64S (64SiO2: 31CaO:
5P2O5) + resin
poly-methacrylate
(adjuvant)

No
Resin alone Sol-gel Calvarium-derived

newborn rat osteoblasts Direct Cell morphology: SEM
Cell viability: MTT assay

Bioactive glass/resin composite
biocompatible and
osteoconductive.

Kim—
2016 [54]

Bone
regeneration

MBG 85S (85SiO2: 15CaO)
functionalized with
amino groups

No
Blank control Sol-gel RAW264.7: murine

macrophages Direct

Cell morphology: CLSM
Cell viability: CCK-8 assay
Cell differentiation: qRT-PCR
analysis (c-fos, cathepsin-K,
TRAP, NFATc1)

Cell viability dose and
time dependent.
Morphological characteristics
reflected results of cell viability.

Pourshahrestani
—2016 [55] Hemostasis

Ga-MBGs: MBG 80S15C
(80SiO2: 15CaO: 5P2O5)
doped with gallium
Si/Ca/P/Ga: 80/15/5/0;
79/15/5/1; 78/15/5/2;
77/15/5/3

No
Control: MBG
without gallium

Sol-gel HDFs: human dermal
fibroblast cells Indirect Cell viability: MTT assay

All glasses were non-cytotoxic.
Cell viability enhanced in the
presence of 1% Ga-MBGs.

Singh—
2016 [56]

Bone
regeneration
and drug
delivery

MBG (no information on the
composition of the MBG)
doped C-dot

No
Blank control Sol-gel

HeLa cell line, MC3T3-E1
murine osteoblastic cells,
rBMSCs: rat bone marrow
mesenchymal stem cells

Direct Cell viability: MTT assay and
CCK-8 assay

High bioactivity in vitro and cell
viability of the developed
nanospheres, equivalent to the
bioactive glass nanoparticles.
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Table 3. Cont.

References Aims MBG Composition MBG Compared with
Conventional BG?

MBG Elabos
Method Type of Cells Used

Culture Setting
(Direct or Indi-
rect Contact)

Techniques Used to Assess
Biocompatibility Main Results

Tang—
2016 [57]

Bone
regeneration

TMS/rhBMP-2, TMS
(trimodal MBG scaffold),
MBG with different pore
sizes (macro/micro/
nano-porous)
(no information on the
composition of the MBG)

No
Blank control Sol-gel

rBMSCs: rat bone marrow
mesenchymal stem cells and
HUVECs: human umbilical
vein endothelial cells

Direct

Cell morphology: CLSM & SEM
Cell adhesion: CLSM
Cell viability: LIVE/DEAD assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(RUNX-2, OCN, OPN,
BSP, GAPDH)

Excellent cytocompatibility with all
trimodal and bimodal scaffolds
and desirable environment for cells
attachment and colonization.

Vishnu Priya—
2016 [58]

Bone
regeneration

Hydrogel containing
magnesium-doped bioglass
(60SiO2: 30CaO:10MgO)

No
Control: hydrogel
without MBG

Sol-gel

HUVECs: human umbilical
vein endothelial cells and
ADSCs: rabbit
adipose-derived stem cells

Direct

Cell proliferation: Alamar Blue
Cell adhesion:
Fluorescence microscopy
Cell differentiation: ALP activity,
immunofluorescence (ALP, OCN)

Hydrogels containing MBG
showed early initiation of
differentiation and higher
expression of ALP and osteocalcin
confirming the osteoinductive
property of MBG.

Wang—
2016 [20]

Bone
regeneration

MBG 80S15C
(80SiO2: 15CaO: 5P2O5)
doped with copper
Si/Ca/P/Cu:
78/15/5/2;
75/15/5/5

No
Control: TCPS Sol-gel MC3T3: mouse

fibroblast cells
Direct and
indirect

Cell adhesion: SEM
Cell viability:
MTT assay and CLSM
Cell differentiation: qRT-PCR
analysis (VEGF, bFGF and PDGF)

Cytotoxicity of copper dose
dependent.
Copper: proangiogenic
(promotes differentiation)

Wu—
2016 [59]

Bone
regeneration
and
osteoporosis

MBG 80S15C
(80 SiO2:15CaO)

No
Blank control Sol-gel

rBMSCs: bone marrow
mesenchymal stem cells
derived from either sham
control or ovariectomized
(OVX) rats

Indirect

Cell proliferation: CCK-8 assay
Cell morphology and cytoskeletal
structure: fluorescence microscopy
Cell differentiation: ALP staining,
Alizarin Red S, Oil Red-O staining,
qRT-PCR (RUNX2, PPARγ,
GAPDH), western blot (WB)
(Runx2, PPARγ, β-actin)

Lower concentration of MBG
dissolution can promote
osteogenesis but inhibit
adipogenesis of the sham and
OVX BMSCs.

Zhang—
2016 [60]

Bone
regeneration

Large-pore MBG (no
information on the
composition of the MBG)

No
Blank control Not indicated ADSCs: rat adipose-derived

stem cells Direct

Cell morphology: SEM
Cell viability: MTS assay
Cell differentiation: qRT-PCR
analysis (ALP, OCN, OPG,
PPAR gamma)

Proliferation related to ions
released.
Large pore mesoporous glass
promotes the expression of
osteogenic-related genes but also
inhibit the expression of
adipogenic genes.

Zhang—
2016 [61]

Bone
regeneration

MBG 80S15C
(80SiO2: 15CaO: 5P2O5)
functionalized with
amino groups

No
Blank control Sol-gel

Rabbit BMSCs: bone
marrow mesenchymal
stem cells

Direct

Cell adhesion: SEM
Cell viability: MTT assay
Cell differentiation: ALP activity
assay & qRT-PCR analysis
(ALP, BSP, OCN, RUNX-2)

Amino-MBGS: the most potent
proliferative effect and the most
effective osteoblastic
differentiation potential.
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Table 3. Cont.

References Aims MBG Composition MBG Compared with
Conventional BG?

MBG Elabos
Method Type of Cells Used

Culture Setting
(Direct or Indi-
rect Contact)

Techniques Used to Assess
Biocompatibility Main Results

Ge—
2017 [62]

Bone
regeneration

MBG on nanoTitanium film,
doped with growth factor.
Special composition related
to doping:
SiO2/CaO/P2O5/TiO2:
80/5/5/10

No
Control without
the drug

Sol-gel rBMSCs: rat bone marrow
mesenchymal stem cells Direct

Cell differentiation: ALP activity
assay and qRT-PCR analysis
(COL-1, OCN)

Highest ALP activity and strong
Col-I and OCN expressions on
200-MBG film cells: possibly, due
to the surface of the glass that
accelerates the signal transduction.

Kaur—
2017 [63]

Bone
regeneration

MBG 64S (64 SiO2: 31 CaO:
5 P2O5) doped with copper
(2.5 to 10%)

No
Blank control Sol-gel J774A.1: murine

macrophage cell line Direct
Cell viability: MTT assay and
Membrane integrity:
Trypan Blue assay

High concentrations of copper
(from 1,95 µg/mL): toxic. With the
decrease in concentration, all the
MBGs increased live cell and
decreased dead cell rates.

Li—
2017 [64] Gene delivery

MBG (no information on the
composition of the MBG) +
polyglycerol + Arg8 (to
functionalize polymer),
loaded with DNA

No
Blank control Sol-gel Human HeLa cervical

cancer cell line Direct Cell viability: LIVE/DEAD assay
and CCK-8 assay

Good cell biocompatibility. Most
cells in the complex-treated groups
grew well in contact with the
MBG/DOX-treated group.

Luo—
2017 [65]

Bone
regeneration

Nanofibrous MBG (no
information on the
composition of the MBG)

No
Blank control Sol-gel Mouse osteoblasts Direct

Cell morphology: SEM &
Fluorescence microscopy
Cell viability: LIVE/DEAD assay
and CCK-8 assay
Cell differentiation:
ALP activity assay

60S40C scaffolds: favorable
support for cell growth,
proliferation, and differentiation.

Luo—
2017 [66]

Bone
regeneration

NanoMBG 58S (58 SiO2:
37 CaO: 5 P2O5)

No
Blank control

Aerogel-based
method

Primary mouse
osteoblast cells Direct

Cell morphology:
Fluorescence microscopy
Cell adhesion:
Fluorescence microscopy
Cell viability: CCK-8 assay
Cell differentiation:
ALP activity assay

58S scaffold: more cells growth and
cell differentiation than scaffold
without 58S.

Pourshahrestani
—2017 [67] Hemostasis

MBG 80S15C (80SiO2:
15CaO: 5P2O5) doped with
gallium (Ga) + chitosan
(CHT = adjuvant)
Si/Ca/P/Ga: 79/15/5/1
Ga-MBG/CHT (wt.%):
10/90; 30/70; 50/50

No
Negative control:
chitosan alone

Sol-gel HDFs: human dermal
fibroblast cells Direct

Cell viability: Alamar Blue assay
and LIVE/DEAD assay
Cell morphology: CLSM

Good biocompatibility.
No cytotoxicity.

Qi—
2017 [68]

Bone
regeneration

MBG 80S (80SiO2: 16CaO:
4P2O5) + calcium sulfate
hydrate (adjuvant)

No
Control: calcium
sulfate hydrate alone

3D printing
hBMSCs: human bone
marrow mesenchymal
stem cells

Direct

Cell adhesion: SEM
Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(ALP, OCN, OPN, RUNX-2)

Cell viability, proliferation, and
differentiation increased with
increase MBG concentrations.
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Table 3. Cont.

References Aims MBG Composition MBG Compared with
Conventional BG?

MBG Elabos
Method Type of Cells Used

Culture Setting
(Direct or Indi-
rect Contact)

Techniques Used to Assess
Biocompatibility Main Results

Sánchez-Salcedo
—2017 [69]

Bone
regeneration

MBG 75S (75SiO2: 20CaO:
5P2O5) & MBG 85S
(85SiO2: 15CaO)
both functionalized with
amino groups or lysine

No
Blank control Sol-gel MC3T3-E1: mouse

osteoblastic cells Direct

Cell morphology:
Inverted optical microscopy
Cell adhesion:
Fluorescence microscopy
Cell viability: MTS assay and
membrane integrity: LDH:
CytoTox-ONE ™ (Promega, G7890)
Cell differentiation:
ALP activity assay

In vitro cytocompatibility of MBGs
was preserved functionalization.

Schumacher—
2017 [70]

Bone
regeneration
and drug
delivery

MBG 80S (80SiO2: 16CaO:
4P2O5) + CaP bone cement
(calcium phosphate cement)
(adjuvant)

No
Control: calcium
phosphate
cement alone

Sol-gel Saos2: human osteosarcoma
cell line Direct Cell viability: WST-1

Higher cell adhesion and metabolic
activity for composites compared
to pure calcium cement.

Shoaib—
2017 [71]

Bone
regeneration

MBG (49SiO2: 20CaO:
20Na2O: 7K2O:
4P2O5 mol %) doped
with potassium

Yes
Control: Bioglass 45S5 Sol-gel NHFB: normal human

fibroblast cell line Direct

Cell viability: CCK-8 assay
Cell-cycle analysis: Flow cytometer
Cell differentiation: ELISA
(anti-OCN) and ALP activity assay

Cell viability: no differences.
Cell-cycle analysis: MBG did not
have any role in cell cycle
dose-dependency.

Wang—
2017 [72]

Bone
regeneration

MBG (no information on the
composition of the MBG)
functionalized with
amino groups

No
Control:
conventional MBG

Sol-gel MC3T3-E1: mouse
osteoblast cell line Direct

Cell adhesion: CLSM
Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay, Luciferase assay (RUNX-2)
and qRT-PCR analysis
(GAPDH, OCN, OPN)

Better cell adhesion with
amino-MBGs than with
conventional MBGs.
Both MBGs with or without
adjuvant promote osteoblastic
differentiation.

Xin—
2017 [73]

Bone
regeneration

Nano MBG80S (80SiO2:
16CaO: 4P2O5) (MBGN) +
methacrylicanhydride and
gelatin (GelMA-G)
(adjuvants)

No
Blank control Not indicated MC3T3-E1: mouse

osteoblast cell line
Direct and
indirect

Cell adhesion: SEM
Cell viability: CCK-8 assay
Cell differentiation:
ALP activity assay

GelMA-G-MBGN membrane
enhanced osteogenesis
differentiation.

Xue—
2017 [74]

Bone
regeneration

NanoMBG (NanoBGs) (No
information on the
composition of the MBG)
loaded with miRNA
(adjuvant)

No
Blank control Sol-gel

hBMSCs: human bone
marrow mesenchymal
stem cells

Direct

Cell morphology: Inverted
fluorescent microscopy
Cell adhesion: Inverted fluorescent
microscopy
Cell viability: Alamar Blue assay
and LIVE/DEAD assay
Cell differentiation: qRT-PCR
analysis (ALP, OPN, RUNX2)

Good cell biocompatibility.
NanoBGs could efficiently deliver
miRNA to enhance osteogenic
differentiation.

Yu—
2017 [75] Gene delivery

MBG 80S (80SiO2: 16CaO:
4P2O5) and silica
nanoparticles

No
Control: commercial
transfection reagent
PEI 25K and LIPO300

Sol-gel
hBMSCs: human bone
marrow mesenchymal
stem cells

Direct
Cell viability: LIVE/DEAD assay
Cell differentiation:
ALP activity assay

NanoBGs revealed significantly
lower cytotoxicity than the
commercial transfection reagents.
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Cai—
2018 [76]

Bone
regeneration

MBG (no information on the
composition of the MBG) +
trapped BMP2 (adjuvant) +
microspheres of chitosan
(adjuvant) (containing IL8)

No
Blank control Sol-gel rBMSCs: rat bone marrow

mesenchymal stem cells Direct

Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(RUNX-2, COL-1, OPN,
OCN, β-actin)

Below 1 mg/mL, microspheres
exhibited little cytotoxicity to
rBMSCs.

Covarrubias—
2018 [77]

Bone
regeneration

NanoMBG (nBGs)
(No information on the
composition of the MBG) +
chitosan/gelatin (CHT/Gel
1:1) (adjuvant)

Yes nMBG/CHT/Gel,
and nBG/CHT/Gel
bionano-composite
scaffolds

Sol-gel DPSCs: dental pulp
stem cells Direct

Cell viability: MTS assay
Cell differentiation:
ALP activity assay

Cell viability and proliferation
decreased with the concentration of
nBGs (due to high calcium release);
5% nBGs allowed the highest cell
proliferation rate.

Fiorilli—
2018 [78]

Bone
regeneration

MBG 85S (85SiO2: 15 CaO)
doped with strontium

No
Control: polystyrene

Sol-gel and
aerosol-spray
drying
method

J774a.1, fibroblast cell line
L929, Saos-2

Direct and
indirect

Cell viability: MTT assay
Cell differentiation: qRT PCR
analysis (ALP, COL-1, GAPDH,
OPG, RANKL, SPARC)

Good biocompatibility: reduction
of the inflammatory response and
stimulation of the pro-osteogenic
genes’ expression.

Gómez-Cerezo
—2018 [79]

Bone
regeneration

MBG 75S
(75SiO2: 20 CaO: 5P2O5)

No
Control: without
material
Then, different doses of
MBG-75S (0.5 mg/mL,
1 mg/mL, 2 mg/mL)

Sol-gel

Human Saos-2,
osteoclast-like cells, murine
RAW 264.7 murine
macrophages

Direct

Cell morphology: CLSM
Cell viability: Membrane integrity:
LDH: CytoTox-ONE ™
(Promega, G7890)
Apoptosis quantification and
cell-cycle analysis: Flow cytometry

Cytotoxicity is dose dependent.
No inhibition of osteoclastogenesis.
Decrease of resorption activity.

Hsu—
2018 [80]

Bone
regeneration

Apatite-modified MBG
(no information on the
composition of the MBG):
MBGNFs (MBG nanofibers)
with PMMA and sodium
alginate (adjuvants)

No Sol-gel MG-63: human
osteoblast-like Direct

Cell morphology:
Fluorescence microscopy
Cell differentiation:
Immunofluorescence
(BSP and OCN)

Better cell adhesion but lower
viability with macroporous
microbeads containing MBG
nanofibers than with glass beads.

Jia—
2019 [81] Osteoporosis

Sr-MBG (Porous
strontium-incorporated
mesopore-bioglass)
MBG doped with 5% Sr

No
Control: MBG 80S
80Si02:15CaO:5 P2O5

Sol-gel hPDLc: human periodontal
ligament stem cells Indirect

Cell differentiation:
Remineralization (Alizarin Red
staining and quantification), WB
(hnRNPL, Setd2, H3K36me3,
P-AKT, AKT, P-CREB) and RT
qPCR analysis (hnRNPL, Setd2,
ALPL, RUNX-2, GAPDH)

Sr-MBG scaffolds had visibly more
new bone formation and vascular
distribution in the healing area
than MBG scaffolds. More frequent
RUNX-2-positive cells were
detected in the presence of Sr while
the percentage of hnRNPL-positive
cells was less in Sr-MBG group.

Kumar—
2019 [82]

Bone
regeneration

MBG 64S (64SiO2: 31CaO:
5P2O5) + surfactant

No
No control at all Sol-gel Human Saos-2: Sarcoma

osteogenic cells Direct
Cell viability: Membrane integrity:
LDH: CytoTox-ONE ™
(Promega, G7890)

Cell proliferation was significantly
affected by the textural
characteristics, which is related to
dissolution rate of Ca, P, and Si.

Mandakhbayar
—2019 [83]

Bone
regeneration

Sr-doped
(85SiO2:10CaO:5SrO) and
Sr-free (85SiO2:15CaO)
nanobioactive glasses

No
Blank control Sol-gel DPSCs: dental pulp

stem cells Indirect

Cell cytotoxicity: WST-1, CCK-8
assay and CLSM
Cell differentiation: ALP activity
and Alizarin Red staining and
quantification”

Sr-NBC: high bioactivity, excellent
biodegradability, fast therapeutic
ion release, and high drug loading
capability, which potentiates its
application in dentin−pulp
complex regeneration therapy.
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Pourshahrestani
—2018 [84] Hemostasis

Gallium-doped MBG
(no information on the
composition of the MBG)

No
Control: other
hemostatic reagents

Sol-gel HDFs: human dermal
fibroblast cells Direct Cell viability: MTT assay and

LIVE/DEAD assay
No toxic effect.
Significant increase of viability.

Qi—
2018 [85]

Bone
regeneration

3D printed borosilicate BG
(6Na2O, 8K2O, 2MgO, 6SrO,
22CaO, 36B2O3, 18SiO2,
2P2O5; mol.%) coated with
MBG (no information on the
composition of the MBG)

Yes
BG coated with MBG
compared with BG
without coating

3D printing
hBMSCs: human bone
marrow mesenchymal
stem cells

Direct

Cell adhesion: SEM
Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(RUNX-2, OCN, COL1)

Well-spread cell morphology.
Proliferation rates of BG-MBG >
BG scaffolds (P < 0.05).
ALP activity:
BG-MBG > BG (P < 0.05).
Upregulation of osteogenic-related
genes in cells grown on BG-MBG
(P < 0.05).

Shoaib—
2018 [86] Drug delivery

MBG doped with potassium
(special composition related
to doping: 49SiO2: 20CaO:
20Na2O: 7K2O:
4P2O5 mol %) with variable
percentages was used as
filler in arginine and
starch-based PU matrices
(adjuvant)

No
Different percentages
of MBG in the
nanocomposite

Sol-gel NHFB: normal human
fibroblast cell line Direct Cell viability: MTT assay

Enhancement of cell adhesion.
No significant difference on
cell viability.

Zeng—
2018 [87]

Bone
regeneration

MBG 80S (80SiO2: 16CaO:
4P2O5) functionalized with
amino groups (N-MBG)

No
Blank control Not indicated

Rabbit BMSCs: bone
marrow mesenchymal
stem cells

Direct and
indirect

Cell viability: LIVE/DEAD assay
and MTT assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(CaSR, RUNX-2, GAPDH, OPG,
RANKL, IL-10, Arg-1)

Better cell viability and
differentiation with N-MBG.
Decreased gene expression after
NPS2143 (CaSR signaling pathway
inhibitor) treatment.

Du—
2019 [88]

Bone
regeneration

MBG (no information on the
composition of the MBG) +
silk fibroin (adjuvant)
(MBG/SF)

No
Control: MBG/PCL
scaffold

Sol-gel
hBMSCs: human bone
marrow mesenchymal
stem cells

Direct

Cell adhesion: SEM and CLSM
Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(BMP-2, OCN, OPN, BSP, COL-1)

Better cell adhesion and
proliferation on MBG/SF
composite scaffold.

Fu—
2019 [89] Drug delivery

MBG (no information on the
composition of the MBG) +
sodium alginate (SA)
(adjuvant)

No
SA alone 3D printing

hBMSCs: human bone
marrow mesenchymal
stem cells

Direct

Cell adhesion: CLSM
Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(OCN, COL-1, BMP-2, BSP)

More live cells, better cell
proliferation and differentiation
were observed on MBG/SA and
MBG/SA–SA scaffolds compared
to SA scaffolds.

Gómez-Cerezo
—2019 [90]

Osteoporosis,
bone
regeneration
and drug
delivery

MBG58S (58 SiO2:
37 CaO: 5 P2O5) +
e-polycapro-lactone
(adjuvant)

No
Blank control Sol-gel

Human Saos-2 osteoblasts,
RAW-264.7 murine
macrophages

Direct and
indirect

Cell morphology: CLSM
Apoptosis quantification:
Flow cytometer
Cell-cycle analysis: Flow cytometer

Zoledronic acid released from MBG
produced osteoblast apoptosis and
a delay of osteoblast proliferation
in a time-dependent way; caused
an inflammation and fibrosis.



Biomimetics 2021, 6, 9 12 of 32

Table 3. Cont.

References Aims MBG Composition MBG Compared with
Conventional BG?

MBG Elabos
Method Type of Cells Used

Culture Setting
(Direct or Indi-
rect Contact)

Techniques Used to Assess
Biocompatibility Main Results

Li—
2019 [91]

Bone
regeneration
and drug
delivery

Scaffold PLGA- MBG
(SiO2-CaO-P2O5,
Si/Ca/P = 80:15:5) and
FTY/MBG-PLGA FTY
(adjuvant)

No
Control: PLGA without
MBG

Sol-gel

rBMSCs: rat bone marrow
mesenchymal stem cells and
HUVECs: human umbilical
vein endothelial cells

Indirect

Cell adhesion:
Immunofluorescence
Cell proliferation: CCK-8 assay
Cell-cycle analysis: WB
(Erk1/2, p-Erk1/2)
Cell differentiation: ALP activity
assay, Alizarin Red S, crystal violet,
immunofluorescence (OCN),
qRT-PCR analysis (β-actin, ALP,
OCN, BMP-2, Osterix, Hif-1α,
VEGF-A, CXCR4), WB
(Hif-1α and β-actin)

The scaffolds exhibited sustained
release of the bioactive lipids as
well as the calcium and silicon ions,
which were demonstrated to
broadly enhance biological
activities including the adhesion,
proliferation, and osteogenic
differentiation of rBMSCs as well
as the proliferative and in vitro
angiogenic ability of HUVECs.

Liu—
2019 [92]

Bone
regeneration

MBG (no information on the
composition of the
MBG)-hydroxyapatite + silk
fibroin (adjuvant)

No
Silk fibroin alone Sol-gel hMSCs: human

mesenchymal stem cells Direct

Cell morphology: FESEM
(field emission scanning electron
microscopy)
Cell viability: MTT assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(COL-1, OCN, RUNX-2, GAPDH)

Positive osteogenic differentiation
effect and upregulated osteoblastic
gene expression of samples
containing a high concentration of
hydroxyapatite.

Montalbano—
2019 [93]

Bone
regeneration

NanoMBG_Sr4% (dopant) +
Type I collagen (adjuvant),
with 4-StarPEG crosslinked
special composition of MBG
related to doping (Sr/Ca/Si
= 4/11/85 %mol)

No
Control: TCPS and
non-crosslinked
biomaterial samples

Sol-gel MG-63 human
osteoblast-like

Direct and
indirect

Cell adhesion: SEM
Cell viability: Alamar Blue assay
and indirect cytotoxicity assay
using “conditioned medium”

Good cell adhesion, morphology,
and viability.

Pourshahrestani
—2019 [94]

Bone
regeneration

AgMBG/POC: silver-doped
MBG 80S15C (80SiO2:
15CaO: 5P2O5) +
poly (1,8 octanediol citrate)
(adjuvant)
Si/Ca/P/Ag: 79/15/5/1:
1%AgMBG
AgMBG/POC (wt.%): 5/95;
10/90; 20/80

No
Control: adjuvant alone Sol-gel HDFs: human dermal

fibroblast cells Direct Cell viability: Alamar Blue assay
Efficient antibacterial properties
while preserving a favorable
biocompatibility.

Terzopoulou
—2019 [95]

Bone
regeneration

MBG 80S (80SiO2: 16CaO:
4P2O5) doped with calcium
or strontium +
polycapro-lactone (PCL)
(adjuvant)

No
Blank control Sol-gel

WJ-MSCs: human
Wharton’s jelly-derived
mesenchymal stem cells

Indirect
Cell adhesion: Fluorescence
microscopy
Cell viability: MTT assay

No cytotoxicity observed after 24 h.
Osteoinductive additives in PCL
matrices facilitate the
differentiation.

Varini—
2019 [96]

Bone
regeneration

Cerium-doped (0 to 5%)
MBG 80S (80SiO2: 16CaO:
4P2O5) + sodium alginate
(adjuvant)

No
Blank control Sol-gel MC3T3-E1: mouse

osteoblastic cells
Direct and
indirect

Cell viability: Alamar Blue assay
and membrane integrity: LDH:
CytoTox-ONE ™ (Promega, G7890)
Cell differentiation:
ALP activity assay

Better proliferation. No release of
cytotoxic agent. Differentiation
decreased with the amount
of cerium.
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Wang—
2019 [17]

Bone
regeneration

MBG and MBG-L (larger
pores) (no information on
the composition of the
MBG), FGF (fibroblast
growth factor) adsorbed
(adjuvant)

No
Control: simple MBG Sol-gel MC3T3-E1: mouse

osteoblast cell line Direct

Cell adhesion: laser microscope
Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay, Luciferase assay (RUNX-2)
and qRT-PCR analysis (RUNX-2,
OCN, OPN, GAPDH)

Better cell adhesion, proliferation,
differentiation with large-pore
MBG. Adding FGF enhanced the
cell adhesion and differentiation
even more.

Wang—
2019 [97]

Bone
regeneration

MBG80S15C (80SiO2:
15CaO: 5P2O5) + GO
(graphene oxide) (adjuvant)

No
Control: MBG alone Sol-gel rBMSCs: rat bone marrow

mesenchymal stem cells
Direct and
indirect

Cell morphology: SEM
Cell adhesion: SEM
Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay, RT-qPCR analysis (RUNX-2,
ALP, OCN, COL-1, VEGF, HIF-1α)
and immunofluorescence (OCN)

Better cell proliferation and
differentiation with the MBG
containing an adjuvant.

Wu—
2019 [98]

Bone
regeneration
in
osteoporosis

MBG 80S (80SiO2: 16CaO:
4P2O5) + sodium alginate
(SA) + gelatin (G); soaked
with calcitonin gene-related
peptide (CGRP) or Naringin
(NG) (adjuvants)

No
Control: MBG and
MBG/SA/G

Sol-gel MG-63: human
osteoblast-like

Direct and
indirect

Cell adhesion: Inverted fluorescent
microscopy and SEM
Cell viability: CCK-8 assay
Cell differentiation: qRT-PCR
analysis (RUNX-2, ALP,
OPN, OCN)

No difference in adhesion.
Drug adjuvants enhanced
proliferation and differentiation.

Zhang—
2019 [99]

Bone
regeneration

MBG (no information on the
composition of the MBG)

No
Blank control Not indicated rBMSCs: rat bone marrow

mesenchymal stem cells Direct

Cell morphology: SEM and TEM
Cell proliferation:
Immunofluorescence (Ki67)
Cell differentiation: WB (ALP,
RUNX-2, OCN, BMP-2, β-actin,
Gli1, Smo), qRT-PCR analysis (ALP,
RUNX-2, OCN, BMP-2, Gli1, Smo)
and RNA

Bioactive glass–ceramic coating
promoted proliferation and
differentiation, and up regulated
the expression of
osteogenesis-related genes.

Zheng—
2019 [100]

Bone
regeneration,
drug delivery

Cu-MBGNs: MBG 85S
(85SiO2: 15CaO) doped with
copper (0 to 10%)

No
Blank control Sol-gel

Mesenchymal stromal ST2
cells derived from mouse
bone marrow of BC8 mice

Indirect Cell viability: CCK-8 assay

Cytotoxicity of Cu-MBGNs was
related to the concentration of Cu
ions as well as the dosage of
particles applied.

Berkmann—
2020 [101]

Bone
regeneration MBG 85S(85SiO2: 15CaO) No

Blank control

Aerosol
spray-drying
method

hMSCs: human
mesenchymal stem cells Indirect

Cell viability: PrestoBlue, LDH
Cell counting: DAPI test.
Cell differentiation:
Alizarin-Red staining

Ionic dissolution products amplify
the osteogenic differentiation
of hMSCs.

Chitra—
2020 [102]

Bone
regeneration

MBG 45S5 (45SiO2: 24.5CaO:
24.5Na2O: 6P2O5):
crystalline phase:
Na2Ca2Si3O9 and
Na2Ca3Si6O16

Yes Sol-gel

MG-63: human
osteoblast-like and PBMC:
human peripheral blood
mononuclear cell

Direct Cell viability: MTT assay The probe sonication enriches
the biocompatibility.
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Mocquot
—2020 [21]

Bone
regeneration

MBG 75S(75SiO2: 15CaO:
10P2O5)

No
Blank control Sol-gel hDPCs: human dental pulp

cells Indirect

Cell morphology: CLSM
Cell viability: Alamar Blue assay
Cytotoxicity: crystal violet test
Cell differentiation: ALP activity
assay and immunofluorescence
(OCN and DMP-1)

The MBG showed no cytotoxicity,
good cytoskeletal architecture, cell
spreading and adhesion.

Montalbano
—2020 [103] Osteoporosis

Nano MBG (85% SiO2: 11%
CaO + 4% Sr) + collagen
(adjuvant)

No
Blank control Sol-gel

MG-63: human
osteoblast-like + SaOS-2:
human osteosarcoma cell
line

Direct
Cell viability: Alamar Blue assay
Cell adhesion and morphology:
SEM

The developed hybrid system
largely proved its biocompatibility
in presence of MG-63 and
Saos-2 cells.

Montes-Casado
—2020 [104] Immunity NanoMBG

(81.44% SiO2- 18.6% CaO)

No
Control: cells without
NanoMBGs

Sol-gel

Murine BMDCs: Bone
marrow-derived dendritic
cells + SR.D10 Th2 CD4+
lymphocytes + DC2.4
dendritic cells

Direct

Cell differentiation: Flow
cytometry assays (FACS +
antigenic markers)
Cell inflammation: cytokine
expression: immunofluorescence
(FACS + cytokine markers)
Cell proliferation: CellTraceTM
Violet dye (FACS)
Apoptosis: Annexin V (FACS)
Cytotoxicity: CLSM

NanoMBGs were both non-toxic
and non-inflammagenic for murine
lymphoid cells and myeloid DCs
despite their efficient intake by the
cells.

Pontremoli—
2020 [105]

Bon
regeneration

Zwitterionic or no
zwitterionic Nano (_SG)
and micro (_SD) particles of
MBG_Sr2%
(85SiO2:13CaO:2Sr)

No
Control: cells without
MBGs

Sol-gel MC3T3-E1: mouse
osteoblast cell line Direct

Cell proliferation: MMT-test
Cytotoxicity: LDH
Cell differentiation: Alizarin Red
staining and quantification
Cell adhesion: SPS-PAGE and
Coomassie blue for visualization

After zwitterionization the in vitro
bioactivity was maintained, no
cytotoxicity about Sr-MBG
particles. Zwitterionic Sr-MBGs
showed a significant reduction
of adhesion.

Wang—
2020 [106]

Bone
regeneration

Large-pore MBG
(no information on the
composition of the MBG) +
genistein (adjuvant)

No
Control: MBG with
normal pore size

Sol-gel MC3T3-E1: mouse
osteoblast cell line Direct

Cell adhesion:
Fluorescence microscopy
Cell viability: CCK-8 assay
Cell differentiation: ALP activity
assay and qRT-PCR analysis
(OPN, GAPDH)

Genistein is a molecule good for
cell attachment. MBG-L/G is the
better substrate for osteoblast
differentiation.

Zhou—
2020 [107]

Bone
regeneration

MBG/SIS-P28: MBG
(no information on the
composition of the MBG)
doped with SIS (porcine
small intestinal submucosa)
+ BMP2-related peptide P28
MBG/SIS-H-P28
(heparinized MBG/SIS)

No
Control: MBG/SIS Sol-gel MC3T3-E1: mouse

osteoblast cell line Direct

Cell proliferation: MTT-test
Cell viability: CLSM
Cell differentiation: ALP activity,
Alizarin Red staining) and
qRT-PCR analysis (GAPDH,
RUNX-2, OCN, OPN, ALP)

MBG/SIS-H-P28 scaffolds exhibit a
much stronger ability to stimulate
bone regeneration.
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Zhou—
2021 [108]

Bone
regeneration

MBGNs (no information on
the composition of the
mesoporous bioactive glass
nanoparticles)

No
Control: gelatin
(Gel)/oxidized
chondroitin sulfate
(OCS) hydrogel
without MBGN +
different MBGN
concentrations
(0%, 5%, 10% and 15%)

Sol-gel rBMSCs: rat bone marrow
mesenchymal stem cells Direct

Cell adhesion and spreading:
CLSM
Cell proliferation: CCK-8 assay
Cell viability: LIVE/DEAD assay
Cell differentiation:
Immunostaining (RUNX-2), ALP
activity assay, qRT-PCR analysis
(OCN, RUNX-2, OPN, COL-1), WB
(OCN, OPN), Immunofluorescence
(OPN) and Alizarin Red staining

Presence of MBGNs enhanced
proliferation of BMSCs and
osteogenic differentiation of
BMSCs grown on
Gel/OCS/MBGN
hydrogel surfaces.

Abbreviations: PGS (poly(glycerol sebacate); PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)); DMOG (dimethyloxallyl glycine); LDH (lactate dehydrogenase); PMMA (poly(methyl methacrylate);
TRAP (tartrate-resistant acid phosphatase), NFATc1 (nuclear factor of activated T-cells cytoplasmic 1); C-dot (carbon dot); rhBMP-2 (recombinant human bone morphogenetic protein-2); TCPS (tissue culture
polystyrene); VEGF (vascular endothelial growth factor); PDGF (Platelet Derived Growth Factor); PPAR-gamma (peroxisome proliferator-activated receptor gamma); Arg8 (octoarginine); DOX (doxorubicin);
RANKL (receptor activator of nuclear factor kappa-B ligand); SPARC (secreted protein, acidic, cysteine-rich); hnRNPL (heterogeneous nuclear ribonucleoprotein L); Setd2 (SET domain containing 2); P-AKT
(phosphorylated Akt); Akt (protein kinase B); P-CREB (phospho-cAMP response element-binding protein); PU (polyurethanes); CaSR (calcium-sensing receptor); BMP-2 (bone morphogenetic protein-2); PLGA
(particle-poly (lactic-co-glycolic acid); FTY (Fingolimod); Erk1/2 (extracellular signal-regulated kinase 1/2); p-Erk1/2 (phospho-Erk1/2); 4-StarPEG (4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate);
HIF-1α (hypoxia-inducible factor-1α); Hh (hedgehog); Gli1 (glioma-associated oncogene); Smo (smoothened); DMP-1 (dentin matrix acidic phosphoprotein 1); FACS (fluorescence-activated cell sorting for flow
cytometry).
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3.1. Control Group Used to Compare the Biocompatibility of Mesoporous Bioactive Glasses (MBGs)

A choice of suitable control groups provides the basis on which the relative perfor-
mance of the materials can be compared. This choice is therefore fundamental to each
study to affirm or refute differences in the effects of the MBG studied. The vast majority of
articles describe the use of an equivalent MBG (same composition) as the control group but
without doping and/or adjuvant and/or functionalization.

About 6% (four articles [71,77,85,102]) of MBGs used a conventional BG as the control
group. Mainly, MBGs show a significantly better biocompatibility than conventional BGs.
MBG scaffolds demonstrate notably better cell viability and differentiation [77]. The use of
negative controls could also be of interest in order to establish the normal behavior of cells
under the experimental conditions of each protocol.

3.2. Study Characteristics
3.2.1. MBG Synthesis, Characteristics, and Application Areas

The sol-gel process is a wet-chemistry technique widely used in the production of vit-
reous and ceramic materials. This synthesis technique allows control over the morphology
(nano-, micro-, and macro-size) and composition of the resulting mesoporous materials
by varying the process parameters or by carrying out additional treatment at the gel stage
of the materials [109]. One of the advantages of the sol-gel method is the simplicity of the
equipment necessary for synthesis.

Nevertheless, and in view of green chemistry, the sol-gel process for bioactive glasses
synthesis requires inorganic acids as catalysts, which have adverse effects on health and
the environment [110]. Recently, Dang et al. used a modified sol-gel method to successfully
elaborate bioactive glasses with the composition of 70SiO2-30CaO (mol.%) and with no acid
catalysts [111]. With regard to environmental protection and human health, environmen-
tally friendly methods for mesoporous bioactive glasses elaboration are required following
the trend of green chemistry.

Eighty-three percent of the MBGs studied were synthesized by the sol-gel process.
More rarely, a synthesis assisted by an aerosol or aerogel method was reported (5%),
making it possible to produce ordered mesoporous microspheres with a high degree of
sphericity and an ordered mesostructure [112]. These different techniques were found in
articles describing micro- or nano-MBGs [66,69]. In general, the sol-gel process was found
to be employed for all sizes and morphologies of MBG. Finally, in 6% of cases, MBGs were
synthesized by 3D printing via so-called additive manufacturing (Figure 3).
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Figure 3. Mesoporous bioactive glass (MBG) synthesis methods used in studied articles.

Regarding the basic composition of MBG used, the great part of MBG used have a
basic composition consisting of SiO2-CaO-P2O5 with variable proportions. These relative
proportions regulate parameters such as surface area, pore volume, and pore size, and thus
consequently influence the mesoporous properties of MBG [113].
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The composition of the MBG was not specified in 35% of cases, even in the associated
references; in such cases, the assessment or the comparison of any effect of composition
cannot be discussed. The compositions which returned most often (29%) were the MBG
80S15C (80SiO2: 15CaO: 5P2O5) and 80S16C (80SiO2: 16CaO: 4P2O5). More rarely, specific
compositions related to doping (10%) or MBG compositions 85S15C (85SiO2: 15CaO) were
found (Figure 4).
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MBGs have several established medical applications such as bone regeneration [18],
dentin remineralization [114], and much more. Studies are also underway to use meso-
porous bioactive glasses for dental applications such as the prevention of prosthetic joint
infections [115], as fillers in restorative materials, in direct contact with dentin and/or pulp
tissues [21], dentinal sealing for the treatment of dentin hypersensitivity [116], coating for
dental implants [115], and the treatment of periodontal diseases [117]. From the studies
included, 74% of articles used MBG for bone regeneration. More rarely, the applications
were drug delivery, osteoporosis, or hemostasis. Gene delivery is also observed as one
of the application areas of MBG providing a mechanism for the introduction of foreign
genetic material (DNA, RNA, etc.) into host cells. This material will then migrate into
the nucleus of the host cells and could induce modification on the gene expression profile.
From another perspective, Zhou et al. assessed the inflammatory profile of some MBG
nanoparticles incorporated in hybrid scaffolds using immunity cells [108].

3.2.2. Doping and Adjuvants of Studied MBGs

Due to high porosity, MBGs can be doped or they can be mixed with adjuvants like
polymers to gain new properties [20]. It is also possible to ensure drug delivery [17].

The porosity of mesoporous bioactive glasses was exploited in 51% of the articles by
incorporating adjuvants inside the pores, such as growth factors [62]. It is also common
to add them to polymers to create composites, for example, polycaprolactone [90,95]. In
28% of the cases, the MBGs were doped, either with a metal-like element or with amino
groups. Almost systematically, adding a dopant decreases the level (mol.%) of silicon in the
MBG [55], see Figure 5.

In general terms, MBGs offer suitable platforms for drug/ion delivery which increases
the range of possible uses in the biomedical field. For example, incorporation of strontium
for the treatment of osteoporosis, cobalt to enhance the pro-angiogenic effects, and copper
to improve angiogenesis and immune responses [118,119].
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3.3. Cells Characteristics

Twenty-eight articles indicate the use of stem cells (Figure 6A) to perform biocompati-
bility tests in which about 3/4 were BMSCs (bone marrow mesenchymal stem cells) derived
from different mammals (human, rat, rabbit) (Figure 6B). Eighteen articles indicate the use
of pre-osteoblastic, osteoblastic, or osteoblast-like cells (mostly from animal origin). Fifty-
six percent used MC3T3-E1 type cells and 28% used cells from MG-63 lines (Figure 6C).
Fourteen articles indicate the use of cancer cells (Figure 6A); among them 43% were Saos-2
(“Sarcoma osteogenic”) (Figure 6D). Eight articles indicate the use of fibroblasts cells, half
were HDFs (human dermal fibroblast) cells (Figure 6E). From a clinical perspective, the cell
type should be carefully chosen according to the targeted medical application.
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3.4. Techniques Used to Assess the MBG In Vitro Biocompatibility
3.4.1. Cell Morphology

Morphological changes provide a first indication of the behavior of cells in contact
with MBGs and can be studied using a variety of different techniques.

About 27% of articles investigated the modifications of cell morphology. Microscopy was
the technique used by all, for example, scanning electron microscopy (SEM) was the primary
choice, followed by confocal laser scanning microscopy (CLSM) and fluorescence microscopy,
which was used in a lesser proportion of studies. Transmission electron microscopy (TEM)
and inverted optical microscopy were also found to a lesser extent (Figure 7).
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3.4.2. Cell Adhesion/Attachment

Cell adhesion/attachment is a dynamic process resulting from specific interactions
between cell surface molecules and appropriate ligands [120] which is studied by imaging
techniques. It is an essential parameter to validate the biocompatibility of a biomaterial.

About 38% articles investigated the cell adhesion/attachment on the MBG surface.
Once again, microscopy was a technique commonly used representing 90% of the studies.
SEM and fluorescence microscopy were the most common. Optical density and SDS-PAGE
combined with Coomassie Blue visualization were explored as alternative options in two
separate articles (Figure 8) [49,105].
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3.4.3. Cell Viability and Proliferation

First of all, a cell viability assay is performed to assess the proportion of healthy and
viable cells within a population. In a cell proliferation assay, the result is a precise measure-
ment of the number of cells dividing [121]. A significant number of articles have confused
the notions of cell viability, cell proliferation, and general cytotoxicity. The data have been
reclassified clearly for this review.
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About 94% of articles investigated the cell viability and/or cell proliferation. A large
panel of techniques were found for evaluating these parameters (Figure 9).
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Eighty-six percent of the tests used were metabolic based assays. They are illustrated
by the shaded blue portions in the graph (Figure 9). CCK-8 (Cell Counting Kit-8) assay
uses a salt further reduced by active metabolic cells via dehydrogenase enzymes. The
reduction product obtained is colored and its concentration is determined by colorimetric
measurements. It is by far the technique most widely reported in the studies. The MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and the Alamar Blue
assay that require different enzymes and reagents but follow the same oxide-reduction
reaction were also reported. The LIVE/DEAD staining was used in 12% of the studies, it is
a membrane integrity-based assay, and results are revealed by fluorescence measurement.
Pintor et al. compared MTT assay to other cell viability assays and found that MTT and XTT
(2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assays do not
induce over- or underestimation of the cell viability and were in at least moderate agreement
with other cell viability assays when the root canal filling materials were screened [122].

3.4.4. Apoptosis Quantification, Cell-Cycle Analysis

Only three articles [79,90,104] investigated apoptosis quantification by flow cytometry,
and four articles [71,79,90,91] investigated cell-cycle analysis using the same flow cytometry
technique.

3.4.5. Cell Differentiation

Biomaterials and scaffolds play an essential role in guiding the target tissue growth,
healing, and regeneration. That is why cell differentiation tests are essential for neo-tissue
formation and could provide an indication of biomaterial bioactivity.

Forty-four articles (about 70%) investigated cell differentiation. In order to do so,
different cell markers had been used. A common method quantifies the alkaline phosphatase
(ALP), an enzyme present in all differentiated tissues by colorimetric techniques in most
of the investigated studies or by immunological techniques such as ELISA and western
blot techniques in few studies [62,99]. Fluorescent or normal staining were also used to
visualize ALP production and provided qualitative data [73,97]. qRT-PCR (quantitative
reverse transcription PCR) targeting RNA coding for ALP is also a method to study cell
proliferation. Other differentiation markers were found, like COL-1 (type I collagen), BMP-2
(bone morphogenetic protein-2), and GAPDH (glyceraldehyde phosphate dehydrogenase)
used commonly as a reference gene (Figure 10).
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Figure 10. Markers studied to assess the effect of MBGs on cell differentiation.

In general terms, cell differentiation could be assessed more clearly in primary and
undifferentiated cells due to their sensitivity and their potential for expression of key
differentiation markers.

Table 4 lists the main specific tissue markers associated with bone regeneration and
angiogenesis; two of the common most themes amongst the articles reviewed.

Table 4. Main cell differentiation markers and their application.

Topic of the Article Studied Markers

Bone regeneration Osteocalcin (OCN), runt-related transcription factor 2 (RUNX-2),
osteopontin (OPN), bone sialoprotein (BSP), osteoprotegerin (OPG)

Angiogenesis
Vascular endothelial growth factor (VEGF), hypoxia-inducible factor

1-alpha (HIF1A), basic fibroblast growth factor (bFGF),
stromal-derived factor 1 (SDF-1)

There are different ways to evaluate and quantify those markers, qRT-PCR being the
predominant one (64%). Among immunological techniques in the studies selected, Western
Blot (WB) was the most common (Figure 11).
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3.5. Cell cultivation Setting (Direct and Indirect Contact)

In certain clinical situations, MBGs or MBG-based materials do not make direct contact
with cells, however, their dissolution products or leachates could reach targeted cells;
this could explain the significant use of extraction techniques (indirect cultivation setting)
when assessing cytocompatibility of materials [21,55,59,81,91,95,100,101]. In a test based
on direct contact, the material sample is in physical contact with the cells; this system also
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has some clinical relevance. In this direct cultivation setting, test specimens are placed
on top of an established cell monolayer as reported by [82] or on the top of the material
surface [80]. According to the intended clinical application, the cultivation setting (direct or
indirect) is selected. When direct contact is used, precautions should be taken to maintain
the physiological balance of cells, on the other hand, the extraction method used to obtain
the tested eluates should be suitable and allow an optimum of leachable materials in the
indirect cultivation setting [123].

4. Discussion

The vast majority of MBGs studied were synthesized by the sol-gel process (83% of
the studies, Figure 3). It is a process also widely used in the synthesis of conventional BGs
because it not only allows fabrication of glasses according to different morphologies (fibers,
powders, coatings, 3D porous scaffolds) but the synthesis is carried-out at a relatively
low temperature with relatively simple equipment (in comparison with other synthetic
methods such the melt quench technique). This process also makes it possible to offer a
large surface area of active Si-OH sites which can potentially be functionalized for more
specific applications [124]. Indeed, the high mesoporosity and surface area of bioglasses
prepared by sol-gel techniques enhance the kinetics of apatite formation and expand the
compositional range [125]. The choice of synthesis of MBGs by sol-gel method seems to
be the most relevant in medical applications because of its simplicity and the ability to
tailor properties. Other synthesis methods exist such as the melt quench method or EISA
(evaporation induced self-assembly). The first consists of melting silicon oxides at 1300 ◦C
and then cooling the molten glass quickly in a mold. However, high temperature results in
the loss of residual surface silanols Si-OH in favor of siloxane bonds Si-O-Si and the loss of
particle porosity. Chitra et al. investigated the structural properties of a sol-gel-derived
bioactive glass and found that the use of a probe sonication-assisted sol-gel method resulted
in enhanced glass porosity and control over particle size [102]. Obtained nanoparticles were
mesoporous in nature and exhibited a higher rate of biocompatibility and hydroxylapatite
layer precipitation on the surface compared to conventional glass particles and micro
glass particles [102]. EISA combines the sol-gel technique and supramolecular chemistry to
obtain MBG particles with high surface area [32].

The introduction of 3D printing in the field of BGs, and especially, gel-derived BGs is
showing great promise for expanding the applications of these materials. Indeed, fabrica-
tion of hierarchical MBG-based scaffolds is a challenge. In fact, mesopore size is almost
three orders of magnitude lower than that of osteoblasts and, therefore, macroporosity
must be somehow introduced in the final product in order to allow cell colonization and
tissue in-growth [126].

Glass bioactivity is also affected by the glass composition. Bioactivity is the property
of interacting with a tissue to drive its repair [2]. It is commonly evaluated by an index, IB,
linked to the parameter, t1/2, which is half the time necessary for the glass surface to be
covered with cells.

IB =
100
t1/2

In 38% of MBG whose composition was indicated in the articles, the proportion of SiO2
was greater than or equal to 80% mol. This is explained by the increase in the surface area,
pore volume, and pore size when the SiO2 content increases [113]. The high concentration
of SiO2 plays a key role in bone metabolism and collagen synthesis. The most frequent
composition for MBG comprised SiO2:CaO:P2O5. The porosity increased when calcium
oxide increased, compared with sodium oxide [32]. The compositions with high sodium
interfered with the textural features by reducing the porosity because of the fusion of
pores [10]. Porosity has a significant role at the interface with cellular membranes and could
enhance bioactivity as a result of enhanced surface area [38]. Moreover, glasses with CaO,
P2O5, and SiO2 in their composition exhibit preferential layer formation on their surface
involving the Si-OH group formation including a heterogeneous nucleation of apatite [125].
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Thanks to their porosity and their structure, MBGs offer a panel of possibilities in
doping and addition of adjuvants according to the target application. These particular
MBGs represented about 79% of the articles studied.

Most common dopants in MBGs were gallium, strontium, or copper [20,67,93]. Stron-
tium is known to be a bone-seeking agent, improving stimulation of osteoblasts and having
anabolic and anti-catabolic properties. It also has the ability to increase resistance to disso-
lution [127–129] with some antibacterial activity. Copper and gallium, on the other hand,
improve biomineralization and amplify antimicrobial properties [67,128,130]. Wu et al.
suggested the doping of MBG foams with europium (1–5 mol.%) to fabricate luminescent
scaffolds for biolabeling and clinical imaging applications without altering the bioactiv-
ity [131]. Europium-doped MBG scaffolds contributed to accelerated bone regeneration via
the enhanced stimulation of new bone formation.

MBGs have also been investigated as controlled drug release systems. The combina-
tion of excellent surface properties and porosity, as well as the ability to be functionalized,
allows them to act as release systems for antibiotics and/or osteogenic agents [132].

The review of Baino et al. focused on bioactive glass-based hierarchical materials and
raises the issue of the potential health hazard related to the particle size of mesoporous
nano-beads in implantable systems. In fact, silica nanoparticles of different sizes (250 and
500 nm) penetrated into the cells (A549 and RAW264.7 types), being compartmentalized
within endocytic vacuoles, and induced genotoxicity [38].

Regarding adjuvants and polymer-based materials, sodium alginate, chitosan, and
polycaprolactone were the frequent polymers found in order to synthesize the scaffolds.

We noticed that, in most of these cases, cytotoxicity was directly associated with doping
and/or adjuvants in a dose-dependent and time-dependent way. However, the literature
reports that the introduction of dopants decreases the surface area and the pore volume
of MBG, and consequently significantly decreases its mesoporous properties [113]. Thus,
this property of mesoporosity of MBGs represents not only their strength but also their
weakness by affecting some of their mechanical properties and the release of mesoporous
components of nanometric size after their introduction in the human body [133].

The choices of the control groups are relevant for all of the articles studied. Some
articles have gone further by studying the differences between MBGs and conventional BGs.
The literature references significantly better biocompatibility results for MBGs compared
to conventional BGs [113]. The results of biocompatibility assays emanating from several
articles studied in this review draw the same conclusion, indicating that scaffold MBGs
can promote osteogenic differentiation [72,79].

For the MBG cytocompatibility assessment, the majority of the investigated studies
used different immortalized cell lines (about 75% of the studies) such as MG-63 osteoblasts
like cells [80,98]. The osteoblastic phenotype of MG-63 cells is particularly interesting for
the study of bone regeneration [92]. Some studies have revealed that there are differences
between established immortalized cell lines and primary cells in cellular response to
the biomaterials in vitro [134,135]. Although established cell lines have the advantage
of being immortal, available worldwide, and easy to grow, they remain distant from
target cells and therefore do not allow the study of necessary markers (such as markers of
bone remineralization). Primary cell cultures, on the other hand, are cells with a limited
lifespan (because they differentiate after a few multiplications), but they are closest to
the target tissues. This considerable advantage from primary cell lines makes it possible
to study markers which cannot be studied with established cell lines, and to study bone
remineralization in a more in-depth and relevant manner.

Regarding the cells, researchers used a large panel of different cell types. However,
according to Johnson et al., there is a real difference in sensitivity of established cell lines
that can differ even in controlled conditions [136]. The use of primary human cells or estab-
lished lines of mammals are acceptable only if these cells are of sufficiently high quality to
allow cell reproduction throughout the duration of the experiment, while maintaining their
phenotypic characteristics. An official guideline could harmonize their use in the biomedi-
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cal research. Wilkesmann et al. compared the effect of the crystallized 45S5 bioactive glasses
on the viability and the osteogenic differentiation of different human osteogenic cells. Their
data demonstrated that hOBs (human osteoblasts), BMSCs, and MG-63 cells were resistant
to 45S5-BG induced cytotoxicity, while the viability of Saos-2, HOS (Homo sapiens bone
osteosarcoma cells) and U2OS cells was significantly decreased. Moreover, ALP activity
was enhanced in all tested cells except in U2OS cells upon 45S5 co-cultivation [137]. Despite
the difference between the textural properties of conventional BG and MBG (high porosity
and high surface area of MBG) that could enhance cytocompatibility, the cell type used
could affect the biological behavior of tested glasses. In general, and according to the
clinical application, the use of primary human cells represents the most suitable standard
but has some limitations due to patient variability (sex, age, physiological conditions, etc.)
which must be taken into consideration. However, the use of cell lines could be more
advantageous regarding the reproducibility and the standardization of the experimental
conditions resulting in comparable results obtained from different studies [138,139].

Only 41 articles (about 65% of the included studies) investigated cell morphology
and/or the cell adhesion even though they are important parameters to evaluate biocompat-
ibility. An appropriate choice of microscopy is relevant with SEM, CLSM, and fluorescence
microscopy being well established in the field. However, optical techniques like optical
imaging are often less precise and should be substituted or combined with one of the three
techniques previously noted above. SEM allowed characterization of cell morphology and
spreading, while CLSM allowed monitoring of cell colonization within scaffolds containing
bioactive glasses. Some authors used more than one technique in order to provide different
and complementary data.

Regarding cell viability or cell proliferation, 59 articles were found to have investigated
them. Another relevant point is that, among these 59 articles, 36 confused the terms
“cell viability” and “cell proliferation” and so that is why we had to treat both terms
simultaneously in this review. Indeed, a cell viability test measures the ratio of living and
dead cells in a population whereas a cell proliferation test assesses dividing cells [121].
Typically, using a LIVE/DEAD assay for cell proliferation is false, because it is only a cell
viability test.

The different techniques used have all shown their efficiency for evaluating cell via-
bility and proliferation. It is important to carefully choose the tests to be carried out, as
there are many of them and each targets different cell processes. Trypan Blue, MTT, and
LDH assays are the most common tests as they are inexpensive. When evaluating a new
biomaterial, mostly reserved for bone regeneration, tests should be carried out over a com-
paratively longer timescale; a period of 28 days is usually required to cover the osteogenic
differentiation needed to demonstrate bone remineralization, while shorter cultivation
periods (1, 3, or 7 days) are long enough to reveal cytotoxicity when investigating both
bone and soft tissue behavior. In this case, the Alamar Blue assay, which is non-toxic, highly
sensitive, and stable, seems to be the best candidate test and could be more widely used in
the future for biomaterials cytotoxicity assessment [140]. Moreover, some techniques such
as the MTT and MTS assays can be qualitative and quantitative. That is why it is interesting
to use them for both cell proliferation and viability. Both MTT and MTS are colorimetric
tests and based on mitochondrial activity enzymes. However, the main difference between
MTT, MTS, and WST-1 tests is that MTT assay has an additional step associated with the
solubilization of formazan crystals whereas MTS and WST-1 assay are not associated with
the solubilization of formazan crystals. The limitation of the MTT assay is that it requires
the destruction of the cells for the analysis, thus making it impossible to use the cells for
other investigations, following the same cell population within the same assay. It is also
more time consuming [141].

Apoptosis quantification and cell cycle analysis are trials to study cell viability and
death in more detail (three articles). Thanks to these tests, it is possible to have more
precise information on the phases involved in cell death in contact with biomaterials, and
therefore, on the cytotoxicity of the latter. Regarding the analysis of the cell cycle, this
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test is commonly performed using flow cytometry and consists of measuring the content
of cellular DNA using a fluorescent dye that binds to DNA. Binding is quantified by
measurement of the strength of the fluorescent signal. This DNA content finally makes it
possible to differentiate between the different phases of the cell cycle [142]. Regarding the
quantification of apoptosis, most of the time and from the included studies, this test is also
carried out using flow cytometry through the analysis of DNA fragmentation [79,90,104].

Forty-four articles (about 70%) investigated cell differentiation and 38 of them mea-
sured ALP activity. ALP is a marker found in all body tissues and the marker of early
differentiation and extracellular matrix mineralization [143]. ALP activity revealed the
differentiation potential of dental pulp cells after a short period (7 days) of contact with
MBG [21]. In some articles, other markers were measured according to the target application
as well as according to the cells studied (primary cells, established cell lines, cancer cells).
The main markers used for bone regeneration were osteocalcin and osteopontin. Different
angiogenesis factors such as VEGF were reported in these studies (Table 4). Figure 12 sum-
marizes the methods used for the cytocompatibility assessment of mesoporous bioactive
glasses and their medical applications.
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A broad spectrum of techniques were found to used, that is to say colorimetric tech-
niques, immunological techniques (ELISA, western blot), and qRT-PCR (Figure 12). However,
western blot allowed a semi-quantification, unlike ELISA, that enabled a real quantification
and should be privileged when possible. Combining qRT-PCR (gene expression) and ELISA
(proteins level) could be relevant to provide a whole transcriptomic and proteomic data.

Four articles were excluded because they only explored biocompatibility in vivo. How-
ever, some studies show that in vitro tests are more effective in discriminating the cytotoxic
nature of the material than in vivo tests [144]. The review of Keong et al. showed that testing
in vitro was useful to characterize cytotoxic effects of molecules released from a biomaterial,
such as residual monomers, catalysts, etc. [145]. This explains why they concluded that,
when evaluating any newly developed biomaterial, in vitro tests should be conducted prior
to in vivo tests in order to minimize the risk to humans and animals. Furthermore, we
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strongly believe that the use of predictive and standard in vitro tests could reduce the use of
animal experiments, the scientific limits and societal impacts of which are highly recognized.

International organization for standardization (ISO) recommendations would help
increase the repeatability and comparability of in vitro cytotoxicity and cytocompatibility
studies. According to the ISO 10,993 recommendations regarding medical devices [123], one
of the criteria for biocompatibility is the absence of material toxicity to cells. Cytotoxicity
methods recommended by this norm and by the ISO norm 7405 [146] (which specifies test
methods for medical devices used in dentistry biological effects evaluation) are cell-counting,
dye-binding, metabolic impairment, or membrane integrity assays. The investigation of
two parameters would be more reliable than the use of only one protocol to assess cyto-
compatibility. According to the critical review of Mocquot et al., bioactive glass bioactivity
ranged from reactivity and apatite formation to pulp cell stimulation enhancement [9]. Even
though “bioactivity assessment” is more demanding than cytocompatibility assessment
when BG behavior is investigated in vitro, the link between the two assessments should be
taken in consideration for comprehensive risk assessment of such materials.

5. Conclusions

Biocompatibility in vitro ranks as one of the most important properties to investigate
with regards to the behavior of biomaterials, such as MBG. The articles investigated in this
review clearly show the importance of validating the biocompatibility of these materials.
However, there is a real lack of standardization regarding the methodologies used for MBG
cytocompatibility assessment. For MBGs, primary cells seem to be the most appropriate
cell model for studying biocompatibility. Microscopy is an essential technique for studying
morphology and cell adhesion. Cell viability and proliferation, although often confused,
can be investigated by a variety of relevant and predictive techniques. In some cases, it is
interesting to go further by studying cytotoxicity in more depth by analyzing the cell cycle
and quantifying apoptosis. Cell differentiation can be studied via the detection of certain
precise markers by qRT-PCR which is the most frequently used and most precise technique.
A multiparametric approach for all the tests (metabolic or not) could be interesting to
improve the evaluation relevance and sensitivity. The standardization of all tests necessary
to be performed to validate the biocompatibility of MBGs is a crucial point which will have
to be further investigated in order to eliminate inconsistencies and, therefore, sources of
error when comparing studies and unnecessary expenditure of time.
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